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Abstract: River Formation Dynamics (RFD) is an evolutionary computation method
based on copying how drops form rivers by eroding the ground and depositing sedi-
ments. Given a cost-evaluated graph, we apply RFD to find a way to connect a given
set of origins with a given destination in such a way that distances from origins to the
destination are minimized (thus improving the quality of service) but costs to build the
connecting infrastructure are minimized (thus reducing investment expenses). After we
prove the NP-completeness of this problem, we apply both RFD and an Ant Colony
Optimization (ACO) approach to heuristically solve it, and some experimental results
are reported.
Key Words: River Formation Dynamics, Ant Colony Optimization Algorithms,
Heuristic Algorithms, NP-hard problems.
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1 Introduction

The Evolutionary Computation methods [Kirkpatrick et al.(1983), Davis(1991),
Kennedy and Eberhart(1995), Eiben and Smith(2003), Jong(2006)] are based on
making several simple entities evolve, according to simple local-scope rules, in
such a way that globally efficient solutions are found. In particular, River For-
mation Dynamics (RFD) [Rabanal et al.(2009), Rabanal and Rodríguez(2009)]
is an evolutionary computation method related to Ant Colony Optimization
(ACO) [Dorigo et al.(1996), Dorigo and Gambardella(1997), Dorigo(2004)] that
was firstly presented at [Rabanal et al.(2007)]. Roughly speaking, RFD can be
seen as a gradient-oriented version of ACO where, in particular, a different
nature-inspired metaphor is considered. RFD is based on copying how the wa-
ter forms rivers in nature. The water transforms the environment by eroding
the ground when it falls through a high decreasing slope, and it deposits car-
ried sediments when a more flat ground is reached. In this way, altitudes of
places are decreased/increased, and paths of decreasing gradient are dynam-
ically constructed. These gradients are followed by subsequent drops to create
new gradients, reinforcing the best ones. Eventually, paths consisting in consecu-
tively taking the highest decreasing gradients constitute good paths from raining
places to the sea. Though RFD has been applied to NP-hard problems of different
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nature, such as the Traveling Salesman Problem [Rabanal et al.(2007)] and the
Minimum Load Sequence [Rabanal and Rodríguez(2009)], it has been observed
that it performs particularly well in problems consisting in creating a kind of
covering tree over a given graph (see [Rabanal et al.(2009)]). These are problems
where the goal is constructing a tree covering some graph nodes, in such a way
that a given property is met or a given value is minimized/maximized. Adapting
RFD to these problems is particularly natural to this method: We assign the
lowest altitude to one of the nodes to be covered (it becomes the sea) and we
make drops rain at the rest of nodes to be covered. Eventually, the gravity makes
drops form a tree of joining tributaries from departure points to the sea.

In this paper we take advantage of this feature of RFD to solve the following
problem: Given (a) a cost-evaluated graph, i.e. a graph where costs are assigned
to edges; (b) a subset of nodes required to be covered called origin nodes; and (c)
a specific node called destination node, we construct a tree such that (i) paths
connecting origin nodes with the destination node through the tree are as short
as possible; and (ii) the tree itself is as small as possible. Trees that are optimal
with respect to (i) are not optimal with respect to (ii) nor the other way around,
so a kind of tradeoff between both goals will be pursued instead. Let X be the
addition of costs from each origin node to the destination through the tree, and
let Y be the cost of the tree itself (i.e. the addition of costs of edges forming
the tree). Given some 0 ≤ α ≤ 1, our goal will be to minimize the expression
α · X + (1 − α) · Y .

The previous minimization problem appears in any engineering domain where
a set of origins must be joined with a destination d in such a way that, on the
one hand, distances from each origin to d are minimized (in order to improve
the quality of service, QoS) and, on the other hand, the cost of constructing the
connecting infrastructure is minimized too (which reduces investment expenses,
IE). In particular, we define the relative weight of QoS and IE in our objective
by selecting an appropriate value of the α parameter. Let us suppose that we
wish to construct a local area network for a new complex of facilities, in such a
way that computers in all offices and buildings are connected to the company
central server. A tree topology is chosen for the network due to the ease to further
extend such a topology with new switches/routers/networks without needing
to change networking devices (see the role of the tree topology in networking
in e.g. [Perlman(1985), Peterson and Davie(2007)]). On the one hand, distances
from each node to the central node should be minimized to improve the QoS. On
the other hand, the length of the new wiring infrastructure should be decreased
to reduce the IE. Similarly, let us consider that some cities must be joined
with a capital city through a highway network. We pursue a tradeoff between
minimizing distances from each city to the capital and minimizing the cost of
constructing the tree of highways.
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In order to improve our capability to express complex situations, we gener-
alize the proposed problem as follows: We consider that the cost of traversing a
given graph edge depends on the path traversed so far. That is, if we traverse e

after following a path σ then the cost of adding e to the path is ce,σ; in general,
we have ce,σ �= ce,σ′ for any other path σ′. For instance, this allows to consider
that the QoS and IE costs of an edge depend on the origin of the path we have
traversed before reaching the edge. Coming back to our previous example, the
QoS of an edge denoting a fast but not very reliable wire is not high for transmit-
ting data coming from a node typically running real-time applications (in this
case, meeting some minimal speed in all situations is critical). However, the QoS
of this edge may be high for transmitting data coming from an e-mail server (a
high bandwidth is good for transmitting a huge amount of e-mails, though it is
acceptable if the connection is rarely down). In the highway network example,
the IE of building a specific highway stretch may depend on whether we expect
it to be typically traversed by trucks or not.

Let us denote the proposed problem by QoS-IE Tree problem (QIT). Despite
of the applicability of QIT to different engineering domains (networking, trans-
portation, circuit design, assembly line design, etc), to the best of our knowledge
this problem has not been defined or studied before in the literature. We will
formally define QIT and we will show that it is an NP-complete problem (a proof
consisting in a polynomial reduction from 3-SAT will be given).1 Thus, solving
QIT in practice requires applying a suitable heuristic method. We will show that
RFD is a good choice to solve QIT indeed, and we will report some experimental
results where the RFD method and an ACO approach are applied to solve QIT.

The rest of the paper is structured as follows. In the next section we present
the general RFD scheme. Then, the QIT problem is formally defined in Section 3,
where we prove its NP-completeness. Afterwards, in Section 4 we present an
implementation of the algorithm and we compare the results of our method
with those obtained using an ACO method. Finally, in Section 5 we present our
conclusions.

2 Brief Introduction to River Formation Dynamics

In this section we briefly introduce the basic ideas of River Formation Dynam-
ics (RFD) (for further details, see [Rabanal et al.(2007), Rabanal et al.(2009)]).
Given a working graph, we associate altitude values to nodes. Drops erode the
ground (they reduce the altitude of nodes) or deposit the sediment (increase it)
as they move. The probability of the drop to take a given edge instead of others
1 QIT is NP-hard because (a) edge costs depend on the path traversed so far and

(b) trees are not required to cover all nodes but only some of them. Each of (a) and
(b) is, by its own, a sufficient condition for NP-hardness. The proposed proof will be
based on reason (a), and reason (b) will not be required to be exploited.

1884 Rabanal P., Rodriguez I., Rubio F.: Applying RFD ...



is proportional to the gradient of the down slope in the edge, which in turn
depends on the difference of altitudes between both nodes and the distance (i.e.
the cost of the edge). At the beginning, a flat environment is provided, that is,
all nodes have the same altitude. The exception is the destination node, which
is a hole (the sea). Drops are unleashed (i.e. it rains) at the origin node/s, and
they spread around the flat environment until some of them fall in the destina-
tion node. This erodes adjacent nodes, which creates new down slopes, and in
this way the erosion process is propagated. New drops are inserted in the origin
node/s to transform paths and reinforce the erosion of promising paths. After
some steps, good paths from the origin/s to the destination are found. These
paths are given in the form of sequences of decreasing gradient edges from the
origin to the destination. Several improvements are applied to this basic general
scheme (see [Rabanal et al.(2007), Rabanal et al.(2009)]).

Compared to a related well-known evolutionary computation method, Ant
Colony Optimization, RFD provides some advantages. On the one hand, local
cycles are not created and reinforced because they would imply an ever decreasing
cycle, which is contradictory. Though ants usually take into account their past
path to avoid repeating nodes, they cannot avoid to be led by pheromone trails
through some edges in such a way that a node must be repeated in the next
step.2 However, altitudes cannot lead drops to these situations. Moreover, since
drops do not have to worry about following cycles, in general drops do not
need to be endowed with memory of previous movements, which releases some
computational memory and reduces some execution time. On the other hand,
when a shorter path is found in RFD, the subsequent reinforcement of the path
is fast: Since the same origin and destination are concerned in both the old and
the new path, the difference of altitude is the same but the distance is different.
Hence, the edges of the shorter path necessarily have higher down slopes and
are immediately preferred (in average) by subsequent drops. Finally, the erosion
process provides a method to avoid inefficient solutions because sediments tend to
be cumulated in blind alleys (in our case, in valleys). These nodes are filled until
eventually their altitude matches adjacent nodes, i.e., the valley disappears. This
differs from typical methods to reduce pheromone trails in ACO: Usually, the
trails of all edges are periodically reduced at the same rate. On the contrary, RFD
intrinsically provides a focused punishment of bad paths where, in particular,
those nodes blocking alternative paths are modified.

When there are several departing points (i.e. it rains at several points), RFD
does not tend in general to provide the shortest path (i.e. river) from each point
to the sea. Instead, as it happens in nature, it tends to provide a tradeoff between
quickly gathering individual paths into a small number of main flows (which
2 Usually, this implies either to repeat a node or to kill the ant. In both cases, the last

movements of the ant were useless.
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minimizes the total size of the formed tree of tributaries) and actually forming
short paths from each point to the sea. For instance, meanders are caused by
the former goal: We deviate from the shortest path just to collect drops from
a different area, thus reducing the number of flows. On the other hand, new
tributaries are caused by the latter one: By not joining the main flows, we can
form tailored short paths from each origin point.3 These characteristics make
RFD a good heuristic method to solve problems consisting in forming a kind of
covering tree [Rabanal et al.(2008)], which motivates using RFD to solve QIT.

Several improvements are applied to the basic general scheme. In particular,
drops coming from different origins and coinciding at the same node are joined
into a bigger drop, which allows to reduce the number of individual drop move-
ments. Besides, in order to avoid the formation of local optima, drops are given
a small probability to climb up slopes, and this probability decreases with time
(see [Rabanal et al.(2007)] for further details).

3 Formal Problem Definition

In this section we formally define QIT, the problem we will address in Section 4
by means of RFD and ACO. As we said before, QIT consists in finding a tree
over a given graph such that (a) all nodes belonging to a given subset of graph
nodes (called origin nodes) are connected to a given node (destination node),
and (b) the sum of distances from origin nodes to the destination node, as well
as the size of the tree, are as small as possible (where the relative weight of the
former measure is denoted by α and the latter by 1−α). Besides, we will be able
to consider that the cost of taking an edge depends on the path traversed before
taking the edge. In order to denote this dependance, we assume that the cost of
a path of edges e1, . . . , en from a given origin node o to a given destination node
d depends on the evolution of a variable through the path. Initially, a value vo

is assigned to this variable at node o. Then, the cost added to the path due to
the inclusion of edge e1 is an amount depending on vo. After traversing e1, the
value of the variable is updated to a new value v1. Next, the cost of adding e2

to the path depends on v1. After taking e2, the value of the variable is updated
again, and the process continues so on until we obtain the whole cost of the path
e1, . . . , en.

Following this idea, a variable-cost graph can be defined by attaching some
information to a standard graph. Let us consider a set of origin nodes (in partic-
ular, this set could include all nodes of the graph). Then, (1) we assign an initial
value to each origin node; (2) we assign a cost function to each edge. Depending
on the value of the variable just before traversing the edge, taking the edge adds
3 As we will see later, we can make RFD tend towards either of these choices by

changing a single parameter.
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a different cost; and (3) we assign a transformation function to each edge. Given
the value of the variable before traversing the edge, it returns the new value after
taking it.

Let us suppose that a variable-cost graph defined in these terms is provided
and a tree t over this graph, connecting all origin nodes with the destination
node, is given. On the one hand, the QoS cost of t is the addition of distances
from each origin node to the destination. Paths departing from different origin
nodes could share some edges in the tree (in particular, different sequences of
edges could share some suffixes). Let us note that, in general, the cost of a shared
edge is different for each path because the value of the variable when the edge is
reached may be different for each path. On the other hand, the IE cost of tree t

is the addition of costs of edges included in the tree. In this case, the cost of an
edge e is computed as follows. Let us consider all paths of t connecting an origin
node with the destination node and including edge e. The cost added by edge e

to the IE cost of t is the average of the cost of e for all of these paths. Let us
note that, in both problems, trees are not required to include all nodes from the
original graph, but only the origin nodes and the destination node. Thus, other
nodes of the graph are included in the tree only if they are suitable to (cheaply)
connect origins and the destination. In particular, if all nodes are considered as
origin nodes then the resulting tree must include all nodes indeed.

Definition 1. A variable-cost graph is a tuple G = (N, O, d, V, A, E) where:

– N is a finite set of nodes,

– O ⊆ N is the set of origin nodes,

– d is the destination node,

– V = {v1, . . . , vn} is a finite set of values,

– A : O −→ V is the initial value function, that is, a function assigning an
initial value to each origin node.

– E is the set of edges. Each edge e ∈ E is a tuple (n1, n2, C, T ) where n1, n2 ∈
N are the origin and destination nodes, respectively, and

• C : V −→ IN is the cost function of e. Given a value in V denoting the
current value of the variable, it returns the cost of traversing e.

• T : V −→ V is the transformation function of e. Given the current value
of the variable, it returns the new value assigned to the variable if e is
traversed.

Paths are sequences of edges departing at an origin node and arriving to the
destination node. Formally, a path of G is a sequence of edges σ = (e1, . . . , ek)
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with ei = (ni, n
′
i, Ci, Ti) ∈ E for all 1 ≤ i ≤ k such that n1 ∈ O, n′

k = d, and for
all 1 ≤ i ≤ k − 1 we have n′

i = ni+1. The cost of σ, denoted by c(σ), is equal to

C1(A(n1))+C2(T1(A(n1)))+C3(T2(T1(A(n1))))+. . .+Ck(Tk−1(. . . (T2(T1(A(n1)))) . . .))

The term denoting the cost of traversing ei in the previous expression, that is
Ci(Ti−1(. . . (T2(T1(A(n1)))) . . .)), will be denoted by cei(σ). In a notation abuse,
we will write e ∈ σ if e = ei for some 1 ≤ i ≤ k.

We say that G′ = (N ′, O, d, V, A, E′) with N ′ ⊆ N and E′ ⊆ E is a tree of G

if for all o ∈ O there exists a single path σ = (e1, . . . , ek) of G′ departing from o,
that is, such that e1 = (o, n, C, T ) for some n, C, T . For each o ∈ O, we denote
by σo the unique path of G′ departing from o.

The QoS cost of G′, denoted by qos(G′), is equal to
∑

o∈O c(σo). The IE cost

of G′, denoted by ie(G′), is equal to
∑

e′∈E′

∑
{ce′(σo)|o∈O,e′∈σo}

|{ce′(σo)|o∈O,e′∈σo}| . ��

Now we are provided with all the needed machinery to formally define the
problem considered in this paper. As it is usual in Complexity Theory, this
minimization problems is defined in terms of its equivalent decision problem.

Definition 2. The problem of the Quality of Service-Investment Expenses Tree,
denoted by QIT, is stated as follows: Given a variable-cost graph G, a rational
number α with 0 ≤ α ≤ 1, and a natural number K, is there any tree G′ of G

such that α · qos(G′) + (1 − α) · ie(G′) ≤ K? ��

QIT generalizes other known problems consisting in constructing a kind of
covering tree from a graph by (a) considering that both the distances to a given
destination node and the size of the tree itself matter; and (b) considering that
the cost of traversing each edge depends on the path traversed before taking the
edge. The past path is abstracted by the value of the variable, which particular-
izes the cost of each edge for each path. Let us note that, in formal terms, we
do not need to consider several variables in the problem definition because the
dependence on past paths can be denoted by using a single variable. As far as
we are concerned, the tree-construction problem proposed in this paper has not
been considered in the literature before. Hence, its properties must be analyzed.

Next we prove the NP-completeness of QIT, consisting in constructing a poly-
nomial reduction from 3-SAT. This implies that exponential times are (very
probably) required to optimally solve them. Thus, sub-optimally solving it by
means of heuristic algorithms like those considered in this paper is an appropri-
ate choice. The proof is structured as follows. First, we prove that QIT belongs
to the NP class. Next, we prove that a well-known NP-complete problem, 3-SAT,
can be polynomially reduced to QIT, which implies that QIT belongs to the
NP-complete class.

Lemma3. QIT ∈ NP.
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Proof. We prove that QIT can be solved in polynomial time by a non-deterministic
algorithm. Given a variable-cost graph G, a rational number α with 0 ≤ α ≤ 1,
and a natural number K, this algorithm non-deterministically constructs a sub-
graph G′ of G and next deterministically checks whether (a) G′ is a tree of G,
and (b) we have δ = α · qos(G′) + (1 − α) · ie(G′) ≤ K. Both operations are
performed in polynomial time with respect to the size of G, α and K (measured
in bits required to represent them). Given a subgraph G′ of G, checking whether
G′ is a tree of G requires polynomial time. Next, if G′ is a tree of G, calculating
δ requires traversing all paths connecting each origin node to the destination
node and adding the costs of all of these paths due to qos(G′) and ie(G′). The
length of each of these paths is polynomial, so calculating the cost of a path
requires polynomial time. Since G′ is a tree, for each origin node there exists a
single path connecting it to the destination node. Thus, the number of paths to
be considered is polynomial. Hence, we can check whether the property δ ≤ K

holds or not in polynomial time. ��
In order to prove the NP-completeness of QIT, we construct a polynomial

reduction from a known NP-complete problem to QIT. In particular, we consider
the well-known 3-SAT problem. Next we introduce some notions related to this
problem as well as the problem itself.

Definition 4. The 3-SAT problem is stated as follows: Given a propositional
logic formula ϕ expressed in conjunctive normal form where each disjunctive
clause has at most 3 literals, is there any valuation ν satisfying ϕ?

Let ϕ ≡ (l11 ∨ l12 ∨ l13) ∧ . . . ∧ (lk1 ∨ lk2 ∨ lk3) be an input for 3-SAT. We
denote by props(ϕ) = {p1, . . . , pn} the set of propositional symbols appearing
in ϕ. We denote the i-th disjunctive clause of ϕ by ci, that is, ci ≡ li1 ∨ li2 ∨ li3.

We say that ci holds when pj is equal to x ∈ {�,⊥}, formally denoted by
h(pj , x, ci), if for all valuation ν fulfilling ν(pj) = x we have that ci evaluates
to �. That is, h(pj ,�, ci) iff lim ≡ pj for some 1 ≤ m ≤ 3, and h(pj ,⊥, ci) iff
lim ≡ ¬pj for some 1 ≤ m ≤ 3. ��

We will prove QIT ∈ NP-complete as follows. Given an input ϕ of 3-SAT, we
show that we can construct an input (G, α, K) of QIT from ϕ in polynomial time
in such a way that the solution of 3-SAT for ϕ is yes iff the solution of QIT for the
variable-cost graph G, the rational number α, and the natural number K is yes.
By the definition of the NP-complete class, this implies QIT ∈ NP-complete.
In particular, if we were able to solve QIT in polynomial time then we could
solve the NP-complete problem 3-SAT in polynomial time as well: We could just
transform ϕ into (G, α, K), next call the algorithm that solves QIT in polynomial
time, and finally return the answer given by it.

Before formally presenting the construction of (G, α, K) from ϕ, let us in-
formally introduce it. Each origin node of the constructed graph G represents a
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disjunctive clause of ϕ. From each of these origin nodes, a sequence of edges al-
lows to traverse some nodes one after each other (the same sequence for all origin
nodes) where each node represent a proposition symbol appearing in ϕ. Each of
these proposition nodes is connected to the next proposition node through two
edges. One of them represents valuating the corresponding proposition symbol
to �, while the other edge represents giving it the ⊥ value. Depending on the
origin node where we come from (that is, depending on the disjunctive clause
we are considering), taking the edge that evaluates the proposition symbol to
true or to false adds a different cost to the path. This cost is 1 unless the propo-
sition valuation represented by the edge allows to make true the disjunctive
clause for the first time in the path. In this case, the edge adds 0 to the overall
path cost. In order to keep track of this information, the value of the variable
of the variable-cost graph G codifies the considered clause, as well as whether
this clause necessarily holds (according to the valuation represented by the path
traversed so far). In particular, variable values follow the form vj,w where j is
an index denoting a clause and w ∈ {already�, notyet�}. A value vj,w denotes
that the current path departed at an origin node denoting the j-th clause of ϕ,
and w = already� denotes that the j-th clause must be true regardless of the
valuation of the remaining proposition symbols (because the valuation implicitly
defined by the path traversed so far necessarily makes it true). Otherwise, we
consider w = notyet�. After the last proposition node is traversed, the destina-
tion node of G reached.

Recall that QIT seeks for a tree where a given linear combination of (a) the
addition of costs from each origin node to the destination node and (b) the
addition of average edge costs, is minimal (in particular, α · qos(G′) + (1 − α) ·
ie(G′)). Let us consider that α is given the value 1 in the QIT problem instance
we construct from ϕ. In this case, QIT seeks for a tree where the addition of costs
from each origin node to the destination node is minimal (let us note that, from
now on, a similar construction could be given for the case where α = 0). Given
the variable-cost graph G, a tree of G can include only one of the edges that
connect each proposition node to the next proposition node (otherwise, it would
not be a tree). Hence, given G, trees computed by QIT represent valuations of
proposition symbols. Since α = 1, QIT searches for the cheapest tree connecting
all origin nodes to the destination node. Thus, QIT actually seeks for a tree
allowing to make true as more clauses as possible. In particular, we will prove
that the cost of the cheapest tree found by QIT is under a given threshold if and
only if all clauses are true under the constructed valuation, that is, iff ϕ holds.
It turns out that, due to the specific form of G, finding a tree where the addition
of costs from each origin to the destination is minimal (i.e. considering α = 1)
is equivalent to finding a tree where the addition of average costs of edges is
minimal (i.e. considering α = 0): Due to the definition of G, in both cases the
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tree cost is minimized if the valuation represented by the tree makes true as
more clauses as possible. Hence, we can also define a threshold such that the
cost of the minimum tree for QIT assuming α = 0 is under it iff ϕ is satisfiable.

Theorem5. QIT ∈ NP-complete.

Proof. Due to Lemma 3, if we can polynomially reduce 3-SAT to QIT then
QIT ∈ NP-complete. Let ϕ denote a conjunctive normal form ϕ ≡ c1 ∧ . . . ∧
ck where props(ϕ) = {p1, . . . , pn}. We construct a variable-cost graph G =
(N, O, d, V, A, E) as follows:

– N = {clause1, . . . , clausek, prop1, . . . , propn, end},
– O = {clause1, . . . , clausek},
– d = end,

– V = {vj,w|1 ≤ j ≤ k ∧ w ∈ {already�, notyet�}}
– For all clausei ∈ O we have A(clausei) = vi,notyet�.

– E = {(clausei, prop1, C, T )|1 ≤ i ≤ k ∧ ∀ v ∈ V : (C(v)=0 ∧ T (v)=v)}⋃
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

propi,

propi+1,

Cx
i ,

T x
i

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ≤ i ≤ k − 1 ∧ x ∈ {�,⊥} ∧
Cx

i (vj,notyet�) =
{

0 if h(pi, x, cj)
1 otherwise

}
∧

Cx
i (vj,already�) = 1 ∧

T x
i (vj,notyet�) =

{
vj,already� if h(pi, x, cj)
vj,notyet� otherwise

}
∧

T x
i (vj,already�) = vj,already�

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⋃

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

propn,

end,

Cx
n ,

T x
n

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x ∈ {�,⊥} ∧
Cx

n(vj,notyet�) =
{

0 if h(pn, x, cj)
1 otherwise

}
∧

Cx
n(vj,already�) = 1 ∧

T x
n (vj,notyet�) =

{
vj,already� if h(pn, x, cj)
vj,notyet� otherwise

}
∧

T x
n (vj,already�) = vj,already�

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

We show that constructing G from ϕ requires polynomial time. This property
is a consequence of the following conditions:

(a) |N | is equal to the number of clauses of ϕ plus the number of proposition
symbols of ϕ plus 1 (the end node), which is polynomial with respect to the
size of ϕ.

(b) |V | is equal to the number of disjunctive clauses of ϕ multiplied by 2. Thus,
for each edge in E, defining functions C and T by means of extensional
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arrays (relating each input value with its output value) requires polynomial
size and time.

(c) |E| is equal to the number of clauses plus the number of propositions multi-
plied by 2, which is polynomial with respect to the size of ϕ.

Finally, we prove that the answer of QIT for the graph G, the QIT objective
parameter α = 1, and a threshold K = k · (n − 1) is yes iff ϕ is satisfiable.
That is, we prove that ϕ is satisfiable iff there exists a tree G′ of G such that
α ·qos(G′)+(1−α) · ie(G′) = qos(G′) ≤ k · (n−1). We consider each implication
of this statement:

⇒: Let us note that a tree G′ of G must include all edges connecting each node
clausei with prop1. All of these edges have 0 cost. Besides, for each pair of
edges connecting each node propi with node propi+1, the tree G′ must include
exactly one of these edges. Let us consider a valuation ν such that for all
1 ≤ i ≤ n we have ν(pi) = � if G′ includes the edge (propi, propi+1, C

�
i , T�

i )
and pi = ⊥ if G′ includes (propi, propi+1, C

⊥
i , T⊥

i ). For all clausei ∈ O, the
cost of the path from clausei to end in G′ is n − 1 if ν makes true ci, and
n otherwise. This is because if ν makes ci true then all edges in the path
but one add 1 cost to this path. The exception is the edge that makes true
ci for the first time, which adds 0 cost. If ϕ is satisfiable then there exists a
valuation ν′ making true all clauses ci. Thus, there exists a way to choose
the edges connecting each propi with propi+1 in such a way that, for all
clausei, the unique path from clausei to end has n − 1 cost. In this case,
qos(G′) = k · (n − 1).

⇐: Let us consider a valuation ν defined as in the previous case. If qos(G′) is
k · (n−1) then the cost from each clausei to end must be n−1. This implies
that, for each 1 ≤ i ≤ n, ν makes true the clause ci. Hence, ϕ is satisfiable.

Though reducing the 3-SAT instance to a QIT instance with α = 1 is enough
to prove the NP-completeness of QIT, let us note that if we considered α = 0 then
we could make an alternative proof with very similar arguments. In particular,
we could construct a polynomial reduction from 3-SAT to QIT by using the same
variable-cost graph G defined before. In this case, we have that ϕ is satisfiable iff
there exists a tree G′ of G such that α ·qos(G′)+(1−α) ·ie(G′) = ie(G′) ≤ n−1.
Let us recall that if α = 0 then the cost of each edge e of G′ is the average cost
of e for all paths traversing e. Due to the structure of G, it is easy to check that
ie(G′) = qos(G′)

k . Thus, ϕ is satisfiable iff ie(G′) = k·(n−1)
k = n − 1. ��

It is worth to point out that the goal of the previous construction is proving
the NP-completeness of QIT, not providing a suitable graph construction to
solve 3-SAT by means of RFD or ACO. In particular, if the variable-cost graph
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G were used to find solutions to 3-SAT by means of RFD, then we would need
to introduce a barrier node at each edge connecting a node propi with propi+1

(see details about barrier nodes in [Rabanal et al.(2007)]).

4 QIT Implementation and Results

In this section we describe the application of RFD to solve QIT and we report
some experimental results. Furthermore, we compare the results obtained by us-
ing our algorithm and those obtained by using an ACO method. All experiments
were performed in an Intel Core Duo T7250 with a 2.00 GHz processor.

Let us consider the application of RFD to the QIT problem. We make rain
at all origin nodes, and the destination node is the sea. After executing RFD for
some time, for each graph node we only take the edge with the highest decreasing
gradient, and we discard the rest of edges. Since a path of decreasing gradients
cannot lead from a node to itself, the (unique) paths from each origin node to the
destination node remaining after the removal must depict a tree indeed. As dis-
cussed before, natural rivers do not tend to form solutions where each drop goes
to the sea through its shortest path, but they tend to form grouped solutions.
This allows RFD to implicitly deal with path conflicts, i.e. situations where, at
a given node, two drops coming from different origins have different preferences
regarding which edge should be taken next (because costs are different for each
of them; recall that we are considering that costs depend on previously followed
paths). In these situations, the tendency of RFD to form grouped solutions im-
plicitly leads to forming paths with a suitable cost tradeoff between available
choices: After some steps, the erosion will reinforce more strongly the slopes
providing the lowest overall cost. In addition, the tendency of drops to join each
other is very appropriate to optimize the IE cost of the tree: If drops tend to
join the main flow, instead of following their respective individual shortest paths,
then less edges are added to the tree and the tree cost is reduced.

Interestingly, we can adapt RFD to optimize the QoS cost just by changing
a parameter: If we reduce the erosion caused by high flows, then the incentive of
drops to join each other is partially reduced, and thus each drop tends to follow
its own shortest path. For instance, we can achieve this effect by changing the
erosion rules in such a way that, if n drops traverse an edge, then they make
the erosion effect of e.g. a single drop, rather than the effect of n drops. In this
case, grouped paths are promoted by the method only when they are required
to solve path conflicts. Moreover, by considering intermediate erosion effects, we
construct trees partially fitting into the objectives of both problems. Thus, in
order to find a tradeoff between optimizing QoS and optimizing IE as required
by α, we just have to set an appropriate erosion effect value.

Regarding the ACO implementation, let us note that solving QIT is not natu-
ral for ACO. For instance, ACO does not provide an implicit way to deal with the
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convergence of paths. Let us consider a node where two paths coming from dif-
ferent origin nodes converge. Ants coming from an origin node could be confused
by pheromone trails and go on to the other origin node, rather than following to
the destination node, because pheromone trails are not directed (on the contrary,
in RFD formed edge gradients are implicitly directed towards the destination).
In order to solve this problem in ACO, a different kind of pheromone trail will
be considered for ants departing at each origin node, and ants will follow only
their own pheromone kind.4 After the algorithm is executed for some time, paths
formed from each origin point are combined to form a tree. If paths constructed
for two origin points reach the same node and next leave it through a different
edge, then only the path with highest pheromone trail leaving the node (consid-
ering all kinds of pheromone) is added to the solution tree.

This approach is suitable for finding trees in such a way that paths from each
origin to the destination are short, i.e., for optimizing with respect to QoS. How-
ever, a different strategy must be considered to find good trees in terms of their
overall cost, i.e. in terms of IE, because this strategy does not promote joining
paths to reduce the number of edges to be included in trees. We will optimize IE
costs in ACO by using a strategy inspired by [Bui and Zrncic(2006)]. In partic-
ular, a single pheromone kind is considered for all ants. This allows pheromone
trails of a given path to attract ants coming from a different path, which in
turn allows to join different paths together and reduces IE costs. This leads to
the problem commented before: Ants coming from a path can get confused at
a convergence node and go on through the other path. Moreover, ants can be
led by pheromone trails in such a way that it is impossible not to repeat a node
next, thus making the path traversed so far useless.

Thus, the strategy followed by ACO to optimize IE costs is very different
from the strategy followed to optimize QoS. This contrasts with RFD, where
a simple and modular modification (a change on the erosion effect parameter)
allows it to easily reach any required tradeoff between QoS and IE optimization.
If both QoS costs and IE costs must be optimized in ACO (i.e. if 0 < α < 1),
then we combine the two strategies proposed in ACO to optimize QoS and IE,
respectively, which complicates the algorithm execution. Based on the experi-
mentation with different approaches, the following mechanism is followed. The
algorithm is executed in two stages. First, ACO is executed according to the QoS
optimizing strategy described before, i.e. we consider different pheromone kinds.
After some execution time, only edges whose pheromone trail reaches a given
threshold are taken in this graph, and next ACO is executed for the resulting
graph according to the IE optimizing strategy given before, i.e. we consider a
single pheromone kind. Depending on the value of α, the duration of each of
these stages is enlarged/reduced. This contrasts with the RFD method, where a
4 This is equivalent to launching a different ACO execution for each origin point.
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the same strategy, parameterized by the erosion effect, is followed in all cases.
Three randomly generated variable-cost graphs with 100, 200, and 300 nodes

are used in experiments as benchmark problems, altough we have also tested
other graphs obtaining analogous results. In the three graphs, each node is con-
nected to approximately 40% of the rest of nodes. Variables used to particularize
the cost of edges can take up to 5 possible values. Cost functions and transforma-
tion functions attached to edges are randomly generated. In particular, features
such as monotonicity or injectivity are not required in these functions. Table 1
shows the results of the experiments, where the input of both algorithms were
the graphs described before. The third and fourth columns of the table describe
whether we are optimizing only QoS, IE, or a combination of both of them. Then,
the fith column shows the best solution found to optime QIT for the concrete
combination of QoS and IE values described in the previous columns. As we are
performing several executions for each example, we also show the average and
variance of the obtained results (columns sixth and seventh).

Let us analyze the results shown in Table 1. When we consider α = 1 (that
is, when the weight of QoS in the measure to be optimized is 100% and the
weight of IE is 0%), RFD obtains better average results than ACO, although
the difference is not big. In fact, the best solution found by ACO in 10 executions
is better than the best solution found by RFD in the same number of executions.
Regarding the case where α = 0 (i.e. only costs due to IE are considered) the
advantage of RFD over ACO is greater than in the α = 1 case. The reason is that
ACO is well suited for searching short paths between given points (in fact, the
basic ACO method is devoted to find short paths between two points indeed),
though it is not very suitable for joining different short paths into a main flow,
in such a way that the size of the constructed tree is reduced. On the contrary,
this goal is natural to RFD.

The greatest advantage of RFD over ACO is observed in the case of interme-
diate α values, that is, when a tradeoff between QoS and IE is pursued. When
we need to find appropriate trees with respect to QoS and IE, RFD clearly
outperforms ACO in all situations. In fact, the only case where ACO obtains
acceptable results is in the smallest graph (100 nodes), where the advantage of
RFD is not too big. However, when the problem size is larger (200 or 300 nodes),
the difference of performance between both methods becomes larger. Thus, the
scalability of RFD in these cases is much better than the scalability of ACO.

The main reason for obtaining these results is basically the same reason
why RFD works better than ACO to find good trees with respect to IE costs:
ACO is well suited to find short paths, though the goal of constructing grouped
solutions towards a common destination is more natural in RFD. Moreover,
ACO results are worse when a QoS-IE combination is required than when only
an optimization with respect to IE is required. It could be argued that a QoS-
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Table 1: Summary of QIT results.

Method Graph size % Qos % IE Best solution Arithmetic mean Variance
ACO 100 0 100 582.62 618.26 552.36
RFD 100 0 100 599.25 610.26 51.94
ACO 100 25 75 603.93 643.31 756.17
RFD 100 25 75 529.18 535.35 23.14
ACO 100 50 50 509.98 541.67 315.68
RFD 100 50 50 444.82 459.83 65.02
ACO 100 75 25 409.84 421.30 86.43
RFD 100 75 25 376.34 389.40 65.83
ACO 100 100 0 285.90 305.79 93.57
RFD 100 100 0 290.87 310.88 95.99
ACO 200 0 100 771.64 933.20 5275.66
RFD 200 0 100 854.78 884.05 111.41
ACO 200 25 75 1270.38 1484.18 38149.49
RFD 200 25 75 771.02 779.11 26.86
ACO 200 50 50 1029.60 1189.63 8297.23
RFD 200 50 50 689.18 698.19 41.72
ACO 200 75 25 819.58 917.88 3025.96
RFD 200 75 25 602.54 623.54 154.83
ACO 200 100 0 542.32 577.54 365.01
RFD 200 100 0 506.36 538.76 160.33
ACO 300 0 100 1239.73 1414.31 8804.20
RFD 300 0 100 1330.00 1362.05 244.50
ACO 300 25 75 1592.38 1751.85 83816.83
RFD 300 25 75 1140.84 1161.03 127.71
ACO 300 50 50 1370.84 1512.30 19654.78
RFD 300 50 50 1035.38 1053.18 124.00
ACO 300 75 25 1132.21 1191.59 2145.74
RFD 300 75 25 907.62 934.46 201.03
ACO 300 100 0 1069.99 1128.73 641.79
RFD 300 100 0 802.44 829.22 128.40

IE combination should perform better for ACO because of the QoS part of the
optimization goal, which is a natural goal for ACO. However, the strategy needed
to optimally cover some nodes with respect to both measures is more complex
than in the case of considering only IE. On the other hand, seeking for a tradeoff
between QoS and IE is easy for RFD because a simple parameter adjustment
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Figure 1: QIT results for a 300 nodes graph with QoS = 100 and IE = 0

allows RFD to define its tendency towards each kind of tree.
In order to analyze the time needed to find good solutions, let us consider

Figures 1–3. These figures show the evolution of the quality of the solutions
found by ACO and RFD along time (measured in seconds) in a single execution
using a 300 nodes graph. In all cases, ACO finds a first solution faster than RFD,
although RFD always surpasses ACO after some time. The reason is that RFD
performs a deeper exploration of the graph before finding the first solution, but
then it behaves better in the mid and long terms. Regarding the comparison
between the four figures we can see that, when only QoS costs are considered
(see Figure 1), it takes longer for RFD to surpass the quality of the solutions
found by ACO. However, when only IE costs are considered (see Figure 3), RFD
surpasses ACO in less time. Moreover, when we try to optimize with respect
to a combination of both measures (see Figures 2 and 4), the time needed by
RFD to surpass ACO is even smaller. It is interesting to note that in these cases
(Figures 2 and 4) the evolution in time of ACO performance is not so smooth
as in the other two cases. The reason is that 0 �= α �= 1, so that the problem
is harder for ACO and a single small discovery by an ant can have a greater
influence in the overall result.

The reasons for these results are similar. On the one hand, RFD is better
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Figure 2: QIT results for a 300 nodes graph with QoS = 75 and IE = 25

suited than ACO for creating covering trees where individual paths must be
combined and grouped into common paths. On the other hand, ACO is faster in
simpler cases (such as when only QoS is considered), and it gets slower when it
deals with more complex problems such as only considering IE, or considering a
balance between QoS and IE. We conclude that RFD is a better choice when the
problem to be solved requires to construct a solution where individual solutions
must be (partially) gathered.

5 Conclusions and Future Work

In this paper we have applied a River Formation Dynamics method to find a way
to connect a set of origins with a given destination in such a way that (a) dis-
tances from origins to the destination are minimized (which improves the quality
of service) and (b) costs to build the connecting infrastructure are minimized
(which reduces investment expenses). Though this problem has applications to
several engineering domains (networking, transportation, circuit design, assem-
bly line design, etc), to the best of our knowledge it has not been defined or
studied in computational terms before. We have shown its NP-completeness,
and we have solved it by means of both an RFD approach and an ACO ap-
proach. We have observed that the QIT problem fits particularly well into the
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Figure 3: QIT results for a 300 nodes graph with QoS = 0 and IE = 100

RFD scheme. This is because RFD naturally tends to construct covering trees
where, on the one hand, paths from raining points to the sea are short (in partic-
ular, tributaries providing partially tailored solutions from each origin point are
formed) and, on the other hand, the size of the tree is reduced (in particular, me-
anders deviate from the shortest path to cover other areas without the necessity
of further branching). The natural tendency of drops in RFD towards the lowest
point avoids that drops get confused at points where two paths join together.
This contrasts with ACO: If an ant reaches a convergence point, it could start
to climb up the other tributary rather than going down through the main down
flow. This forces to modify the ACO scheme as explained in the previous section.
On the contrary, no rule modification is required in RFD to make drops go down.
Thus, handling several paths and properly composing them is a natural task to
RFD. As commented in Section 2, other advantages of RFD over ACO are the
following: Cycles are implicitly avoided; shorter paths are quickly reinforced; and
sediment cumulation provides a focalized way to punish bad paths. The results
shown in experiments described in Section 4 corroborate the usefulness of these
features in the RFD approach.

As future work, we plan to apply our method to solve a broader set of input
cases, covering different kinds of graphs. In particular, we are very interested
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Figure 4: QIT results for a 300 nodes graph with QoS = 25 and IE = 75

in considering a concrete real world problem to illustrate the usefulness of the
approach. In addition to that, we plan to create an hybrid ACO-RFD method to
try to obtain the best of both worlds. Let us remark that ACO typically requires
less time to find a solution, though RFD typically behaves better in the long
term. Thus, an hybrid method could obtain both advantages.
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