
A Heuristic Approach to Positive Root Isolation for

Multiple Power Sums

Ming Xu
(Shanghai Key Laboratory of Trustworthy Computing
East China Normal University, Shanghai 200062, China

and
State Key Laboratory of Computer Science, Institute of Software

Chinese Academy of Sciences, Beijing 100190, China
mingxu 12903@hotmail.com)

Chuandong Mu
(Shanghai Key Laboratory of Trustworthy Computing
East China Normal University, Shanghai 200062, China

chuandong mu@163.com)

Zhenbing Zeng
(Shanghai Key Laboratory of Trustworthy Computing
East China Normal University, Shanghai 200062, China

zbzeng@sei.ecnu.edu.cn)

Zhi-bin Li
(Department of Computer Science and Technology

East China Normal University, Shanghai 200241, China
lizb@cs.ecnu.edu.cn)

Abstract: Given a multiple power sum (extending polynomial’s exponents to real
numbers), the positive root isolation problem is to find a list of disjoint intervals, sat-
isfying that they contain all positive roots and each of them contains exactly distinct
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1 Introduction

Real root computation of univariate functions is a fundamental problem in con-
structive and computational mathematics [Bridges 1994]. Applications of real
root isolation are numerous from theoretical research to engineering practice.
However it is quite difficult to get all real roots, since there is no finite root
extraction for a univariate polynomial of degree 5 or higher. Even for some
low-degree polynomials, their roots, calculated by the root extractions, are in
complex irrational form that will involve more efforts in successive calculation.
Thus we would rather isolate them in disjoint intervals, each containing distinct
one and together containing all, than compute the exact values generally. The
real roots isolation for polynomials with integer coefficients has a series of classic
work utilizing some substantial properties of polynomials as follows:

1. Cauchy index and Sturm sequence (Sturm 1829, [Collins and Loos 1983,
Knuth 1997, and references therein]): It utilizes a well-founded GCD se-
quence and alternates signs to generate Sturm sequence, which can deter-
mine the exact number of the distinct real roots in arbitrary interval, then
isolates them through bisection.

2. Descartes’ sign rule and Vincent’s method: Descartes’ sign rule overesti-
mates the number of all positive roots, which is equal to the number of
sign variations in polynomial coefficient sequence. The famous algorithm in
[Collins and Akritas 1976] isolates each distinct real root by repeatedly bi-
secting this interval via the continued fraction transformation like (cx+ d)m

f(ax+b
cx+d ) from Vincent’s theorem (Vincent 1836, [Uspensky 1948, and refer-

ences therein]). Moreover [Akritas 1978] introduced a new continued fraction
method for largely shortening the scope of positive roots in each bisecting
iteration, which is one of the most efficient isolation algorithms by increas-
ingly refining the positive root upper and lower bounds [Akritas et al. 2006,
Akritas et al. 2008] and integrated into most computer algebra systems in-
cluding MATHEMATICA, MAPLE and SYNAPS [Tsigaridas and Emiris 2006].
For another progress, [Rouillier and Zimmermann 2004] proposed a semi-
numerical algorithm for handling polynomials with interval coefficients.

3. The differentiation method: [Collins and Loos 1976], based on Rolle’s the-
orem, advocated a sinking and lifting procedure to isolate all real roots of
a polynomial by the monotonicity in its derivative’s complement isolation
list. Due to the relationship between algebraic numbers and their minimal
defining polynomials, it is feasible to test whether a root is multiple, which
makes this method sound and complete.

4. The complete discrimination system for polynomials: The complete discrim-
ination system [Yang et al. 1996, Yang 1999] can determine the number and
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multiplicities of all complex roots by computing the sub-resultant chains of
Sylvester resultants. To some extent, it functionally extends Sturm sequence
and largely improves efficiency in tackling with parameterized coefficients.

These researches of real roots for polynomials are rather mature and have been
embedded into many important algorithms, such as Cylindrical Algebraic Decom-
position [Collins 1975]. Nevertheless the real root isolation for multiple power
sums of the form

∑m
i=0 qix

λi with both real coefficients and real exponents,
where qi �= 0 and λ0 < λ1 < · · · < λm, receives less attentions in past. Ow-
ing to the restriction with the domain of power functions, we only consider the
positive root isolation problem. Unfortunately those traditional methods do not
work for multiple power sums, because the existing GCD algorithm, contin-
ued fraction transformations, resultants and algebraic roots are just defined for
polynomials. Furthermore the roots of those special but important univariate
functions are much harder to be rigorously determined. A notable result proved
by [Qu and Wong 1999] is that (v − ak(v

2 )
1
3 , v − ak(v

2 )
1
3 + 3a2

k

20 ( 2
v )

1
3 ), where ak

is the k-th negative root of the Airy function, are the “best possible” bounds
for the k-th positive root of the Bessel function of positive order v. Besides,
[Jin and Wong 1999, Qiu and Wong 2004] yielded some useful asymptotic esti-
mates for the roots of the Meixner polynomials and the Krawtchouk polynomials.
These special functions (including multiple power sums) are possible templet so-
lutions to the differential system of fractional order, who can withstand noises or
perturbations in stochastic sampling [Li 2010, Li and Li 2010], and widely occur
in many physical systems such as Traffic Modeling [Li and Zhao 2010].

In this paper, we develop the pseudo-derivative sequences for multiple power
sums inspired by [Achatz et al. 2008, Strzeboński 2008]. Therefore we can gen-
eralize Fourier’s theorem, which is a more powerful tool than Descartes’ sign
rule and applicable to polynomials in customary, to analyze the positive roots
of multiple power sums. So Descartes’ sign rule follows immediately. Further-
more some useful complex root bounds and positive root bounds of linear and
quadratic complexity are also obtained by Descartes’ sign rule and Cauchy’s
theorem. Besides, we advance a factorization method for multiple power sums
with rational coefficients to produce potential multiple power sums without any
multiple roots by Q-linear independence. Finally we give an efficient algorithm
for isolating all positive roots of multiple power sums based on Fourier’s theorem
and positive root bounds under the given positive root separation. Our algebraic
algorithm widely differs with the numerical one. In principle, a numerical root-
finder based on the theory of approximation can not always compute the exact
roots because it works with finite and fixed precision. For instance, Russian con-
structivist school has proved that there is no algorithm to isolate multiple roots
of polynomials with real coefficients, even when these real numbers are defined
by explicit recursive functions, due to floating-point errors. To the opposite, our
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algebraic method using intervals can dynamically adjust the precision in execu-
tion as we need. So it is more reliable at the price of the moderately larger use
of time and memory.

The remainder of this paper is organized as follows. In Section 2-3, the basic
notations of multiple power sums and factorization will be introduced. In Sec-
tion 4, we extend Fourier’s theorem and Descartes’ sign rule to multiple power
sums. We raise some useful root bounds in Section 5 and present the main iso-
lation algorithm in Section 6. Section 7 is the conclusion.

2 Multiple power sums

In this section, we give a formal definition of multiple power sum and its pseudo-
derivative sequence. Then an important property of this pseudo-derivative se-
quence is described, which is similar to Fourier’s sequence (i.e. ordinary-derivative
sequence) in some sense.

Let q(y0, y1, · · · , ym) be a multivariate polynomial. We can define a ring ho-
momorphism that substitutes each variable yi with power function xλi (λi ∈ R):

hom : q(y0, y1, · · · , ym) �→ q(xλ0 , xλ1 , · · · , xλm).

Definition 1. Given a q(y0, y1, · · · , ym) ∈ R[y0, y1, · · · , ym], its image under the
mapping hom

q∗(x) = hom(q(y0, y1, · · · , ym)) = q(xλ0 , xλ1 , · · · , xλm)

is a multiple power sum (MPS for short).

Let q∗(x) =
∑m

i=0 qix
λi (qi �= 0 ∧ λ0 < λ1 < · · · < λm) be a MPS. Then the

number of nonzero terms in q∗, denoted by num(q∗), is m+1. The tail coefficient
tc(q∗) is q0 and the tail exponent te(q∗) is λ0 while the head coefficient hc(q∗) is
qm and the head exponent he(q∗) is λm. A MPS q∗(x) is canonical if te(q∗) = 0.

Example 1. Consider the trivariate polynomial q(y0, y1, y2) = 3y0 − 10y2
0y1 −

2y0y1 + 5y1 − y2
0y

2
1 + 2y2

2 and the mapping hom : q(y0, y1, y2)) �→ q(x−1, x2, xπ).
So q∗(x) = 3x−1 − 10 − 2x + 4x2 + 2x2π is a MPS consisting of five nonzero
terms. Then num(q∗) = 5, te(q∗) = −1, tc(q∗) = 3, he(q∗) = 2π and hc(q∗) = 2.
Furthermore xq∗(x) = 3− 10x− 2x2 + 4x3 + 2x2π+1 is a canonical MPS.

Next we can construct a pseudo-derivative sequence of q∗ as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

G0 = q∗

xte(q∗) = q0 +
m∑

i=1

qix
λi−λ0 ,

G1 = G′
0

xte(G′
0)

= q1(λ1 − λ0) +
m∑

i=2

qi(λi − λ0)xλi−λ1 ,

· · · ,
Gm =

G′
m−1

xte(G′
m−1)

= qm

m−1∏
j=0

(λm − λj).

(1)

1915Xu M., Mu C., Zeng Z., Li Z.-B.: A Heuristic Approach ...



From the construction, it can easily verified that sign(Gi+1(x)) = sign(G′
i(x))

(sign(G0(x)) = sign(q∗(x))) for arbitrary x > 0 (which can be a weak Fourier’s
sequence defined in [Strzeboński 2008]) and each Gi is canonical. Let PDS(q∗) =
[G0, G1, · · · , Gm] denote the whole sequence and PDSM (q∗) = [G0, G1, · · · , GM ]
denote the partial sequence restricted to [0, 1, · · · , M ] (M ≤ m).

Lemma2. For 0 ≤ i ≤ i + j ≤ m, there exist λi,j , ai,j,k ∈ R such that

Gi+j = xλi,j G
(j)
i +

∑
1≤k<j

ai,j,kxλi,j−j+kG
(k)
i . (2)

Proof. If j = 0, it plainly holds. Otherwise assume that Gi+j = xλi,j G
(j)
i +∑

1≤k<j ai,j,kxλi,j−j+kG
(k)
i , with Gi+j+1 = G′

i+j/xte(G′
i+j), then define

⎧⎪⎪⎨
⎪⎪⎩

λi,j+1 = λi,j − te(G′
i+j),

ai,j+1,1 = ai,j,1(λi,j − j + 1),
ai,j+1,k = ai,j,k(λi,j − j + k) + ai,j,k−1, (for 1 < k < j)
ai,j+1,j = λi,j + ai,j,j−1.

(3)

Hence Gi+j+1 = xλi,j+1G
(j+1)
i +

∑
1≤k<j+1 ai,j+1,kxλi,j+1−j−1+kG

(k)
i . So it holds

for all j by induction.

Theorem 3. If α is an M -multiple positive root of Gi(x), then Gi+j(x) and
G

(j)
i (x) share the same sign in an ε-neighborhood of α for each 0 ≤ j ≤M .

Proof. Let ε be a positive number such that Gi+j (0 ≤ j ≤ M) has no root in
δ(α; ε) � (α − ε, α) ∪ (α, α + ε). On one hand, by Lemma 2, we have

⎛
⎜⎜⎜⎝

Gi+1(x)
Gi+2(x)

...
Gi+M (x)

⎞
⎟⎟⎟⎠ = (tjk)M×M

⎛
⎜⎜⎜⎜⎝

G′
i(x)

G
(2)
i (x)

...
G

(M)
i (x)

⎞
⎟⎟⎟⎟⎠ , (4)

where

tjk =

⎧⎨
⎩

0, for j < k,

xλi,j , for j = k,

ai,j,kxλi,j−j+k, for j > k.

Since the transition matrix (tjk)M×M is lower triangular and nonsingular
for x > 0, Gi(α) = G′

i(α) = · · · = G
(M−1)
i (α) = 0 �= G

(M)
i (α) if and only if

Gi(α) = Gi+1(α) = · · · = Gi+M−1(α) = 0 �= Gi+M (α).
On the other hand, we will prove inductively on all 0 ≤ j ≤M that G

(j)
i (x) >

0 if and only if Gi+j(x) > 0 for each x in δ(α; ε). If j = 0, it plainly holds;
otherwise the following statements are equivalent to each other:
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1. G
(j+1)
i (x) > 0.

2. If x < α, then G
(j)
i (x) < 0; else G

(j)
i (x) > 0. (by G

(j)
i (α) = 0)

3. If x < α, then Gi+j(x) < 0; else Gi+j(x) > 0. (by Inductive Hypothesis)

4. G′
i+j(x) > 0. (by Gi+j(α) = 0)

5. Gi+j+1(x) > 0. (by Construction)

Therefore sign(Gi+j(x)) = sign(G(j)
i (x)) for arbitrary x ∈ (α− ε, α + ε).

3 Factorization

Next we introduce a factorization method for multiple power sums with rational
coefficients by Q-linear independence [Hardy and Wright 1979].

Definition 4. A set of numbers {μ0, μ1, · · · , μk} is Q-linearly independent if no
linear relation a0μ0 + a1μ1 + · · ·+ akμk = 0 with rational coefficients ais, not all
zero, holds between them.

For a MPS q∗(x) =
∑m

i=0 qix
λi (qi ∈ Q), we can factor it as follows:

1. To start with, we partition Λ = {λ0, λ1, · · · , λm} into
∑k

j=0 Λj , which are
pairwise Q-linearly independent:

Basic Step: Λ0 = {λi : λi = ai0 ∈ Q};
Inductive Step: If there exists a μl+1 in Λ \∑l

j=0 Λj, then

Λl+1 = {λi : λi = ai0 +
l+1∑
j=1

aijμj ∧ ai0, ai1, · · · , ail+1 ∈ Q ∧ ail+1 �= 0}.

2. Now we have a Q-linearly independent set {μ0, μ1, · · · , μk}: (with μ0 = 1)⎛
⎜⎜⎜⎜⎜⎜⎝

λ0

λ1

λ2

...
λm

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

a00 a01 a02 · · · a0k

a10 a11 a12 · · · a1k

a20 a21 a22 · · · a2k

...
...

...
. . .

...
am0 am1 am2 · · · amk

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

μ0

μ1

μ2

...
μk

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5)

Further we choose another Q-linearly independent set {ν0, ν1, · · · , νk}, sat-
isfying (λ0, λ1, · · · , λm)T = (wij)(m+1)×(k+1)(ν0, ν1, · · · , νk)T where wij ∈ Z

and gcdi{wij} = ±1 for all j.
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3. Define the “reverse” mapping q∗(x) → q∗∗(z0, z1, · · · , zk), i.e. the back-
substitution of each xλi with

∏k
j=0 z

wij

j subject to λi =
∑k

j=0 wijνj .

4. Let wj = mini{wij}, the factorization of q∗(x)/
∏

j xwjνj corresponds to
that of q∗∗(z0, z1, · · · , zk)/

∏
j z

wj

j , a multivariate polynomial with rational
coefficients.

Example 2. Consider the MPS

q∗(x) = 49− 98x− 28x
√

2 + 49x2 + 28x
√

2+1 + 4x2
√

2 − 14x3 + 14x4

+4x
√

2+3 + x6 + 14x2π − 14x2π+1 − 4x2π+
√

2 − 2x2π+3 + x4π.
(6)

Its Λ is {0, 1,
√

2, 2,
√

2 + 1, 2
√

2, 3, 4,
√

2 + 3, 6, 2π, 2π + 1, 2π +
√

2, 2π + 3, 4π},
where {1,

√
2, 2π} is a Q-linearly independent set. After variable transformation,

(with z0 = x, z1 = x
√

2, z2 = x2π)

q∗∗(z0, z1, z2) = 49− 98z0 − 28z1 + 49z2
0 + 28z0z1 + 4z2

1 − 14z3
0 + 14z4

0

+4z3
0z1 + z6

0 + 14z2 − 14z0z2 − 4z1z2 − 2z3
0z2 + z2

2 .
(7)

Factor q∗∗(z0, z1, z2), we have q∗∗(z0, z1, z2) = (7 − 7z0 − 2z1 − z3
0 + z2)2, thus

q∗(x) = (7− 7x− 2x
√

2 − x3 + x2π)2.

Conjecture 5. The only possible multiple positive root of a square-free MPS
with rational coefficients is 1.

In other words, it requires: (1) the only possible multiple positive root of an
irreducible MPS with rational coefficients is 1; (2) the only possible common
positive root of two relatively prime MPSs with rational coefficients is 1.

4 Generalized Fourier’s theorem

Now Fourier’s theorem is extended from polynomials to multiple power sums
by the pseudo-derivative sequence described in Section 2. Thus the number of
positive roots in any nonnegative interval can be overestimated. As a result,
generalized Descartes’ sign rule also holds.

Definition 6. Given a finite numerical sequence S = [s0, s1, · · · , sm], the num-
ber of the sign variations V(S) is the number of pairs (i, j) with (0 ≤ i < j ≤ m)
satisfying:

(sisj < 0) ∧ (∀j > j̃ > i : sj̃ = 0).

Theorem 7. Given a MPS q∗(x) =
∑m

i=0 qix
λi and a nonnegative interval

(a, b), the number of positive roots (counting multiple roots as their multiplicities)
in (a, b) is V([PDS(q∗)]x=a)− V([PDS(q∗)]x=b) or 2N less than the difference.

1918 Xu M., Mu C., Zeng Z., Li Z.-B.: A Heuristic Approach ...



Proof. Only Gi’s roots in (a, b) can cause these sign variations. Without loss
of generality, we assume that Gi �= 0 at endpoints a and b for all 0 ≤ i ≤ m,
otherwise we choose a+ε or b−ε as an endpoint. Let α ∈ (a, b) be an M -multiple
root of Gi(x), by Taylor’s theorem, we have that Gi(x) =

∑+∞
k=0

(x−α)k

k! G
(k)
i (α) =∑+∞

k=M
(x−α)k

k! G
(k)
i (α) and further sign(G(j)

i (x)) = sign((x−α)M−jG
(M)
i (α)) for

x ∈ δ(α; ε). Then we will discuss two distinct cases.

1. First Case: i = 0. Then sign(Gj(x)) = sign(G(j)
0 (x)) for x ∈ δ(α; ε) by

Theorem 3. We have V([PDSM (G0)]x=α−ε) − V([PDSM (G0)]x=α+ε) = M ,
since ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

V([PDSM (G0)]x=α−ε)
= V([(−1)MG

(M)
0 (α), (−1)M−1G

(M)
0 (α), · · · , G(M)

0 (α)])
= M,

V([PDSM (G0)]x=α+ε)
= V([G(M)

0 (α), G(M)
0 (α), · · · , G(M)

0 (α)])
= 0.

(8)

2. Second Case: i > 0∧Gi−1(α) �= 0. Similarly we have V([PDSM (Gi)]x=α−ε)−
V([PDSM (Gi)]x=α+ε) = M . Further

(a) If M is even,

V([PDS1(Gi−1)]x=α−ε) = V([Gi−1(α), Gi(α− ε)])
= V([Gi−1(α), Gi(α + ε)])
= V([PDS1(Gi−1)]x=α+ε).

(9)

(b) Otherwise

V([PDS1(Gi−1)]x=α−ε) = V([Gi−1(α), Gi(α− ε)])
= V([Gi−1(α),−Gi(α + ε)])
= V([PDS1(Gi−1)]x=α+ε)± 1.

(10)

Hence V([PDSM+1(Gi−1)]x=α−ε)−V([PDSM+1(Gi−1)]x=α+ε) is a nonnega-
tive even number.

Therefore V([PDS(q∗)]x=a) − V([PDS(q∗)]x=b) is the number of q∗’s real roots
in (a, b), or 2N more than the number.

By Theorem 7, we obtain an overestimate of the number of positive roots for
q∗ in (a, b), which can not determine the exact number unless the difference of
sign variations number at endpoints is 0 or 1.

Theorem 8. Given a MPS q∗(x) =
∑m

i=0 qix
λi , the number of positive roots

(counting multiple roots as their multiplicities) is V(q∗) � V([q0, q1, · · · , qm]) or
2N less than the difference.
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Proof. Reviewing (1), we have⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

V([PDS(q∗)]x=0) = V([tc(G0), tc(G1), · · · , tc(Gm)])
= V([q0, q1(λ2 − λ1), · · · , qm

∏m−1
j=0 (λm − λj)])

= V(q∗),
V([PDS(q∗)]x=+∞) = V([hc(G0), hc(G1), · · · , hc(Gm)])

= V([qm, qm(λm − λ1), · · · , qm

∏m−1
j=0 (λm − λj)])

= 0.

(11)

So it follows immediately by Theorem 7.

5 Root bounds

By extending the inequality tips from polynomials in [Mignotte 1983], some use-
ful root bounds of linear and quadratic complexity are obtained. A criteria for
the relationship between upper and lower bounds for positive roots is also given.

Definition 9. Given a function f , a positive number U is the complex root
bound if no magnitude of f ’s complex roots is greater than U , i.e.

∀ α ∈ C : f(α) = 0⇒ U ≥ |α|.

A positive number u is the positive root upper bound if no f ’s positive root is
greater than u, while a positive number l is the positive root lower bound if no
f ’s positive root is less than l, i.e.

∀ α ∈ R+ : f(α) = 0⇒ u ≥ α ≥ l.

Lemma10. For a MPS q∗(x) =
∑m

i=0 qix
λi , a positive number U is a complex

root bound if

Uλm ≥
m−1∑
i=0

∣∣∣∣ qi

qm

∣∣∣∣ Uλi . (12)

Proof. Consider the auxiliary MPS A(x) = xλm −∑m−1
i=0 | qi

qm
|xλi , 0 ≤ A(U) <

A(+∞). Let α be an arbitrary complex root of q∗(x). However A(|α|) ≤ 0, since
|α|λm = |αλm | = |∑m−1

i=0
qi

qm
αλi | ≤ ∑m−1

i=0 | qi

qm
||α|λi . Since V(A(x)) = 1, by

Theorem 8, A(x) has and only has one positive root, thus U ∈ [|α|, +∞). Hence
U is a complex root bound by the arbitrariness of α.

Given a MPS q∗(x) =
∑m

i=0 qix
λi and τ ∈ (0, λm − λm−1], with λ =

rem(λm, τ) and m̃ = quo(λm, τ), q∗(x; τ) = xλm +xλ
∑m̃−1

i=0 qi(τ)xiτ is an upper
“polynomial” of q∗(x), where qi(τ) =

∑
(i−1)τ<λj−λ≤iτ | qj

qm
|. It is obvious that

xλ
∑m̃−1

i=0 qi(τ)xiτ ≥∑m−1
i=0 | qi

qm
|xλi for x ≥ 1, so we have the following corollary.
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Corollary 11. For a MPS q∗(x) =
∑m

i=0 qix
λi , if q∗(x; τ) is an upper polyno-

mial with the parameter τ ∈ (0, λm − λm−1], then U(τ) = τ
√

1 + maxi{qi(τ)} is
a complex root bound of q∗(x).

Proof. U(τ) is a complex root bound of both q∗(x; τ) and q∗(x), since

U(τ)λm = U(τ)λU(τ)m̃τ

≥ U(τ)λ[(1 + qm̃−1(τ))U(τ)(m̃−1)τ ]
≥ U(τ)λ[(1 + qm̃−2(τ))U(τ)(m̃−2)τ + qm̃−1(τ)U(τ)(m̃−1)τ ]
≥ · · ·
≥ U(τ)λ

m̃−1∑
i=0

qi(τ)U(τ)iτ

≥
m−1∑
i=0

| qi
qm
|U(τ)λi .

(13)

The complexity in Corollary 11 is linear, under any given parameter τ . Next
step is how to choose the optimal parameter τ so as to the complex root bound
U(τ) is as small as possible. Intuitionally we claim that the optimal parameter
achieves only when λm − λi is the least feasible multiple of τ for some i < m.
Thus it has the quadratic complexity.

Example 3. Consider the MPS q∗(x) = 3 − 10x − 2x2 + 4x3 + 2x2π+1 with the
parameter τ ranging from 0 to 2π−2. We only choose four sample points 2π−2,
π − 1

2 , π and π + 1
2 to approximate the smallest complex root bound. After

computation,

U(2π − 2) = 2π−2

√
1 + 19

2 ≈ 2.0242,

U(π − 1
2 ) = π− 1

2

√
1 + max{2, 15

2 } ≈ 2.2482,

U(π) = π

√
1 + max{3, 13

2 } ≈ 1.8991,

U(π + 1
2 ) = π+1

2

√
1 + max{8, 3

2} ≈ 1.8283,

so we regard 1.8283 as the “smallest” complex root bound.

Corollary 12. For a MPS q∗(x) =
∑m

i=0 qix
λi , with τ = λm − λm−1, U =

max{1, τ

√∑m−1
i=0 | qi

qm
|} is a complex root bound.

Proof. U is a complex root bound, since⎧⎪⎪⎨
⎪⎪⎩

U τ ≥
m−1∑
i=0

| qi
qm
| implies Uλm ≥

m−1∑
i=0

| qi
qm
|Uλm−1 ,

U ≥ 1 implies
m−1∑
i=0

| qi
qm
|Uλm−1 ≥

m−1∑
i=0

| qi
qm
|Uλi .

(14)

Although we have known that a positive number u is a positive root upper
bound of q∗(x) if V([PDS(q∗)]x=u) = V([PDS(q∗)]x=+∞) from Theorem 7, we
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will bring some more computable positive root upper bounds under the assump-
tion V(q∗) > 0 (otherwise q∗(x) has no positive root).

Given a MPS q∗(x) =
∑m

i=0 qix
λi , we partition it as an alternating sum of

sub-MPSs, i.e. q∗(x) =
∑l

j=0(−1)jr∗j (x), satisfying:

1. he(r∗j1 (x)) < te(r∗j2 (x)) if j1 < j2,

2. r∗0(x) = 0 if q0qm > 0,

3. all coefficients in every r∗j (x) are positive except when r∗0(x) is zero.

We focus on the property that the j2-th sub-MPS (−1)j2r∗j2 (x) is asymptotically
dominant to the j1-th sub-MPS (−1)j1r∗j1 (x) as x increases if j1 < j2. Hence,
matching the positive coefficients with the negative coefficients by different com-
bination and partition strategy yields different positive root upper bounds (cf.
[Ştefǎnescu 2005, Akritas and Vigklas 2007, Akritas 2009]).

Corollary 13. For a MPS q∗(x) =
∑m

i=0 qix
λi =

∑l
j=0(−1)jr∗j (x), a positive

number u is a positive root upper bound if∧
0≤j<l∧2�(l−j)

r∗j+1(u) ≥ r∗j (u). (15)

If the MPS r∗j+1(x)−r∗j (x) is nonnegative at a positive number uj, then uj is a
positive root upper bound of it, since it has only one positive root by Theorem 8.
However we can compute the root bounds of hc(r∗l+1(x))xhe(r∗

j+1(x))− r∗j (x) and
r∗j+1(1)xte(r∗

j+1(x))− r∗j (x) by Corollary 11–12 instead of uj because of r∗j+1(x) ≥
hc(r∗l+1(x))xhe(r∗

j+1(x)) for x > 0 and r∗j+1(x) ≥ r∗j+1(1)xte(r∗
j+1(x)) for x > 1.

Then (15) is not more than the quadratic complexity in total.

Example 4. Consider the MPS q∗(x) = 3 − 10x − 2x2 + 4x3 + 2x2π+1 with the
partitions r∗3(x) = 4x3 + 2x2π+1, r∗2(x) = 10x + 2x2, r∗1(x) = 3 and r∗0(x) = 0.
The root bounds of 2x2π+1 − r∗2(x) is 2π−1

√
6 while that of 6x3 − r∗2(x) is 2 by

Corollary 12. Hence the positive root upper bound 2π−1
√

6 is better.

Corollary 14. A positive number l is a positive root lower bound of q∗(x) if and
only if 1

l is a positive root upper bound of q∗( 1
x).

6 Isolation algorithm

Definition 15. Given a function f , let α1, α2, · · · , αm be all complex roots of
f , the minimum root separation is

sep(f) = min
1≤i<j≤m

|αi − αj |,

with the convention that sep(f) = +∞ in case f has only one root and sep(f) = 0
in case f has multiple roots.
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Here we give an efficient method for isolating all q∗’s positive roots based on
generalized Fourier’s theorem under the assumption sep(q∗) > ε.

L← ISOL(q∗(x), ε).

Input: q∗(x) is a nonzero MPS without any multiple roots and ε ∈ Q+.

Output: L = {(a1, b1), (a2, b2), · · · , (ak, bk)} is a list of disjoint open intervals
with rational endpoints, satisfying:

(a) k is the number of distinct positive roots of q∗;

(b) each (ai, bi) contains one distinct positive root of q∗.

S1 (Initialization) Compute PDS(q∗) := [G0, G1, · · · , Gm].

S2 (Bound) Compute the scope of all positive roots (l, u) with positive rational
endpoints. Let L′ := {(l, u)} and L, L′′ := ∅.

S3 (Refinement) For each I = (a, b) = (a1
a2

, b1
b2

) ∈ L′:

(a) If V([PDS(q∗)]x=a)− V([PDS(q∗)]x=b) = 1, then L := L ∪ {I}.
(b) If V([PDS(q∗)]x=a)−V([PDS(q∗)]x=b) > 1, then the median c := a1+b1

a2+b2
.

i. If q∗(c) = 0, then L := L ∪ {(max{a, c− ε}, min{c + ε, b})}.
A. If a < c− ε, then L′′ := L′′ ∪ {(a, c− ε)}.
B. If c + ε < b, then L′′ := L′′ ∪ {(c + ε, b)}.

ii. Otherwise L′′ := L′′ ∪ {(a, c), (c, b)}.
Finally set L′ := L′ \ {I}.

S4 (Reduction) For each I = (a, b) ∈ L′′:

(a) If ‖ I ‖≤ ε and q∗(a)q∗(b) < 0, then L := L ∪ {I}.
(b) If ‖ I ‖> ε, then L′ := L′ ∪ {I}.
Finally set L′′ := L′′ \ {I}.

S5 (Recursion) If L′ = ∅, rearrange L and RETURN it; else GOTO S3.

Here we use the median a1+b1
a2+b2

instead of the average a+b
2 to bisect the interval.

The bisection by average has the optimal complexity of at most V(q∗)
2 log2(

u−l
ε )

theoretically. However the bisection by median works more efficiently in practice.

Remark. For a MPS with rational coefficients q∗, let q̃∗ be the greatest square-
free factor of it by factorization. Under Conjecture 5, the only possible multiple
root of q̃∗ is 1. Thus set L′ := {(l, min{1 − ε, u}), (max{1 + ε, l}, u)} in S2 if
q̃∗(1) = 0.

1923Xu M., Mu C., Zeng Z., Li Z.-B.: A Heuristic Approach ...



Example 5. Consider the MPS q̃∗(x) = 7 − 7x − 2x
√

2 − x3 + x2π , its pseudo-
derivative sequence PDS(q̃∗) is:

G0 = 7− 7x− 2x
√

2 − x3 + x2π ,

G1 = −7− 2
√

2x
√

2−1 − 3x2 + 2πx2π−1,

G2 = (2
√

2− 4)− 6x2−√
2 + (4π2 − 2π)x2π−√

2,

G3 = (6
√

2− 12) + (8π3 − 4
√

2π2 − 4π2 + 2
√

2π)x2π−3,

G4 = 16π4 − 32π3 − 8
√

2π3 + 16
√

2π2 + 12π2 − 6
√

2π ≈ 530.6502 > 0.

Then u = 2π−3
√

10 ≈ 2.0164 < 121
60 is a positive root upper bound while l = 7

10

is a positive root lower bound by Corollary 11–14. Finally the isolation list is
computed as:

Table 1: Isolation process.

I ∈ L′ V([PDS(q̃∗)]) median L

( 7
10 , 121

60 ) 2− 0 = 2 128
70 = 64

35 {}
( 7
10 , 64

35 ) 2− 0 = 2 71
45 {}

(64
35 , 121

60 ) 0− 0 = 0 N/A {}
( 7
10 , 71

45 ) 2− 0 = 2 78
55 {}

(71
45 , 64

35 ) 0− 0 = 0 N/A {}
( 7
10 , 78

55 ) 2− 1 = 1 N/A {( 7
10 , 78

55 )}
(78
55 , 71

45 ) 1− 0 = 1 N/A {( 7
10 , 78

55 ), (78
55 , 71

45 )}

7 Conclusion

In this paper we extend a series of techniques used to handle polynomials, such
as factorization, Fourier’s theorem and Descartes’ sign rule, and analyze the
positive roots of multiple power sums. Thus we offer some effective formulas for
estimating root bounds and present an efficient algorithm for isolating positive
roots under the given minimum root separation.

For future work, it is a challenging job to estimate a nontrivial (positive)
lower bound for the minimum root separation sep(q∗). A promising approach,
inherited [Collins and Horowitz 1974], is to utilize a proper definition of the re-
sultant resx(p∗, q∗) about two MPSs p∗(x), q∗(x) satisfying:

resx(p∗, q∗) = K
∏
i,j

(αi − βj)nij , (16)
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where K ∈ R \ {0}, αi, βj are distinct complex roots of p∗, q∗ respectively and
nij is the product of αi’s multiplicity and βj ’s multiplicity. With PDS(q∗) =
[G0, G1, · · · , Gm] (m > 1) of the MPS q∗ without any multiple roots, we have
that (assume sep(q∗) = |α1 − α2| and U ≥ |αi|)

0 < |resx(G0, G1)| = |K
∏
i<j

(αi − αj)2|
= |K| ∏

i<j

(αi − αj)2

= |K|(sep(q∗))2
∏

i<j∧(i,j) �=(1,2)

(αi − αj)2

≤ |K|(sep(q∗))2(2U)

∑
i<j∧(i,j)�=(1,2)

2

≤ |K|(sep(q∗))2(2U)(m−2)(m+1).

(17)

Then we can obtain

sep(q∗) ≥
√

|resx(G0, G1)|
|K|(2U)(m−2)(m+1)

> 0. (18)
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