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Abstract: Most of ambient intelligence studies have tried to employ inductive meth-
ods (e.g., data mining) to discover useful information and patterns from data streams
on sensor networks. However, since the spaces have been sharing their information with
each other, it is difficult for such inductive methods to conduct the discovery process
from the sensor streams intermixed from the heterogeneous sensor networks. In this
paper, we propose an ontology-based middleware system to improve sustainability of
context-aware service in the interconnected smart spaces. Two main challenges of this
work are i) sensor data preprocessing (i.e., session identification) and ii) information
fusion (i.e., information integration). The ontology in each sensor space can provide
and describe semantics of data measured by each sensor. By aligning these ontologies
from the sensor spaces, the semantics of sensor data captured inside can be compared.
Thus, we can find out not only relationships between sensor streams but also tempo-
ral dynamics of a data stream. To evaluate the proposed method, we have collected
sensor streams from in our building during 30 days. By using two well-known data
mining methods (i.e., co-occurrence pattern and sequential pattern), the results from
raw sensor streams and ones from sensor streams with preprocessing were compared
with respect to two measurements recall and precision.
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1 Introduction

A variety of types of sensors (and sensing technologies) have been developed and

implemented into sensor networks, which are capable of capturing environmental

data for monitoring a certain space. For example, a wireless sensor network has

been installed in a number of environments including a forest [Culler et al. 2004].

Consequently, people can expect to figure out the relationships between the

status of ecosystem and climate changes by analyzing many environmental data

(e.g., humidity, temperature, and so on). It means that as more diverse sensors

are developed, the chance on understanding and analyzing the environments

might be getting much higher.

In terms of service provision to users within the sensor spaces, people have

been looking for more contextually relevant services via their own mobile de-

vices [Chen et al. 2004, Ejigu et al. 2007]. Thereby, ontologies have been ex-

ploited to represent various contexts from users and spaces [Euzenat et al. 2008,
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Gu et al. 2004, Narayanan et al. 2007, Roussaki et al. 2006, Wagner et al. 2004].

One of the main purposes of such (wireless or ubiquitous) sensor networks is to

keep track of activities and behaviors of people inside the space. We may thus

expect pervasive services, i.e., people can be “anytime and anywhere” provided

with more relevant information and services by installing more sensors in the sen-

sor network. There have been several practical projects to develop and investigate

ontology-based sensor networks, e.g., semantic sensor web [Sheth et al. 2008] and

SensorWare1.

Furthermore, similar to [Jabeur et al. 2009], the sensor spaces can be inte-

grated to exchange the information they have collected, as shown in Fig. 1. As

a result, each sensor space can be expected to use the information collected in

other sensor networks, so that this sensor network can efficiently provide the

pervasive services to the users who are firstly visiting there.

Sensor 
Network A

Sensor 
Network B

Sensor 
Network C

Data mining 
process

Data Repository

Pattern 
Evaluation GUI & KBS

Figure 1: Conventional architecture for mining sensor streams collected from

multiple sensor networks

Thereby, inductive methods (e.g., data mining) have to be exploited to dis-

cover useful patterns from the integrated sensor streams. However, there are

some difficulties on such discovery process. The problems that we are focusing

on in this paper are as follows:

– Noisy and redundant data from sensors

– Semantic heterogeneity between sensor spaces

1 SensorWare Systems. http://www.sensorwaresystems.com/

1746 Jung J.J.: On Sustainability of Context-Aware Services ...



Of cause, these problems might be caused by many unexpected reasons (e.g.,

sensor malfunction). In this work, we want to deal with these problems by pre-

processing the raw data streams from the sensor networks, and also expect to

improve the performance of data mining methods for extracting useful knowledge

which happens in the environments.

In this paper, we propose an ontology-based preprocessing method and in-

formation fusion method for implementing an information integration platform

with heterogeneous sensor streams. The ontology is employed to bridge multi-

ple sensor networks which are semantically heterogeneous with each other. Two

main goals of this work are

– session identification of sensor streams annotated by the ontology, and

– information fusion for integrating rules discovered from the sensor spaces.

The outline of this paper is as follows. In Sect. 2, we show how conventional

sensor spaces can exploit the ontologies for providing pervasive services. Sect. 3

addresses semantic annotation scheme for sensor streams, and Sect. 4explains

semantic identification method based on similarity measurement between sensor

streams. To evaluate the performance of the proposed approach, Sect. 5 illus-

trates the experimental results and discusses the important issues that we have

realized from the experiments, and compare the proposed approach to the ex-

isting ones. Finally, Sect. 6 draws a conclusion of this study.

2 Ontology-based Sensor Space

Basically, the sensor nodes are installed into a certain environment, and the

information collected from the sensor nodes are used to understand and detect

significant patterns in the environment. However, in many cases (particularly,

tracking people), the information from a single sensor network is not enough for

this process. Ontology-based sensor network has been investigated to solve this

problem by integrating several sensor networks [Jabeur et al. 2009]. As shown

in Fig. 2, the ontologies in sensor spaces are aligned with each other, in advance,

for realizing semantic heterogeneity between sensor data. Thus, the system can

automatically justify whether a service is contextually relevant to certain users

or not.

2.1 Context Ontology for Pervasive Intelligence

The main purpose of the ontologies is to annotate sensor streams, i.e., describe

what semantics are related to information collected from the corresponding sen-

sor. Context ontology we are using in this work contains environmental concepts

and the relationship between the concepts.
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Figure 2: Ontology-based sensor space

Definition 1 (Context ontology). Context ontology O is represented as

O := (C,R, ER, IC) (1)

where C and R are a set of classes (or concepts), a set of relations (e.g., equiva-

lence, subsumption, disjunction, etc), respectively. ER ⊆ C×C is a set of relation-

ships between classes, represented as a set of triples {〈ci, r, cj〉|ci, cj ∈ C, r ∈ R},
and IC is a power set of instance sets of a class ci ∈ C.

Table 1: An example of contextual ontologies

<owl:Class rdf:ID="Environment" />
<owl:Class rdf:ID="EnvironmentalCondition" />
<owl:Class rdf:ID="Humidity">

<rdfs:subClassOf rdf:resource="#EnvironmentalCondition" />
</owl:Class>
<owl:Class rdf:ID="Noise">

<rdfs:subClassOf rdf:resource="#EnvironmentalCondition" />
</owl:Class>
<owl:Class rdf:ID="Temperature">

<rdfs:subClassOf rdf:resource="#EnvironmentalCondition" />
</owl:Class>
<owl:Class rdf:ID="Lighting">

<rdfs:subClassOf rdf:resource="#EnvironmentalCondition" />
</owl:Class>
<owl:ObjectProperty rdf:ID="hasEnvironmentalCondition">

<rdfs:domain rdf:resource="#Environment" />
<rdfs:range rdf:resource="#EnvironmentalCondition" />

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="MeasuringTemporature">

<rdfs:domain rdf:resource="#Temporature" />
<rdfs:range rdf:resource="#Thermometer" />
</owl:ObjectProperty>

While there are various kinds of ontology development methods, we have

implemented the context ontology by extending the existing ontologies (e.g.,
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SUMO2 and SOUPA [Chen et al. 2004]) based on TOVE ontology methodology

[Fox 1992]. We have chosen 24 scenarios and organized them in a hierarchical

form. Similar to [Eid et al. 2007], some upper-level concepts are derived from

SUMO. Thus, as shown in Table 1, the context ontology, called ContextOnto3,

is written in OWL4. Especially, this ontology includes a number of physical

sensor nodes by Owl:Individual. Table 1 shows only a part of ContextOnto.

2.2 Ontology alignment

In order to solve the heterogeneity drawbacks, discovery process for significant

alignments between ontologies needs to be automated. A set of given sensor space

ontologies have to be matched as finding out the best configuration of alignments

between ontology entities (e.g., classes and properties). We assume that the best

configuration should be maximizing the summation of class similarities. Similar-

ity between two classes is computed by not only class labels but also neighbor

classes (i.e., subclasses and superclasses) and the annotation instances related

to the class. To preprocess a set of annotation instances, some of terms in the

annotation instances should be extracted and regarded as principal components

representing the class [Jung 2008c].

2.2.1 Alignment based on class similarity

In order to find optimal alignment between two ontologies, we have to measure

the similarity between classes consisting of the ontologies.

Definition 2 (Class similarity). Given a pair of classes from two different

ontologies, the class similarity (SimC) between c and c′ is defined as

SimC(c, c′) =
∑

E∈N (C)

πC
EMSimY (E(c), E(c′)) (2)

where N (C) ⊆ {E1 . . . En} is the set of all relationships in which the classes

participate (for instance, subclass, superclass, or instances). We have to consider

on three components Y = {L,C, I} i) class labels (L), ii) neighboring classes

(C), and iii) annotation instances (I). The weights πC
E are normalized (i.e.,∑

E∈N (C) π
C
E = 1). Class similarity measure SimC is assigned in [0, 1].

As a matter of fact, a similarity function between two set of classes can be

established by finding a maximal matching maximizing the summed similarity

between the classes:

MSimC(S, S
′) =

max(
∑

〈c,c′〉∈Pairing(S,S′) (SimC(c, c′))

max (|S|, |S′|) , (3)

2 Suggested Upper Merged Ontology (SUMO). http://www.ontologyportal.org/
3 ContextOnto. http://intelligent.pe.kr/SemSensorWeb/ContextOnto.owl
4 Web Ontology Language (OWL). http://www.w3.org/TR/owl-features
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in which Pairing provides a matching of the two set of classes. Methods like

the Hungarian method allow to find directly the pairing which maximizes sim-

ilarity. The algorithm is an iterative algorithm that compute this similarity

[Euzenat and Valtchev 2004]. This measure is normalized because if SimC is

normalized, the divisor is always greater or equal to the dividend.

In this work, we have to take in account all possible relationships (r and

r�) between classes for N (C) = {Esup, Esub, Eequ}, provided i) the superclass

(Esup) and the subclass (Esub) defined in each ontology fragment, and ii) the

equivalent class (Eequ) by manual alignments of human experts, respectively.

Then, Eq. 2 can be rewritten as:

SimC(c, c′) = πC
L simL(L(c), L(c

′))

+ πC
subMSimC(Esub(c), Esub(c′)) + πC

supMSimC(Esup(c), Esup(c′))

+ πC
equMSimC(Eequ(c), Eequ(c′)) + πC

I SimI(I(c), I(c′)) (4)

where the set functions MSimC compute the similarity of two entity collections.

Label similarity simL is simply computed by string matching algorithms such as

Levenshtein edit distance [Levenshtein 1996], substring distance [Euzenat 2004],

and so on. Similarity measure between two classes can be turned into a distance

measure Distance = 1− Similarity by taking its complement to 1.

Especially, in order to enhance the accuracy of the class similarity, the last

term in Eq. 4 is representing instance-level similarity measurement between busi-

ness process annotations. We exploit three different heuristic functions, and they

are formulated by

SimI(I(c), I(c′)) =
N

max(|I(c)|, |I(c′)|) (5)

=
N

max
n=1

Sim〈Pα,Pβ〉∈Pairing(I(c),I(c′))(L(Pα), L(Pβ))n (6)

=

∑N
n=1 Sim〈Pα,Pβ〉∈Pairing(I(c),I(c′))(L(Pα), L(Pβ))n

N
(7)

where N is the number of pairs of term features whose distances computed by

string matching methods are less than threshold τDist, i.e.,

EditDistance(L(Pα), L(Pβ))Pα∈I(c),Pβ∈I(c′) ≤ τDist. (8)

Three equations are denoted as H1, H2, and H3, and they return the nor-

malized number of matched pairs of terms, the maximum similarity among

matched terms, and the average similarity of matched terms, respectively. Be-

cause instance-level class similarity can uncover the latent semantic information

of the classes, the normalization process with the weighting factor is expected

to prune incorrect alignments between them.
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As a result, the proposed alignment process between heterogeneous ontologies

can be represented as a set of pairs of classes from two different ontologies. We

refer a class pair to correspondence (e.g., equivalence or subsumption).

Definition 3 (Alignment). Given two sensor space ontologies Oi and Oj , the

alignments between both ontoliges are represented as a set of correspondences

CRSPij = {〈c, r, c′〉|c ∈ Oi, c
′ ∈ Oj} where r means the relationship between c

and c′, by maximizing the summation of class similarities
∑

SimC(c,c′).

2.3 Sensor Stream Mining

By discovering a certain sequential pattern from a data stream, we can realize

and conduct trend and periodicity analysis over time [Han and Kamber 2006].

Particularly, this method has been applied to web browsing sequences for elic-

iting personal interests [Jung 2005a]. In this study, we focus on applying se-

quential pattern mining [Agrawal and Srikant 1995, Srikant and Agrawal 1996]

to discover frequent sequential patterns from the sensor streams. For example,

in Table 2, five kinds of sensor nodes have been sampled from timestamp T0 to

T8.

Table 2: An example of sensor streams

Timestamp RFID Temperature Lights Air Conditioner Project Screen

Reader (oC) (On/Off) (Switch) (Pull-down)

T0 U1 27 Off Off False

T1 U1 28 On On False

T2 U1, U2 30 Off On True

T3 U1, U2, U3 28 Off Off True

T4 U1, U2, U3 27 On On False

T5 U2, U3 25 On On False

T6 U2 25 On On False

T7 U2 26 On Off False

T8 U1, U2 26 Off Off True

To do the discovery process and more importantly improve the performance

of this process, the sensor streams should be preprocessed by removing noises

and missing data. The preprocess is done by session identification (also called

sessionization) for segmenting the sequences of streams with respect to contex-

tual situations.
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3 Semantic Annotation for Sensor Streams

Data streams collected from sensor nodes have to be annotated by using context

ontologies (e.g., ContextOnto) This semantic annotation is to derive relevant

semantic metadata from the ontologies for making the semantic streams under-

standable.

In other words, the sequences of sensor data are transformed into the se-

quences of RDF metadata. Through this transformation by annotation, the re-

lationships (i.e., semantic similarity) between RDF metadata can be measured.

Especially, the heterogeneity of integration between sensor networks can be eas-

ily and efficiently dealt with. As an example in Table 3, the semantic annotation

are represented by RDF. It illustrate that environmental context “Temperature

= 28.0” at “Timestamp = T1.”

Table 3: An example of semantic annotation of a sensor stream

<?xml version="1.0"?>
<rdf:RDF

xmlns="http://intelligent.pe.kr/SemSensorWeb/2007/03/ContextOnto.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:units="http://intelligent.pe.kr/SemSensorWeb/2007/03/Units.owl#"
xml:base="http://intelligent.pe.kr/SemSensorWeb/2007/03/ContextOnto.owl">

<Temperature rdf:ID="Temp8">
<Cxt_Property_7 rdf:datatype="http://www.w3.org/2001/XMLSchema#float">

28.0
</Cxt_Property_7>

</Temperature>
<Time rdf:ID="T1">

<hasTemperature rdf:resource="#Temp8"/>
</Time>
</rdf:RDF>

Another benefit obtained from semantic annotation is integration between

heterogeneous sensor networks shown in Fig. 2. By referring to a set of corre-

spondences CRSPij = {〈c, r, c′〉|c ∈ Oi, c
′ ∈ Oj} by ontology alignment, the

sensor streams from multiple sensor networks are integrated as shown in Fig. 3.

These sensor networks must be connected to a middleware for transmitting the

data to be aggregated into the stream repository [Heinzelman et al. 2004]. Ac-

cording to the number of installed sensors and sampling frequencies, a centralized

sensor stream repository receives and store unique amount of information from

each sensor network over time. Furthermore, any external information sources

on the web can be interoperated to the middleware for enriching the integrated

sensor streams.

The integration between sensor streams can be achieved by merging RDF an-

notations. This work assumes that only one ontologies are exploited to all sensor
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Figure 3: Integration of semantic sensor streams

networks, while there can be distributed ontologies (i.e., each sensor network

has its own ontology). If there are several different ontologies, we have to con-

sider automated ontology mapping methods to find semantic correspondences

between the ontologies [Jung 2008a].

4 Session Identification as Preprocessing

Even though we have enough information by integrating sensor streams from

multiple environments, it is impossible to directly apply conventional data min-

ing algorithms to the integration sensor streams. Thereby, we are focus on con-

duct session identification [Jung 2005b], with respect to contextual relationships

between timestamped sensor data.

Generally, there have existed two heuristic-based approaches for the session

identification. as follows;

– time-oriented heuristic, which sessionizes with a predefined time interval,

and

– frequency-oriented heuristic, which sessionizes with a frequency of sensor

streams (i.e., the time interval dynamically changes).

Differently from them, we propose a novel ontology-based session identifi-

cation method [Jung 2008b]. The main idea of this method is to compute and

observe the statistical distribution of semantic similarity for finding out seman-

tic outliers, as shifting a window W along to the sensor stream. Thereby, firstly,

given two timestamps ti and tj , we have to compute the semantic similarity

Δ� between two RDF annotations A(ti) and A(tj). Jung [Jung 2007] has ex-

plained several methods to measure the semantic similarities between two RDF
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metadata. Semantic similarity matrix DΔ� can be given by

DΔ�(t, t′) =

⎛
⎝ . . . . . . . . .

. . . Δ�[A(ti),A(tj)] . . .

. . . . . . . . .

⎞
⎠ (9)

where the size of this matrix is the predefined time interval |W | and the diagonal

elements are all zero. For example, given a sensor stream in Table 2, we can

obtain the semantic similarity matrix as shown in Table 4.

Table 4: An example of semantic similarity matrix (Size of the sliding window

is 3.)

T0 T1 T2 T3 T4 T5 T6 T7 T8

T0 0 0.8 0.3

T1 0.8 0 0.25 0.15

T2 0.3 0.25 0 0.78 0.26

T3 0.15 0.78 0 0.32 0.36

T4 0.26 0.32 0 0.87 0.92

T5 0.36 0.87 0 0.89 0.88

T6 0.92 0.89 0 0.95 0.24

T7 0.88 0.95 0 0.23

T8 0.24 0.23 0

Based on a semantic similarity matrix DΔ� , the semantic mean μ� is given

by

μ�(t1, . . . , tT ) =
2
∑T

i=1

∑T
j=i DΔ�(i, j)

T (T − 1)
(10)

where DΔ�(i, j) is the (i, j)-th element of semantic similarity matrix. This is the

mean value of upper triangular elements except diagonals. Then, with respect

to the given time interval T , the semantic deviation σ� is derived as shown by

σ�(t1, . . . , tT ) =

√
2
∑T

i=1

∑T
j=i (DΔ�(i, j)− μ�(t1, . . . , tT ))

2

T (T − 1)
(11)

These factors are exploited to quantify the semantic similarity between two ran-

dom RDF annotations of sensor stream and statistically discriminate semantic

outliers such as the most distinct or the N distinct data from the rest in the range

of over preset threshold, with respect to given time interval. For instance, the

semantic similarity matrix in Table 4 can be represented as Fig. 4 by observing

the μ� and σ� over time.
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Figure 4: Distribution of semantic similarities

Based on the observed dynamics of the distribution (i.e., Fig. 4), we have to

investigate how the sensor streams are segmented (i.e., session identification).

Four heuristics have been considered that a new session begins in the RDF

annotation stream.

– H1−1. when the mean of semantic similarity μ� is less than a threshold τμ

– H1−2. when the standard deviation of semantic similarity σ� is more than a

threshold τσ,

– H2−1. when μ� turns from upward to downward,

– H2−2. when σ� turns from downward to upward,

In consequence, from Fig. 4, these four heuristics can detect the specific moment

when (or where) should be divided from the sequence. Table 5 depicts the results

on session identification by the four heuristics. We will empirically evaluate these

heuristics, and discuss which heuristics are better than others later.

Table 5: Results on session identification by the four heuristics

Heuristics H1−1 H1−2 H2−1 H2−2

Session identification (T1, T2) (T6, T7) (T6, T7) (T1, T2), (T3, T4)

between (T6, T7) (T6, T7)
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Finally, we can discover frequent sequential patterns by applying data mining

algorithms to the sessionized data sets. It was difficult to do this from raw sensor

streams in Table 2. Once we have the sessionized result (i.e., Table 5), we can

easily find out the frequent patterns and also be aware of behavioral patterns of

people in the particular environment. Thus, in this case, we have discovered and

translated the following pattern (with support and confidence), as follows;

– Project Screen Pull-Down (True) → Light (Off) [20%, 95%]

– When project screen gets pull-down in this room, light switch will be turned

off.

5 Experimental results and discussion

In order to evaluate the proposed preprocessing method, we have installed four

sensor networks, which are composed of five kinds of sensor nodes, into three

lecture room and one corridor. The sensor streams have been collected for about

one month (from 9 March 2009 to 6 April 2009).

As a first experiments, we had to set up the length of sliding windows. Also,

we needed to investigate whether (and how) the length of sliding windows affects

to the performance of sessionization. Thus, as changing the length of sliding

window, we have measured the numbers of sessions identified and the numbers

of patterns discovered, and then justified the validity of the patterns. The results

are shown in Table 6.

Table 6: Evaluation of performance of session identification with respect to length

of sliding window

Length of sliding Number of Number of Performance

window (minute) sessions discovered patterns of validity

1 73,192,929,039 15 67.7%

2 6,853,742,836 14 68.5%

3 1,958,289,740 11 70.5%

5 368,526,283 7 71.4%

10 40,102,492 4 86.3%

30 2,510,275 3 90.5%

60 231,022 3 94.0%

As the length of window is longer, the numbers of sessions and patterns are

exponentially decreasing, but the human validity is gradually increasing. We
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found out that it results from long-term patterns, which means more general

patterns. It makes human evaluators to determine positive validity on the pat-

terns.

Second issue is to evaluate four heuristics (i.e., H1−1 to H2−2) which have

been designed for the session identification. We used 30 minute-size sliding win-

dow for this. As shown in Table 7, heuristic H2−1 outperforms the others, with

respect to the validity testing. More importantly, we found out that the distri-

butions of means of semantic similarity (i.e., H1−1 and H2−1) is more crucial

than those of standard deviation of semantic similarity (i.e., H1−2 and H2−2),

respectively.

Table 7: Evaluation of performance with respect to the heuristics

H1−1 H1−2 H2−1 H2−2

Number of sessions 2510275 2058426 1360231 1074583

number of patters 4 5 4 4

Validity 90.45% 84.7% 93.3% 81.5%

Third evaluation issue is to compare the proposed preprocessing method

with other methods. Once we have had the frequent sequential patterns dis-

covered by [Agrawal and Srikant 1995], we have compared the proposed method

(i.e., MOnto) with the existing sessionization ones (i.e., MGeneric, MTime, and

MSampling) with respect to the number of the discovered patterns and the preci-

sion of the patterns. The precision (i.e., “agree” and “disagree” scores) has been

indicated by human experts on this experiments.

– MGeneric has no sessionization step. It assumes that the contexts are always

identical.

– MTime uses a time slot to sessionize. The size of the time slot is fixed.

– MSampling is to conduct a random sampling. It is expected to efficiently work

on a large-scale streams.

The result is shown in Table 8. MOnto proposed in this paper has outper-

formed the other three methods by discovering more patterns. More significantly,

in terms of “agree” score, the patterns discovered by MOnto have shown higher

precision than pattern by MGeneric (by 295.6%), MTime (by 119%), MSampling

(by 142.8%). But, interestingly, the disagree score of MOnto has shown slightly

higher than that of MSampling. We think that MSampling has been able to discover

the most stable and plain patterns from the sensor streams.
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Table 8: Comparison of performances of stream preprocessing methods (The

size of sliding window for MOnto is 30-minute, and we chose H2−1 for session

identification.)

MGeneric MTime MSampling MOnto

Number of patterns 4 4 4 7

Precision Agree 1 (25%) 3 (60%) 2 (50%) 5 (71.4%)

Disagree 2 (50%) 2 (40%) 1 (25%) 2 (28.6%)

Do not know 1 (25%) 0 (0%) 1 (25%) 0 (0%)

6 Concluding Remark and Future Work

As a conclusion, we have claimed that heterogeneous sensor streams from mul-

tiple environments should be efficiently integrated and preprocessed for better

data mining performance. It was difficult to do this from raw sensor streams in

Table 2. Once we have the sessionized result (i.e., Table 5), we can easily find

out the frequent patterns and also understand the contextual sequences of peo-

ple in the particular environment. Especially, this study will give good chance

to other works, because there have been many interesting practical projects to

develop and investigate ontology-based sensor networks, e.g., semantic sensor

web [Sheth et al. 2008] and SensorWare.

In future work, for better sessionization performance, combination between

several heuristics (e.g., H2−1 and H2−2) will be conducted, because these heuris-

tics can make up for weak points with each other.

We will focus on developing a real sensor network application by applying

several sequential pattern mining approaches to discover the sequential patterns.

Moreover, by matching distributed ontologies, most of sensor network systems

on open network will be integrated [Jung 2010]. The ontologies will be play an

important role of logical reasoner in this area.
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