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Abstract: Given finite sets P and T of points in the Euclidean space Rd, the point
pattern matching problem studied in this paper is to find all translations f ∈ Rd such
that P + f ⊆ T . A fast search algorithm with some variants is presented for point
patterns P that have regular grid–like geometric shape. The algorithm is analogous to
the Knuth–Morris–Pratt algorithm of string matching. The time requirement of the
search is O(r|T |) where r is the grid dimension of P . Pattern P has grid dimension
r = 1 if it consists of evenly spaced points on a line. In general, a pattern P is an
r–dimensional grid if it has for some p ∈ P and e1, . . . , er ∈ Rd and positive integers
m1, . . . , mr a representation P = {p+ i1e1 + · · ·+ irer |0 ≤ ij ≤ mj} where the ij ’s are
integers. Both P and T are given to the search algorithm in the lexicographic order.
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1 Introduction

Finding the translates of a point set within another point set is a basic ge-
ometric pattern matching problem. Given point sets P (the pattern) and T

(the background) in an Euclidean space, one has to find all translation vectors
f such that P + f ⊆ T , where P + f = {p + f | p ∈ P} is the pattern P

translated by f . Typically the pattern is (much) smaller than the background.
Other variants of the point pattern matching problem allow transformations
other than the translation and may allow partial and/or approximate matches;
see, e.g., [Alt and Guibas, 1999, Bishnu, Das, Nandy and Bhattacharya, 2006],
[Alt, Mehlhorn, Wagener and Welzl, 1988, Atkinson, 1997, Brass, 2002],
[Efrat and Itai, 1996, Chew and Kedem, 1992, de Rezende and Lee, 1995].

The point pattern matching problem under translations is a relevant model
for example in music information retrieval. The standard writing of music as
notes can be represented as point sets in two-dimensional space. In this rep-
resentation, a piece of music is given as points (x, y) where x gives the on-set
time and y the pitch of a note. Given two such pieces of music, a larger one
(’music database’) and a shorter one (’melody’), searching the melody from the
databasae actually asks for point pattern matching under translation.
1 A research supported by the Academy of Finland grant 7523004 (Algorithmic Data

Analysis).
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As for the solution algorithms of the problem of point pattern matching
under translations, review [4] only mentions the trivial solution (systematic trial
and error, called the alignment method in [Huttenlocher and Ullman, 1990]). Its
running time is O(mn log n) where m = |P |, n = |T |, and m ≤ n. This contrasts
with the classical string pattern matching problem in which P and T are strings
of symbols in some finite alphabet. The string pattern matching (which in fact
can be seen as a special case of the geometric point pattern matching under
translations) can be solved in O(m + n) time using the well–known Knuth–
Morris–Pratt algorithm [Knuth, Morris and Pratt, 1977].

In this paper we concentrate on an ’on–line’ version of the point pattern
matching problem. We only assume that T is given in the lexicographically
sorted order but do not apply any other preprocessing on T . On P , on the other
hand, we could apply any preprocessing before the search. In our case, ordering
of P into the lexicographic order will suffice for the algorithms to be presented.
We will utilize string–matching style technique, based on the lexicographic order,
to organize and speed–up the search of matches of point patterns. In fact, the
lexicographic order will have here the same role as the linear left–to–right order
(as implicitly given by the adjacency of symbols) has in string matching.

The trivial algorithm needs in this framework O(m) traversals of T , and hence
its running time becomes O(nm), improving the bound O(mn log n) mentioned
above. However, for patterns whose geometric shape is periodic the number of
traversals can be much smaller leading to time bounds of the form O(kn) where
k is a parameter quantifying the periodicity of P . We will introduce some simple
classes of periodic patterns and give for them search algorithms that utilize the
periodicity.

In more detail, our results are as follows. Let P = {p1, p2, . . . , pm} ⊂ Rd and
T = {t1, t2, . . . , tn} ⊂ Rd where the elements of P and T are listed in increasing
lexicographic order, and d is fixed.

In Section 2, we recall from [Ukkonen, Lemström and Mäkinen, 2003] the
search algorithm (here called the Basic Algorithm) that runs in time O(mn).
The algorithm is analogous to the trivial O(mn) string matching algorithm that
for two strings (keyword and text) attempts to find the occurrences of the key-
word starting successively from each location of the text and comparing the
elements of the keyword with the elements of the text from this location on until
a mismatch is encountered or an occurrence is found. We use the Basic Algo-
rithm as a building block of our new algorithm for point patterns with small
linear dimension.

In Section 3, a pattern P is called a linear grid if m > 1 and pi+1−pi = p2−p1

for all i = 1, . . . , m − 1. We give a simple algorithm that finds the translated
occurrences of a linear grid in T in time O(m + n). The algorithm is based on
bookkeeping of the occurrences of the initial segments of P in T and expanding
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them whenever t+(p2−p1) is in T for some t = t1, t2, . . . , tn. This is analogous to
the Knuth–Morris–Pratt algorithm. A pattern P is called an r–dimensional grid
if it has for some p ∈ P and e1, . . . , er ∈ Rd and positive integers m1, . . . , mr a
representation P = {p+i1e1+· · ·+irer |0 ≤ ij ≤ mj} where the ij ’s are integers.
When r = 1 we get the linear grids. Generalizing our algorithm for linear grids,
we will obtain an algorithm that finds the occurrences of an r–dimensional grid
in time O(rn). Finally, a pattern P is said to have linear dimension kL if kL

is the smallest number such that P can be represented as a union of kL linear
grids. We describe an algorithm that finds the occurrences of such patterns in
time O(kLn).

Section 4 concludes the paper by making a note on how the above results
generalize to ’colored’ P and T that occur in some applications. In this case not
only the geometric shape but also the colors associated with the points should
match.

Our results utilize the internal periodicity of the pattern to speed up geomet-
ric point pattern matching. However, if the points of P are in a general position
then there is no periodicity. This suggests our conjecture that the time bound
O(mn) could be the best possible in the general case of our problem.

2 The problem and the basic O(mn) solution

We let P = {p1, . . . , pm} denote a pattern set of m points and T = {t1, . . . , tn}
a background set of n points in the Euclidean space Rd for some fixed d. The
point pattern matching problem under translations is to find all f ∈ Rd such
that P + f ⊆ T where P + f = {p + f | p ∈ P} is the pattern P translated by f .
We are in particular interested in the case m � n as it then makes sense to use
relatively slow algorithms to analyze P , if this leads to a faster search phase.

We assume that P and T are given in the lexicographic order: p1 < p2 < . . . <

pm and t1 < t2 < . . . < tn. Recall that this order < of points a = (a1, . . . , ad)
and b = (b1, . . . , bd) is defined as a < b if and only if there is j such that
ai = bi for i < j and aj < bj . To sort P and T , a preprocessing time of
O(dm log m + dn log n) is needed.

If P + f ⊆ T , the translation f is said to give an occurrence P + f of P in
T . Every point of an occurrence P + f must match some point of T . Therefore
p1 + f = tj for some tj ∈ T . This means that to find all occurrences of P in T

it suffices to test only the n translations fj defined for 1 ≤ j ≤ n as

fj = tj − p1. (1)

For each such fj , we can check in time O(m log n) using binary search on the
sorted T , that also the remaining points p2 + fj , . . . , pm + fj of P + fj match
T . This is the trivial algorithm for finding all translated occurrences of P which
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is analogous to the brute–force string matching algorithm and has running time
O(mn log n).

In [Ukkonen, Lemström and Mäkinen, 2003], an improved version of the triv-
ial algorithm was given. We briefly describe this algorithm, which we will here
call the Basic Algorithm, as we need it in the sequel. The Basic Algorithm is
given below in Fig. 1. Function next(tj) gives tj+1.

1. for i ← 1, . . . , m do si ← −∞
2. sm+1 ← ∞
3. for j ← 1, . . . , n − m do
4. f ← tj − p1

5. i ← 1
6. do
7. i ← i + 1
8. si ← max(si, tj)
9. while si < pi + f do si ← next(si)
10. until si > pi + f

11. if i = m + 1 then output(f)
12. end for.

Figure 1: Basic Algorithm [Ukkonen, Lemström and Mäkinen, 2003].

Basic Algorithm traverses T and matches p1 against t1, t2, and so on until
tn. The traversal is implemented using a pointer s1. When s1 = tj during the
traversal, the algorithm has to check whether or not the translation s1 − p1 =
tj − p1, i.e., the translation fj of (1), would give an occurrence of P . To this
end the algorithm maintains for each element pi of P a pointer si that also
traverses T , in cascade with s1. When si points to th, it in effect represents the
translation th − pi. The algorithm compares this translation to the current fj

which is represented as s1 − p1. If it is smaller than fj, si is updated to th+1.
Now, after the update, si represents the translation th+1 − pi which is larger
than th − pi as th+1 > th (but th+1 − pi < ts − pi for any s > h + 1). If a
translation equal to fj is found after some updates of si in this way through
T , the algorithm actually has found a match for pi + fj . The algorithm then
continues with testing and updating the next pointer si+1, and so on. If finally
sm hits an element t of T such that th − pm = fj , the algorithm has verified the
entire occurrence P + fj.

The other possibility is that the translation represented by some si grows
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larger than fj without matching with it. Then the search fails for the present
s1. In both cases s1 is next updated to tj+1 and the search is repeated to verify
P + fj+1, and so on. The lexicographic traversal order insures that no back-
tracking of any pointer si is needed during the search as the target transla-
tion fj is monotonically increasing when the search goes on. Hence Basic Al-
gorithm actually performs m one–way traversals of T , giving running time of
O(mn). The algorithm can be much faster as its best case running time is O(n).
This is the case for points in ’general position’ meaning that the intersection
{pi+1 − pi|i} ∩ {tj − ti|j > i} of relevant pairwise distances within P and T is
small and hence Basic Algorithm runs fast.

3 Grid–like patterns

3.1 Linear grids

We start by describing the general principle of our search algorithm for linear
grids. The idea is to consider simultaneously all potential occurrences of P , that
may contain tj , and to check which of these occurrences can be successfully
expanded to the next element of P .

Let us denote by Pi = {p1, . . . , pi} the ith initial segment of P . Let Alive(tj) =
{i | Pi + (tj − pi) ⊆ T } denote all initial segments that are ’alive’ at tj in the
sense that the translation tj − pi that makes pi match tj also makes the rest of
the initial segment Pi match T . If set Alive(tj) is available at every tj , then the
occurrences of P can be found: there is an occurrence ending at tj if and only if
m ∈ Alive(tj).

The sets Alive(tj) will be constructed incrementally. When the search enters
tj , set Alive(tj) has already been accumulated, as a side–effect of visiting the
earlier elements of T .

At tj , if m ∈ Alive(tj) then we have found an occurrence of P . Moreover, for
each i ∈ Alive(tj) such that i < m, we have to check if the occurrence of the
initial segment Pi can be expanded to an occurrence of Pi+1. Therefore we check
whether or not the point t = tj + (pi+1 − pi) is in T . If t actually is in T , then
t must equal tj+h for some h > 0 because pi+1 − pi > 0 and hence t must occur
after tj in T . So we scan T beyond tj and if such a tj+h is found, then i + 1 is
added to Alive(tj+h).

The updating of the sets Alive can be made more efficient by utilizing the
periodicities in P . If pi+1 − pi is the same for several different i ∈ Alive(tj) then
i + 1 for all these i’s should be added to the same set Alive(tj+h). We will do
such an update in one step for each different Δ = pi+1 − pi. We need for each
Δ a pointer that traverses T . If P has k different values Δ, we end up with an
O(kn) algorithm. This requires that the updates for each Δ be done in constant
time at each tj . A precomputed transition table is needed, that gives for each
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possible set Alive what are the k updates to be propagated with each different
Δ.

We concentrate on the simple special case k = 1. We call the corresponding
patterns linear grids.

Definition 1. A pattern P = (p1 < p2 < . . . < pm) is a linear grid if m > 1 and
pi+1 − pi = p2 − p1 for all i = 1, 2, . . . , m − 1. The difference p2 − p1 between
the adjacent points of a linear grid P is called the displacement, point p1 the
starting point, and point pm the end point of the linear grid.

Note that the classical string matching problem of searching a key–word from
a text deals with patterns and backgrounds whose spatial geometric structure is
a linear grid.

Obviously, for a linear grid there is only one Δ and hence k = 1. It is
also immediate that whenever in this case i ∈ Alive(tj) then also all i′, i′ <

i, are members of Alive(tj). But then we can use a simplified constant size
representation of Alive, namely represent each Alive(tj) by its largest element.
The test for an occurrence at tj becomes testing whether or not Alive(tj) = m.
The search algorithm is as follows.

Algorithm 1. Let P be a linear grid of m elements and let Δ = p2 − p1 and
let initially Alive(tj) = 1 for all tj . Function next(tj) gives tj+1, and we let
t0 = −∞.

1. t ← s ← −∞
2. while t < tn do
3. t ← next(t)
4. if Alive(t) = m then P occurs ending at t

5. while s < t + Δ do s ← next(s)
6. if s = t + Δ then Alive(s) ← Alive(t) + 1

Analysis. The correctness of the algorithm should be evident from the above
discussion. The running time consists of scanning T with t in O(n) steps and
with s in another O(n) steps. That a sorted P is a linear grid can be tested in
time O(m). We have obtained:

Theorem 2. Algorithm 1 finds the translated occurrences of a linear grid P in
a lexicographically sorted T in time O(n) where n = |T |.

3.2 Multi–dimensional grids

A pattern P is an r–dimensional grid if it has for some p ∈ P and e1, . . . , er ∈ Rd,
each ei > 0, and positive integers m1, . . . , mr a representation

P = {p + i1e1 + · · · + irer | i1 = 0, 1, . . . , m1; . . . ; ir = 0, 1, . . . , mr}. (2)
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Note that the grid dimension r is independent of the dimension d of the
underlying Euclidean space. Even for d = 1, the grid dimension of P can have
any integer value.

Such a P consists of linear grids of length mr with displacement Δ = er. The
starting points of these grids can be grouped into linear grids of length mr−1

with Δ = er−1. The starting points of these grids can again be grouped into
linear grids, and so on, until the last phase will give one linear grid of length m1

with displacement Δ = e1.
This suggests that the occurrences of P can be found by repeatedly applying

Algorithm 1: First find and mark in T with Algorithm 1 all starting points of the
occurrences of the linear grid with Δ = er and length mr. This takes time O(n).
Then apply Algorithm 1 on these points (they constitute a lexicographically
ordered subset of T ) to find all starting points of the occurrences of the linear
grid with Δ = er−1 and length mr−1, and so on. Finally the starting points
of the occurrences of the linear grid with Δ = e1 and length m1 will give the
occurrences of entire P . If t is any such point in T , the translation t − p where
p is the smallest point of P , gives the occurrence: P + (t − p) ⊆ T . We call this
method Algorithm 2.

Theorem 3. Algorithm 2 finds the translated occurrences of an r–dimensional
grid P in a lexicographically ordered T in time O(rn) where n = |T |.

That P is an r–dimensional grid for some r can be tested in polynomial time
as follows. We start with the following characterization of r–dimensional grids;
the proof by induction is almost immediate.

Lemma4. Pattern P is an r–dimensional grid if and only if P is a union of
equally long disjoint linear grids that have the same displacement and the set of
the starting points of these linear grids is either a singleton set (in which case
P is a linear grid) or an (r − 1)–dimensional grid.

Lemma 1 gives a test whether or not P is an r–dimensional grid for some
r: we need to find out whether or not P is a union of equally long linear grids
with the same displacement, and if it is, then continue testing recursively on the
set of the starting points of the linear grids. To this end, we find all possible
displacements

D = {pi − pj | pi, pj ∈ P, i > j}
in time O(m2). Then we test for each u ∈ D whether u covers P in the sense
that each pi ∈ P has a pj ∈ P such that pi − pj = u or pj − pi = u. This test
can be conveniently done in time O(m2) with the Basic Algorithm. If t covers P ,
then P obviously is a union of disjoint linear grids with displacement u. Testing
that the linear grids are of equal length and finding their starting points still
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takes time O(m). As there are O(m2) different possible displacements u to test,
the total time becomes O(m4).

If there are more than one starting point, the test is then recursively contin-
ued on the set of starting points. Pattern P is an r–dimensional grid if the test
finds on the rth recursive round that the starting point set given to that round
is a linear grid. The displacements from different rounds are the base vectors
ei of the grid representation (2) of P , the lexicographically smallest point of
P being the base point p of the representation. As the number of the starting
points given to the next recursive call is at most half of the current number, the
total number of recursive calls is O(log m) and r ≤ log2 m. Hence the running
time of our algorithm is O(m4 log m).

3.3 Patterns with small linear dimension

The linear dimension of a pattern P is the smallest number kL such that P can
be represented as a union of kL linear grids.

The occurrences of P in T can be found by using first Algorithm 1 kL times
to find in T all starting points of the occurrences of the kL linear grids and
using then Basic Algorithm to find where in T the starting points form the same
subpattern of size kL as in P . The resulting algorithm has running time O(kLn).

Finding kL and the corresponding decomposition of P seems hard. However,
we can easily find all linear grids in P . These form a collection of subsets of P

whose union equals P . The size of the smallest subcollection that covers P is
= kL. Hence we may use the greedy set cover approximation algorithm to find in
polynomial time a covering subcollection, giving a suboptimal linear dimension
≤ kL log m.

Theorem 5. Given a pattern P of linear dimension kL with its decomposition
into the kL linear grids, there is an algorithm that finds the translated occurrences
of P in a lexicographically ordered T in time O(kLn) where n = |T |. A suboptimal
linear dimension within a logarithmic factor from the optimum can be found in
polynomial time; the resulting search algorithm runs in total time O(poly(m) +
kLn log m).

4 Concluding remark: colored P and T

In some applications it is not enough that the points match spatially but there
can be additional requirements for acceptable matches. In the case of music
retrieval, for example, the notes have duration in addition to the on-set time
and pitch. To model this situation we use ’colored’ P and T . Then the elements
of P and T are of the form (c, u) such that u ∈ Rd and c ∈ A where A is a
finite set of the color values. Colored pattern P = ((c1, p1), . . . , (cm, pm)) has an
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occurrence in a colored T if {(c1, p1 + t), . . . , (cm, pm + t)} ⊆ T for some t ∈ Rd.
For the colored case we mention here some basic results but leave the details to
the interested reader.

It is not difficult to see that all our algorithms generalize to the colored
case, with the same time bounds. The only point needing some care is the gen-
eralization of Algorithm 1 such that the O(n) time bound is retained. The
Knuth–Morris–Pratt algorithm for string pattern c1c2 · · · cm can be used on
top of Algorithm 1 to check in linear time that also the color components
match whenever Algorithm 1 has found an occurrence of the geometric com-
ponent. For r–dimensional grids (Algorithm 2) the Aho–Corasick multipattern
string matching machine [Aho and Corasick, 1975] can be used for the same
purpose, analogously to the Baker–Bird algorithm [Baker, 1978, Bird, 1977] for
two–dimensional string matching.
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