
Configuration Process of a Software Product Line for
AmI Middleware

Lidia Fuentes
(University of Malaga, Málaga, Spain

lff@lcc.uma.es)

Nadia Gámez
(University of Malaga, Málaga, Spain

nadia@lcc.uma.es)

Abstract: Developing Ambient Intelligence applications is a very complex task since it implies
dealing with low-level software and hardware resources. The use of a middleware platform
may alleviate this task by providing a set of high-level and platform-independent services to
these kinds of applications. Nevertheless, the tendency is that the middleware deployed in each
device has a flat and homogeneous architecture, although these devices and the requirements of
intelligence environments are heterogeneous. This implies the middleware software deployed in
each device normally contains more functionality than strictly required, leading to waste
resources so scarce in lightweight devices. But the configuration and deployment of a minimal
middleware customized to a target platform is a complex task, due to the diversity of hardware
and software present in devices and the variable requirements of ambient intelligence
applications. In order to solve these shortcomings, we propose to customize the piece of
software related to the middleware platform by using a Software Product Line engineering
approach. This paper presents an innovative configuration process for a software product line
for ambient intelligence middleware where a minimal set of high-level parameters needs to be
specified. So, the software engineers for this kind of systems can automatically obtain
customized middleware by simply specifying this high-level information.

Keywords: AmI, Middleware, Variability, SPL, AAL.
Categories: C.2.1, D.2.1, D.2.2, D.2.11, D.4.7

1 Introduction

Most Ambient Intelligence [Bravo, 06] (AmI) systems nowadays are comprised of a
set of intercommunicated and heterogeneous devices, which range from small sensors
to PDAs or mobile phones. Developing AmI applications is a very complex task since
it requires a thorough knowledge of the software deployed on these devices. It also
requires managing the hardware resources provided by them as well as dealing with
network issues. This implies that AmI applications need to deal with low-level APIs
and operating system functions to manage these hardware resources. An additional
problem is that these low-level APIs and functions are sometimes vendor-dependent
and vary among the different devices and/or networks.

A well-known solution to this problem in the software community is to create a
middleware platform that offers a set of high-level and platform-independent services
to AmI applications (e.g. access to battery, memory, sensor location, etc.). This helps

Journal of Universal Computer Science, vol. 16, no. 12 (2010), 1592-1611
submitted: 29/12/09, accepted: 5/5/10, appeared: 28/6/10 © J.UCS

to hide the particularities of the different APIs when managing hardware and network
resources and contributes to the portability of AmI software to different target devices
[Fuentes, 09]. As a result, several middleware platforms for AmI systems or for
embedded or pervasive systems have been created in recent years. Nevertheless, an
important limitation is that they are developed focusing on mobility or real-time
issues, or are specifically for wireless and sensor networks (WSNs) [Wang, 08], but
they do not cover the necessities of all types of devices or applications.

An additional shortcoming is that the internal middleware architecture is normally
homogenous, providing a fixed set of services, although target devices and the
requirements of each AmI application are heterogeneous. This implies the
middleware software deployed in each device contains more services than strictly
required. For instance, the middleware can contain a service for encryption task even
when the application does not require it. As a result, the size of the piece of software
implementing the middleware is larger than necessary. In desktop or server
applications, where memory consumption is not a critical issue, this is not a problem.
But in AmI applications, where each kilobyte is appreciated, this can be a limitation.

Summing up, a very specific AmI middleware and/or not optimized in size can
not be deployed on any device and for any application. In order to address this
shortcoming, we propose to customize the piece of software related to the middleware
platform that is deployed in each device according to: (1) the device features; (2) the
network used to connect the different devices; and (3) the AmI application that these
devices run. So, basically, we are looking for a technique that allows easy
customization of a middleware according to the requirements previously described.

Software Product Line (SPL) engineering [Pohl, 05] aims to provide a set of tools
and techniques for creating infrastructures that allow the rapid and systematic
production of similar software systems for a specific market segment. Therefore, SPL
engineering seems to be the most appropriate technique to create an infrastructure
from which we can construct customized middleware to be deployed in embedded
heterogeneous devices with different application requirements.

Nevertheless, the customization process for deriving specific AmI middleware
from the SPL infrastructure can be a repetitive, laborious and error-prone task. This is
mainly due to the large variability inherent in the AmI software domain, which
implies a large number of options and parameters must be specified during the
configuration process. Moreover, although the SPL infrastructure provides a set of
precise rules for customizing a product according to the parameters previously
specified, in typical SPL engineering, these rules need to be applied manually, which
is time-consuming and, since software engineers are human, it is not free of error.

To address this problem, this paper presents an innovative configuration process
for a SPL for AmI middleware where only a minimal set of high-level options and
parameters need to be specified. Using this set, a larger set of low-level options and
parameters is automatically calculated. Using model transformations, the design for a
specific AmI middleware, customized for the parameters previously calculated, is
automatically constructed from a generic middleware design model. Finally, using
code generation, 100% of the code for deploying the middleware in a specific device
is obtained. So, using this approach, software engineers can automatically obtain
customized middleware by specifying a minimal set of high-level features.

1593Fuentes L., Gamez N.: Configuration Process of a Software Product Line ...

The reminder of the paper is organized as follows. In Section 2 we present our
motivation describing the problems of developing and customizing middleware for
AmI systems and how our process for the customization of the middleware helps to
address these problems. In Sections 3 and 4 the process is described in detail and case
studies are presented to illustrate it. The evaluation of our approach, some discussion
and related work are presented in Sections 5 and 6 respectively. Finally, in Section 7
we outline some conclusions and future work.

2 Motivation

2.1 Problem

As already commented in the introduction, the initial idea proposed by several authors
is to deploy a middleware platform in those devices which offer a set of services for
developing AmI applications, abstracting from low-level details of device and
networks [Sarnovsky, 08]. Nevertheless, state-of-the-art middleware for AmI systems
are homogenous in spite of the fact that the devices that comprise an AmI application
are hetereogenous. This has the limitation described below.

Figure 1 illustrates an AmI application for an Accidental Fall Report [Keshavarz,
06], which is responsible for reporting accidental falls of elderly and/or disabled
people. The application is comprised of a set of image sensor nodes (cameras), three
wall-mounted sensors able to measure distances, one user badge node and one sensor
with a modem that communicates with a central call center. These devices must work
coordinately for detecting and properly reporting falls of elderly people. The user
badge has an accelerometer and a voice circuit for transmitting voice. When the
accelerometer detects a potential fall scenario, the three wall-mounted sensors are
informed and they calculate the exact position where the elderly person might have
fallen. At the same time, the central call center is informed and the nearest image
sensor is activated. The sensor sends the images to the modem, which transmits the
video signal to the call center. Here, a worker checks the video stream and confirms if
it is indeed a fall or, instead, a false alarm. All these devices communicate by radio
technology, more specifically by means of ZigBee (802.15.4), and the sensor with the
modem is connected to the internet broadband. Moreover, according to the personal
data protection laws, images sent through a ZigBee connection must be encrypted. So,
the middleware for this application would need basic services for communication,
data delivery discovery or location, plus services for encryption or coordination tasks.
Therefore, we should construct a middleware platform with at least these services. It
should be noticed that not all services are required for all the devices at the same time.
For instance, the movement tracking algorithm running in the wall-mounted devices
requires the coordination service since it is a collaborative application. Only the
image nodes and the sensor with the modem require an extra service of security since
the generated image data must be encrypted.

If we deployed a homogenous middleware in the application, i.e. a middleware
containing all the services that might be required by any device, then each device
would deploy services which were never going to be used. For instance, the user
badge would have deployed an encryption service, even though the user badge does
not have to encrypt any data. Similarly, all the devices would have deployed services

1594 Fuentes L., Gamez N.: Configuration Process of a Software Product Line ...

for communicating on a broadband network when in fact only the node with the
modem is connected to a broadband network. This implies some memory is simply
wasted, since it would be devoted to useless services. In the AmI systems domain,
where memory consumption is critical, this can be a serious limitation. Also, the AmI
middleware must be implemented using the appropriate operating system and API
required by these devices.

In order to overcome these shortcomings, we propose to customize the
middleware platform according to needs of each device or application. Since this
customization process can be laborious, time-consuming and error prone, we propose
to apply SPL engineering techniques to automate this configuration process. The next
section gives an overview of our solution.

Figure 1: Scenario for Accidental Fall Report System.

2.2 Overview of our approach: A Software Product Line for AmI Middleware

A SPL aims to create the infrastructure for the rapid production of similar software
systems belonging to the same domain [Pohl, 05]. Thus, SPL engineering seems to be
a suitable solution for our goal, which is to build similar, easily customizable AmI
middleware systems. In this article we will present how to construct a SPL
specifically for AmI middleware. One of the salient contributions of this article, is
that the process for customizing a middleware platform using the SPL infrastructure is
largely simplified both by reducing the number of parameters and options the
application developer needs to specify and also by automating several parts of the
customization process, or in SPL terms, of the product derivation process.

Any SPL is comprised of two phases, or related development processes: Domain
Engineering and Application Engineering. Domain Engineering deals with the
creation of the infrastructure from which specific or customized products will be
constructed. Application Engineering is concerned with the creation of specific or
customized products using the infrastructure that has been previously created at the
domain engineering level. Domain engineering needs to be carried out only once per
family of products, whereas application engineering must be performed each time we
want to construct a new product belonging to the family. If the family of products
needs to evolve, we must update the infrastructure created at the domain engineering.

In our case, Domain Engineering is concerned with the creation of a flexible AmI
middleware design and implementation, one which supports all the customizations
that might be required. Application Engineering would be concerned with the
customization of this flexible design to obtain a specific middleware platform that fits
appropriately with the specific device, network and application requirements of a
particular AmI system. In our case, we use model transformations and code

1595Fuentes L., Gamez N.: Configuration Process of a Software Product Line ...

generation techniques to automate part of this process. Figure 2 gives a general
overview of our approach. Figure 2 (top) represents Domain Engineering and Figure
2 (bottom) Application Engineering. The very first step when creating a SPL is to
analyze the variability inherent in the domain, in our case, to analyze the variability
inherent in AmI middlewares. For this task, a feature model (FM) [Loughran, 08] is
constructed (See Figure 2, label D1). A FM specifies which elements, or features, of
the family of products are common, which are variable and the reasons why they are
variable, i.e. if they are alternative elements or optional elements. In addition, it is
possible to specify constraints or dependencies between these elements. For instance,
a dependency might specify that if the device where the middleware is going to be
deployed is in an insecure network, a service for encrypting must be automatically
added to the middleware. How this FM is constructed is explained in Section 3.1.

Due to the large variability inherent in the AmI middleware domain, we aim to
greatly reduce the number of features a user needs to specify in order to customize a
product by exploiting these dependencies that are established between features
belonging to different levels of abstraction. This means that the selection of a group of
high-level features implies the selection of one or more low-level functions. The
rationale behind this organization is that the user only has to specify a minimum set of
high-level features for customizing the middleware. Then, the minimum set of low-
level features that must be selected to obtain a specific middleware is automatically
inferred using a constraint solver provided by a feature modeling tool we have
constructed, called Hydra1.

Once we have constructed a FM for our domain, the next step is to create a
flexible design, or product line architecture (PLA), which supports the variations
specified by the FM (Figure 2, label D2). This design must allow its customization for
creating any middleware included in the family of products. This flexible design is
explained in Section 3.2.

Finally, we need to specify somehow how this flexible design must be
customized as different features are selected or unselected. For instance, the selection
of a specific service might require the addition of several software components to the
middleware. Similarly, the selection of a certain feature might imply setting a
component parameter to a specific value. This link between a FM and a PLA is
specified (Figure 2, label D3) using an innovative language developed in the context
of the AMPLE project2, called VML4Arch [Loughran, 08]. This language allows the
automation of the rules for customizing products in a SPL context as well as the
abstraction of low-level details from model transformation languages. This allows this
mapping to be specified in VML4Arch even by software architects without skills on
model transformation languages. This is explained in Section 3.3.

Once we have completed the domain engineering process, we are ready to
customize products, i.e. to move to the application engineering phase (See Figure 2,
bottom), which is repeated for each product we want to customize. The first step for
obtaining a customized middleware is to create a configuration of the FM, i.e. a
selection of features to be included in the customized product. As explained before, to
reduce the number of features a user must select, s/he only would need to deal with a

1 http://caosd.lcc.uma.es/spl/hydra
2 http://www.ample-project.net

1596 Fuentes L., Gamez N.: Configuration Process of a Software Product Line ...

reduced set of high-level features, which corresponds to requirements imposed by the
device (e.g. vendor of the device), by network (e.g. number of nodes) and by the
application (e.g. coordination requirement) (See Figure 2, label A1). With a selection
of these high-level features as input, Hydra calculates an optimal complete
configuration of the feature model for customizing the middleware (See Figure 2,
label A2). This configuration is given as input to the VML4Arch, which, by means of
generated model transformations, will automatically produce the design model for the
customized middleware as output (See Figure 2, label A3). Finally, we give this
customized design model to a code generator, which produces the 100% of the code
for deploying this middleware into a specific device. The advantages we are:

- Only the minimal middleware configuration will be installed in each device,
thereby making use of device resources in a energy efficient way.

- The configuration process is substantially simplified since the configuration
logic is not part of the middleware, but of the SPL derivation process.

- Using MDD technologies the product derivation process is automatic, so
each time that we need install the middleware in one particular device, new
middleware configurations can be derived simply by pressing some buttons.

Figure 2: Overview of our Approach.

3 Domain Engineering for an AmI Middleware

Domain Engineering in our context deals with the creation of the infrastructure which
will enable the rapid, or in our case automatic, construction of a family of AmI
middleware applications. Section 3.1 will focus on the first step to construct such a
family of AmI middleware applications, which is to analyse and specify, using a
feature model, the different kinds of variations that exist between different
middleware platforms. Once variability of the family of products has been identified,
the next step is to design a flexible system that supports this variability (see Section
3.2). Finally, as we commented in a previous section, we need to specify which
actions must be performed when a certain feature is selected or deselected. This is
described in Section 3.3. This phase only has to be realized once for the whole family
of AmI middleware and need only be modified for the evolution of the middleware.

1597Fuentes L., Gamez N.: Configuration Process of a Software Product Line ...

3.1 Feature Model

A FM [Lee, 02] allows us to specify which parts of a system are variable,
independently of the software design of our middleware. This allows high level
reasoning about all the different possible configurations. In the AmI systems domain
we can identify three different viewpoints reflecting the different stakeholders of such
systems: the builder of the physical devices, the network expert, and the application
domain expert. Then, we have divided our FM into three main kinds of features:
Device Driven, Network Driven and Applications Driven Features. We have
modeled our FM using a tool we have developed, called Hydra. Hydra is a feature
modeling tool, provided as an Eclipse plugin based on Ecore+GMF. Hydra, as
compared to state-of-the-art feature modeling tools, offers full graphical capabilities,
both for editing FM and configurations. Figure 3 shows a screenshot of Hydra with
the complete FM of our middleware.

Figure 3: AmI Middleware Feature Model with Hydra.

Device Driven Features basically concern the hardware properties. A device is
characterized by its Type, which refers to the device hardware architecture and
capacity (the available computational resources) and determines the supported
Operating System. Devices can be classified into three categories: High Capacity
Devices (as smart phones or GPS devices), Sensors and Consumer Electronics. The
Device Type and OS also influence which Development Technologies (APIs) are
available to build the embedded software. The Development Technology captures
the variability of the available APIs and programming languages for every version of
each distribution of an OS. Finally, the last device feature is the Radio Technologies
that can be used in the device, such as the IEEE 802.11, the ZigBee or Bluetooth.

Network Driven Features include the logical topologies used to organize the
nodes and specific protocols used to exchange data and control information inside the
network. In AmI systems most of the networks are Wireless Sensor Networks
(WSNs), consisting of a set of sensor nodes linked by a wireless medium. They are
able to perform distributed sensing and to convey useful information to control
stations. In large WSNs the data delivery in one hop, i.e., directly from sources nodes

1598 Fuentes L., Gamez N.: Configuration Process of a Software Product Line ...

to sink nodes, consumes too much. A more efficient approach is to send data in
multiple hops using intermediary nodes. With such approach, the paths from sources
to sinks are managed by data dissemination protocols, which can be classified
according to the network logical topology into hierarchical and flat protocols.

Finally, Application Driven Features encompass the internal structure
(components) of the middleware. To follow an SPL approach, the middleware must
be structured in fine-grained components (Services) decoupled from a base
infrastructure (Microkernel). The middleware services for our proposed family are
classified as basic (mandatory for the whole middleware family) and extra (optional,
dependent on the specific product to be generated). Basic services are: discovery,
communication, data delivery, and location. The discovery service provides a
mechanism to enable nodes to advertise and know the capabilities of their
neighboring nodes and to allow applications to submit a high level description of their
requirements. The communication service includes a proxy responsible for
interacting with applications, and drivers for communicating with the underlying
network protocols and devices. The data delivery service delivers the network
generated data to the application and it is dictated by the application requirements.
This service may be synchronous or asynchronous. Finally, the location service
allows a node to know its own geographical position and to store this value for
posterior use. In addition, we have identified the need for the following extra services
in this domain: coordination, data fusion, security, QoS management, fault
tolerance, topology control and context-awareness [Bravo, 05]. For a detailed
description of these services we refer the reader to [Delicato, 09].

Nevertheless, the features mentioned are not independent of each other. For
instance, a given network protocol (e.g. Trama [Rajendran, 03]) may be more suitable
to one specific application (e.g. Road Safety) than another protocol. This means that,
in addition to the FM, it is necessary to define Dependencies between features. These
dependencies are articulated in terms of logical expressions that can be reduced to
usage and mutual exclusion dependencies. A usage dependency could be formulated
as, “if a feature A is selected, then a feature B has also to be selected”. Mutual
exclusion would be, “if a feature A is selected, feature B must not be selected”.

As already commented in a previous section, in order to reduce the number of
features specified by a developer to customize the middleware platform, we have
divided the features into different levels of abstraction and we have also defined
dependencies between low-level features and high-level features. For instance, the
developer must specify the number of nodes of the networks and the QoS required by
the application (for example, low latency) and with this information our process infers
that the most appropriate network protocol for this application is Trama, but the
developer does not need to select manually the protocol.

The Hydra tool is able to infer, using a constraint solver called Choco3, the
minimum number features to be added to a configuration in order to create a valid
configuration that satisfies the constraints defined by the dependencies. Therefore, we
use this capability and the dependencies between features, for calculating how many
low-level features must be included to create a valid configuration according to a
certain set of high-level features given as input. This frees the developer to deal with

3 http://www.emn.fr/x-info/choco-solver/doku.php

1599Fuentes L., Gamez N.: Configuration Process of a Software Product Line ...

low level decisions, while ensuring that a valid configuration of the FM is deployed.
Furthermore, using Hydra we avoid the undesired side effects that may be produced
in the manual selection of features. The configuration process is simplified by means
of reducing the number of features that need to be specified.

Figure 4: Dependencies between Features in Hydra.

Figure 4 shows the dependencies between features for the model depicted in
Figure 3. We have used the Constraint Editor of Hydra to specify them. There are
several usage dependencies between the Device Type, the OS and the Development
Technologies. For example (see Figure 4), if the MoteLike (the most common sensor
device) feature is selected then the TinyOS (the OS commonly used for sensors)
feature has to be selected and nesC (the programming language for TinyOS)
development technology must be selected. It should be noticed for instance, if the
nesC feature is selected, Hydra would automatically infer that the Kernel_nesc, the
nesC version of the base services and the nesC version of the selected extra services
and protocol, must be selected. The same thing happens with the rest of development
technologies and other dependencies.

3.2 Product Line Architecture

Once the FM has been designed and all the variability in the AmI middleware has
been identified, we need to design a flexible architecture that supports these
variations. Such architecture was designed using the component model of UML 2.0.

As the mechanism for supporting the variations, we use a schema where plug-in
components, implementing different services, are plugged into a microkernel. The
microkernel is in charge of loading and composing the middleware services with
application components. The microkernel term describes a form of operating system
design in which the amount of code that must be executed in privileged mode is kept

1600 Fuentes L., Gamez N.: Configuration Process of a Software Product Line ...

to an absolute minimum. As a consequence, the rest of the services are built as
independent modules that are plugged in and executed by the kernel on demand. In
this way, a more modular and configurable system is obtained.

The correspondence between features and components is largely far from being
trivial. Each feature is often designed by using more than one component, depending
either on the implementation strategies of the service, on the network protocols or on
the development technology. So, the rules for selecting or deselecting components
according to a feature selection must be, at least, made explicit using some kind of
language; or, in the ideal case, automated. We explain in the next section how these
configuration rules can be automated.

3.3 Feature Mapping

To automate the rules that describe how a software model must be configured
according to a certain feature selection, we use the VML4Arch language. VML4Arch4
is an innovative language for specifying SPL configuration processes for architectural
models. The main contribution of VML4Arch is that it provides automation at the
same time that it hides low-level details of general-purpose model transformation
languages. Using high-order model transformations, VML4Arch compiles a
description of the configuration process into a set of low-level general purpose model
transformations, which, when executed, are able to customize the product line
architectural model according to a feature selection. This allows the VML4Arch to be
used even by software architects without skills in model transformations.

Figure 5: Feature Mapping in VML4Arch.

4 http://caosd.lcc.uma.es/spl/vml/vml4arch

1601Fuentes L., Gamez N.: Configuration Process of a Software Product Line ...

Using VML4Arch, we specify which actions, or customizations, must be
performed on the architectural model of the AmI middleware when a certain feature is
selected. Figure 5 shows a screenshot of the mapping between the feature model of
Figure 3 and the UML components of the architectural model. The code shown in
Figure 5 presents the mapping of the microkernel and the communication service
when the development technology selected is J2ME and the network protocol used is
Trama [Rajendran, 03]. This specification establishes that whenever the Kernel_J2ME
is selected, the J2ME versions of the basic services must be connected to the
MkernelJ2ME component through the corresponding interfaces. In the case where the
Kernel_J2ME variant is not selected all the J2ME base services must be removed
from the architecture. If the Communication_J2ME feature is selected the SOAP
engine and the handlers must be connected, and if it is not selected, all these
components must be removed. Finally, if the Trama_J2ME feature is chosen the
TramaJ2ME component has to be connected throng the IProtocol interface with the
SOAPEngineJ2ME component. The same is done for the other protocols and each
development technology. Moreover, it must also be done for the communication
service in the other development technologies and for the other services.

4 Application Engineering for an AmI Middleware

Application Engineering is concerned with the engineering of specific products or
single software systems using the infrastructure previously created at the Domain
Engineering level. In our case, we will customize a specific middleware instantiation
depending on the requirements of a particular device, network and application. This
phase must be repeated every time the device, network or application change. We
illustrate this process by customizing our middleware for two different AmI domains:
the Vehicular Ad-hoc Networks (VANETs) [Dikaiakos, 2007] and the Ambient
Assisted Living (AAL) 5 domain. Note that we use both case studies to detail how our
configuration process works and which services our middleware provides to these
applications. Nevertheless, it is out of our scope to describe both systems completely.

A VANET is composed of a set of autonomous vehicles that can operate with
minimum help from the driver. Each vehicle is equipped with sensors (acoustics,
accelerometers, temperature, etc.) an on board computer with a GPS. In VANET,
vehicle sensors are used to ensure safe driving, by measuring the distance with respect
to other objects/obstacles in the vicinity, e.g. other vehicles, pedestrians, etc. Vehicle
sensors use information received from the surrounding vehicles, such as their speed or
distance and are able to communicate with each other in order to cooperate for safety
and other purposes. Finally, traffic signals can send information to the vehicles
informing them of speed limits and general traffic regulations. The VANET domain
encompasses a large range of specific application sub-categories, such as road safety
applications (accident warnings, red-light warnings, etc.), information dissemination
(parking spots, fuel prices, etc.), entertainment applications or assisted driving. The
vehicles can be considered as distributed sensors that collect data and report them to
base stations. In this section we use a road safety application.

5 http://www.aal-europe.eu/

1602 Fuentes L., Gamez N.: Configuration Process of a Software Product Line ...

The goals of the AAL applications are to prolong the time people can live safely
and comfortably in their own home by increasing their autonomy and self-confidence
[Delicato, 09]. WSNs are a crucial component of AAL applications, supporting the
provision services for elderly and disabled people, such as position location and
movement tracking. We will use the Accidental Fall Report described in Section 2.1.

The first task at this level is to specify a set of selected high-level features,
according to the requirements of the device, the network and the application (see
Section 4.1). Then, this set of high-level features are given as input to Hydra, which,
using also the FM model and the dependencies, calculates the minimum set of low-
level features that must be added to the configuration in order to create a valid
configuration. This is described in Section 4.2. Finally, using this valid configuration
as input, VML4Arch automatically customizes the architectural model created at the
domain engineering level according to this particular configuration. The customized
architectural model is given as input to a code generator, which automatically
produces 100% of the code for deploying the AmI middleware (Section 4.3).

4.1 Eliciting Device, Network and Application Requirements

The goal of this step is to obtain a selection of high-level features according to the
requirements imposed by the device, the network and the AmI application running on
the device. In order to avoid the user needing to deal directly with the FM, we have
developed a simple tool for gathering this information in a user-friendly way. This
tool has three windows, each one having a form, where the experts have to select in
which kind of device, application or network the AmI middleware must be installed.
Each form is represented with one XML document with respect to one XML Schema,
or, in terms, as a model conforming to a metamodel.

The Device Constraints document specifies the device profile, including its type
(smartphones or sensors) and vendors, among others. The Application Restrictions
express the subset of the available middleware services that will be required by the
application and the application QoS requirements. Finally, the Network
Characteristics specify details of network-level protocols, used to manage the
sending of messages and the multihop routing including the QoS parameters they
fulfil. For instance, some protocols are more energy efficient, others are fault-tolerant
and others address time requirements. With this information, the tool creates an initial
set of selected high-level features, which satisfies these requirements.

Let’s suppose that we want to install the middleware on the on board computer of
a road safety VANET application with heavy traffic conditions. The only
information that has to be selected is the vendor and the model of this particular on
board device. With respect to the application restrictions, five extra services
(Topology Control, QoS Management, Encryption, Fault Tolerance and Coordination)
are selected, this kind of application demands a low delay (latency) as QoS
requirement and the data delivery will be event based. At least, considering the heavy
traffic conditions number of nodes will be very high, more than 100. If we enter this
data our tool gets the initial features: OnBoard, TopologyControl, QoSManagement,
Encryption, FaultTolerance, Coordination, Event, Latency, More100.

For the AAL application selected, we want to install the middleware in one of the
wall-mounted nodes in charge of estimating the user position. We must inform that
the device is a mote-like sensor with a distance sensing unit. The extra service

1603Fuentes L., Gamez N.: Configuration Process of a Software Product Line ...

required is the Coordination, no QoS restrictions are needed, and data delivery must
be periodic data monitoring. This network has less than 10 nodes. The initial features
will be: MoteLike, Static, Distance, Coordination, Periodic, Flat, Less10.

This initial set of selected high-level features is given as input to Hydra, which
automatically calculates the minimum number of low-level features that must be
added to the configuration in order to create a valid configuration.

4.2 Middleware Configuration

A complete and valid configuration is automatically calculated by Hydra, the same
tool we have used for modeling the FM and its dependencies. Hydra accepts as input
a set of selected high-level features. Then, using the FM, and the dependencies
defined between high-level and low-level features at the domain engineering level,
Hydra calculates, using a constraint solver (Choco), the minimum number of low-
level features that must be added in order to create a valid configuration. This
simplifies the configuration process, since the application developer: (1) does not
need to deal with the FM directly, as the initial selection of features is automatically
created by the tool described in the previous point; and (2) does not need to deal with
low-level features, which are automatically inferred by Hydra, reducing the amount of
information, and therefore the time, required for customizing the AmI middleware.

Figure 6: Configuration for Road Safety in the On Board computer in Hydra.

Figure 7: Configuration for Accidental Fall Report in the wall sensors in Hydra.

Figure 6 represents the particular configuration for the road safety VANET
application in the on board computer. In order to obtain this configuration, Hydra has
used some dependencies, for example between the on board device and the J2ME
development technology. This development technology also influences the versions

1604 Fuentes L., Gamez N.: Configuration Process of a Software Product Line ...

of the microkernel, services (base and selected extra services) and protocol. In this
case the protocol chosen is Trama, because if More100 feature is selected, then the
topology is hierarchical and Trama is the protocol for low delay requirements.

In Figure 7, the configuration for the accidental fall report in a wall mounted
sensor node is shown. The dependencies used by Hydra will be the usage
dependencies between the Mote Like and the TinyOS and between TinyOS and nesC
development technology. So the version of the microkernel, services (the base
services and coordination extra service) and the protocol will have to be nesC
versions. Also the device will be static and will have a distance sensing unit. And
finally as the Less10 feature is selected the topology will be flat and the network
protocol will be Direct Diffusion (DD).

4.3 Middleware Product Architecture

The next step is to customize the architectural model created at the Domain
Engineering level using the configuration calculated in the previous subsection. This
task is automatically executed by VML4Arch. As already commented, a VML4Arch
specification is compiled, by means of high-order transformations into a set of low-
level model transformations in xTend, the model-to-model transformation language of
the openArchitectureWare suite6. At the application engineering level, these generated
model transformations are executed by the VML4Arch tool. These generated model
transformations customize the domain engineering architectural model according to
the selection of features, or configuration model, given as input. For the two examples
previously described, the corresponding customized architectures are generated. In
these architectures, all the plug-in components have been properly connected and the
unnecessary components have been removed.

The next and final step is to generate implementation code from this customized
architectural model. The microkernel must have a way to know which services and
protocol will be used in order to manage them and compose them with the application
component. We have implemented code generators that generate the part of the
microkernel code related to the addition and initialization of the selected services and
protocols. Figure 8 illustrates a piece of the generated code for a J2ME microkernel
is shown. In order to run the application, the microkernel must create the components
for the network protocol (Trama in this case, line 05) and the components for the base
(lines 07-10) and the selected extra services (we only show Topology Control, line
11). All these components must have a reference of the microkernel and the
component for the communication service must be connected with the selected
protocol. Finally, the application component must be created, connected with the
microkernel and the communication service and also the Display may be passed to the
application (line 14). In this way, a complete package of the microkernel will be ready
to be installed in the device. Components that compose the specific middleware, plus
their instantiation, initialisation and configuration files are automatically obtained.

6 http://www.openarchitectureware.org/

1605Fuentes L., Gamez N.: Configuration Process of a Software Product Line ...

01 public class MkernelJ2ME extends MIDlet implements CommandListener{
02 …
03 public void runApplication() {
04 //Create the components that realize the communication protocol selected
05 protocols.TramaJ2ME prot = new protocols.TramaJ2ME();
06 //Create the components that realize the base and the extra services
07 services.communication.SOAPEngineJ2ME comm = new services.communication.SOAPEngineJ2ME(mkernel, prot);
08 services.datadelivery.DataDeliveryJ2ME datadel = new services.datadelivery.DataDeliveryJ2ME(mkernel);
09 services.discovery.DiscoveryJ2ME disc = new services.discovery.DiscoveryJ2ME(mkernel);
10 services.location.LocationJ2ME loc = new services.location.LocationJ2ME(mkernel);
11 services.topologyControl.TopologyCtrlJ2ME top = new services.topologyControl.TopologyCtrlJ2ME(mkernel);
12 …
13 //Run the application
14 application roadsafety = new application(display, "roadsafety", mkernel, comm);

Figure 8: Generated code for a J2ME microkernel.

5 Evaluation and Discussion

This article has presented a process for the automatic generation of customized
middleware for AmI systems. This generated middleware contains exclusively the
services required for a certain device, using a specific network and executing a
concrete application. Therefore, memory usage is optimized, since no memory is used
for useless services. Moreover, the configuration process is simplified because to
customize the middleware only a reduced set of high-level features must be specified
by the developers, and a larger set of configuration parameters is automatically
inferred using a constraint solver provided by the Hydra tool. As we explained, Hydra
tool is able to infer the minimum number of features to be added to a configuration to
create a configuration that satisfies the constraints defined by the dependencies.

At a first glance, it might seem that to set up a SPL infrastructure may require
great effort, and it is reasonable to think perhaps it might be cheaper to manually
create these products. Although following an automatic SPL approach the initial cost
for setting up the SPL infrastructure is actually higher, as soon as individual AmI
middlewares start to be automatically generated, this initial effort becomes cost-
effective. Moreover, we would like to point out that the use of innovative tools, such
as VML, contributes to hide part of the complexity associated to the automation of the
configuration process, decreasing the initial effort.

First of all, it should be taken into account that the definition of a family of AmI
middleware(s) is a prerequisite for the generation of a customized middleware for a
wide range of devices, networks and applications. Secondly, it should also be
considered that a manual configuration process would imply a manual manipulation
of the components implementing the selected middleware services, which is a
complex and error prone task. We present quantitative evidence about the complexity
of a manual configuration process by calculating the number of components that
could be involved in the configuration of an AmI middleware.

In the FM of Figure 3 there are some features that can be selected independently
of each other: network protocols (currently there are 5 protocols (p) available, p=5),
base services (there are 4 base services (bs) available in Figure 3, bs=4), extra
services (there are 7 extras services available in Figure 3, es=7) and the microkernel
(1 mk avalaible). These features are affected by the OS and the development
technologies (e.g. nesC, J2ME, Java), because a different version of each feature must
be implemented for each OS/development technology included in the feature model.
Let us consider three development technologies (development technologies, dt=3). It

1606 Fuentes L., Gamez N.: Configuration Process of a Software Product Line ...

should be noticed this number could increase if we add to the feature model other
existing development technologies, such as .Net or C or Python for Symbian. Now, let
us calculate the number of components that correspond to these features. Furthermore,
a feature is not implemented exclusively by just one component. For example, the
communication service may be implemented by three components: an engine and two
handlers. Other features are implemented by a higher number of components (e.g.
encryption). We have calculated that the average number of components
implementing a service is 4 (components per service, cps=4). Therefore, using the
following formula, we calculate the total number of components that are included in
the PLA. This number is estimated at 150 components.

()[] cdtmkcpsesbsp 150314745 =∗+∗++
This number of components is high and it may significantly grow if we would

add one extra service or a new network protocol. For instance, considering a constant
number of base services and protocols, if we increase the number of extra services
(es), the number of components included in the PLA would increase depending on the
number of development technologies (dt) as shown in Figure 9.a ([(22+4*es)*dt]=c;
for es=10 and dt=8, then c=496), and as a function of p (protocols) and dt
([(p+45)*dt]=c; for p=6 and dt=8, then c=408) (Figure 10.b).

So, in conclusion, it can be stated that the number of components the developer
needs to deal with during a manual configuration process can be quite high. This
makes a manual configuration process an error prone, tedious and time consuming
task. In order to solve this issue, we automated this configuration process. Our
automatic configuration process simplifies the configuration since the developer
needs to specify a lower number of features than in the manual case, and s/he does not
need to deal with component selection.

(a)

(b)

Figure 9: Number of components depending on the number of extra services (a) and
networks protocols (b) with respect to the number of development technologies.

In our approach, all the possible configurations are taken into account.
Nevertheless, we only have developed a significant subset of components, only those
necessary to configure the middleware for different applications with good results.
Table 1 shows the amount of information that the developer had to provide as input
features to the process presented in this paper, for each application. The other
columns show the devices, services, protocols, features, dependencies and
components which are automatically managed by the automatic configuration
process, transparently to the developer. For the accidental fall report shown

1607Fuentes L., Gamez N.: Configuration Process of a Software Product Line ...

throughout this paper, the developer only had to provide the number and type of
devices (mote like sensors), the extra services required (coordination for the wall-
mounted and security for the cameras) and the amount of network nodes (less than
10). The process automatically infers that the Direct Diffusion protocol must be
selected. To calculate the low-level features required for customising the middleware
for the static wall-mounted nodes, 10 dependencies were considered: the usage
dependencies between the device type and OS, the concrete OS and development
technology, the correct microkernel version, base services and extra services
implementation, the number of nodes and the protocol version. For the other devices
the dependencies taken into account were similar. Finally, for every implementation
the number of components also varies depending on the development technology and
the extra services selected. Table 1 is completed with data from other two
applications of the VANET domain, one for ensuring road safety and other one for
information dissemination. The customised middleware for these applications were
obtained using a process very similar to the described for the Accidental Fall Report
application. In all these cases, it was possible to automatically generate the
customised middleware by providing a reduced amount of information about the
selected features and executing our tool chain, i.e. the automatic constraint solver
provided by Hydra, the model transformations generated by VML4Arch and the code
generators. So, the configuration process is reduced to the specification of a reduced
amount of information by the developers and pressing some buttons, so the
customization task is drastically simplify and free of manual errors.

Configuration Input Feat. Devices Services Protocol Feat. Dep. Comp.
7 3 wall sens. Base, Coord DD 12 10 12
7 3 cameras Base, Security DD 12 10 13

AAL Mw
(Accidental Fall
Report) 6 1 badge Only Base DD 11 9 10

9 On board Base, TopCont, Security, QoS, FTolerance, Coord TRAMA 16 14 40 VANET Mw
(Road Safety) 10 Signal Motes Base, TopCont, Security, QoS, FTolerance, Coord TRAMA 16 14 21

9 Motes Base, DFusion, Coord, TopCont, Security LEACH 15 13 18
9 Sun Spots Base, DFusion, Coord, TopCont, Security LEACH 15 13 20
7 Sink Base, DFusion, Coord, Security LEACH 14 12 17

VANET Mw
(Information
Dissemination)

6 On board Base, TopCont, Security LEACH 13 11 27

Table 1: Results of the implementation.

Regarding the size of the middleware generated, we have a large middleware
(with 40 medium size J2ME components) for the installation of the road safety
application in the on board computer, and a really small middleware (with 12 tiny size
nesC components) for the installation of the accidental fall report application in the
wall-mounted sensors. One interesting result worth attention is that the number of
components included in the customised middlewares is relatively small as compared
to the total number of components included in the PLA, which were 150. This means
that only a small set of components will be part of the customised middleware
installations and the other components are simply removed in order to save resources.

The constraint solver provided by Hydra ensures that the configuration with the
minimum number of features is the selected configuration. This demonstrates the
power of our approach to manage variability of AmI middleware making feasible the
generation of such totally different middleware configurations. With this, we have the
minimum FM configuration, and VML4Arch automatically selects the minimum
architecture using the feature mapping. In order to support this, as readers remember,

1608 Fuentes L., Gamez N.: Configuration Process of a Software Product Line ...

the PLA was designed encapsulating the functionality that corresponds with optional
features in separate components. The problem of selecting the correct component that
must be part of a middleware instantiation, our process solves it automatically and
generating configurations that satisfies the restrictions.

6 Related Works

There are several existing works that propose the use of middleware for AmI,
embedded or mobile systems. One recently developed middleware is that presented
by the Hydra Project, which is an ongoing project with similar goals to our proposal.
Its objective is to create a widely deployed middleware for intelligent networked
embedded systems that will allow producers to develop cost-effective and innovative
embedded applications for new and already existing devices. However, until now, this
project does not pay much attention to the configuration task, which in our opinion is
very important in embedded devices due to the considerable resource restrictions.
This restriction is particularly relevant in sensors, but in this work [Sarnovsky, 08],
sensors are barely considered, whereas we believe them to be one of the most
important devices in this kind of applications. Hydra middleware structure is fixed, it
seems to configure some layers in the application level but always in a manual way,
which is one of the disadvantages we have highlighted in the evaluation section.
Furthermore, of the services provided, only the security layer is mentioned. While in
their approach, it is fixed and orthogonal, we consider that this is not always
necessary and that this service can be implemented just like any provided service.

On the other hand, recently has been published a systematic review [Morais, 09]
of SPL applied to mobile middleware and some of our previous works [Fuentes,
08][Fuentes, 05][Fuentes, 06] has been selected for such review. This paper
demonstrate that the proposal of applying SPL for middleware for this kind of system
is a novel and interesting idea, since the goal of the authors is construct a family of
middleware platforms for mobile devices using SPL. However, only few approaches
have been found for the systematic review. Apart from our previous work, they have
selected four different approaches. In [Lee, 07] a SPL process for configuration using
FMs is presented. The goal and the function of the process is similar to ours, but it is a
systematic process not automatic as ours is. Furthermore, the middleware and the
process are only applied to the different roles that can play node sensors, so is a very
small and particular case of our middleware that we also consider. Apel and Bohm
[Apel, 05] have shared our object to design a lightweight, device-independent and
customizable middleware, which is able to run on heterogeneous hardware and
software. They use the mixin as SPL technology and we use the FM which allows us
to better manage all the variability found in the AmI middlewares. Furthermore, in
their proposal the customization of the middleware is the responsibility of the
application programmer while in our proposal this process is completely automatic.
Finally, in their work they focus only on the communication services, proposing to
add services such as security or fault tolerance as future work, features which are
already taken into account in our work. PLIMM [Zhang, 07] is a Product Line
enabled Intelligent Mobile Middleware, in which Frame based on SPL techniques is
applied to help manage the contexts. In PLIMM the context modelling is performed
using ontologies and the authors propose an SPL process for the evolution of the

1609Fuentes L., Gamez N.: Configuration Process of a Software Product Line ...

ontology. However, they do not propose a process to configure and customize the
middleware as we do. The variability of the services and devices that an AmI
middleware has to deal with is not considered in this work. Finally, in [Krishna, 06]
the authors present how context-specific techniques can be applied to the design of
AmI middleware whose architecture is based on product lines, but they do not design
a family of middleware using SPLs. They show a toolkit for automating context
specific specializations, allowing already developed middleware to be customized;
they do not propose a new middleware as we do. This process is not automatic as the
code annotations that indicate the variations points have to be done by hand. They
only automate the delivery of specialization but not the identification of
specializations suitable for the PLA of a system. With our process however, given
only the application restriction, device constraint and the network characteristics can
automatically generate the minimum valid configuration that works properly.

7 Conclusions

Our initial hypothesis was that an SPL approach helps to deal with the complexity and
heterogeneity of AmI systems. In this sense, we have presented a configuration
process for an SPL AmI middleware to obtain customized middleware instantiations.
This process is automatic and only a minimal set of high-level parameters needs to be
specified by the developer of the applications. Using some tools (Hydra, VML4Arch
and code generators) together with these high-level parameters the particular, ready to
install configurations will be automatically generated by our process.

AmI applications will benefit from such a highly-optimized and custom
middleware, which will offer appropriate services consistent with device
configuration and resource constraints. In this way, final applications will only have
to model the application specific functionality, thereby removing the code dependence
of the hardware and software of devices and network, what will be incorporated by
invoking the correct middleware services through high level interfaces.

In the discussion and evaluation section we have shown the complexity of
configuring an AmI middleware due to the high number of components involved. We
have also shown how the automatic configuration process presented in this paper was
successfully applied to different case studies, alleviating the engineer’s task of
managing such diverse features, components and the mappings between them.

References

[Akyildiz, 04] Akyildiz, I., Kasimoglu, I.: Wireless Sensor and Actor Networks: Research
Challenges, Ad Hoc Networks Journal, Elsevier, 2(4), pp. 351-367, October 2004.

[Apel, 05] Apel, S., Bohm, K.: Towards the Development of Ubiquitous Middleware Product
Lines, LNCS Software Engineering and Middleware, Vol. 3437, March 2005.

[Bravo, 05]Bravo, J. et al.: Ubiquitous Computing in the Classroom: An Approach through
Identification Process. Journal of Universal Computer, 11(9), pp. 1494-1504. 2005

[Bravo, 06] Bravo, J. et al.: Visualization Services in a Conference Context: An Approach by
RFID Technology. Journal of Universal Computer, 12(3), pp. 270 – 283, 2006.

1610 Fuentes L., Gamez N.: Configuration Process of a Software Product Line ...

[Delicato, 09] Delicato, F., Fuentes, L., Gámez, N., Pires, P.: Variabilities of Wireless and
Actuators Sensor Network Middleware for AAL, LNCS 5518, pp. 851-858, 2009.

[Dikaiakos, 07] Dikaiakos, M., Florides, A., Nadeem, T., Iftode L.: Location-aware Services
over Vehicular Ad-Hoc Networks using Car-to-Car Communication, IEEE Journal on Selected
Areas In Communications, 25(8), 2007.

[Fuentes, 05] Fuentes, L., Jimenez, D.: An Aspect-Oriented Ambient Intelligence Middleware
Platform, In Proc. 3rd Int. Work. on Middleware for Pervasive and Ad-Hoc Computing, 2005.

[Fuentes, 06] L. Fuentes, and D. Jiménez, “Combining Components, Aspects, Domain Specific
Languages and Product lines for Ambient Intelligent Application Development”, Proc. of
International Conference on Pervasive Computing, Ireland, May 2006.

[Fuentes, 08] Fuentes, L., Gámez, N.: A Feature Model of an Aspect-Oriented Middleware
Family for Pervasive Systems, In Proc. AOSD Workshop on Next Generation Aspect Oriented
Middleware, pp. 11-16, Belgium, April 2008.

[Fuentes, 09] Fuentes, L., Gámez, N., Sánchez, P.: Managing Variability of Ambient
Intelligence Middleware, Int. Journal of Ambient Computing and Intelligence, 1(1), pp. 64-74,
March 2009.

[Keshavarz, 06] Keshavarz, A., Tabar, A., Aghajan, A.: Distributed Vision-Based Reasoning
for Smart Home Care, In Proc. SenSys Workshop on Distributed Smart Cameras, USA, 2006.

[Krishna, 06] Krishna, A., Gokhale, A., Schmidt, D.: Context-Specific Middleware
Specialization Techniques for Optimizing Software Product-Line Architectures, ACM SIGOPS
Operating Systems Review, Vol. 40, No. 4, 2006, pp. 205-218.

[Lee, 02] Lee, K., Kang, K., Lee, J.: Concepts and guidelines of feature modeling for product
line software engineering, LNCS 2319, pp.62–77, 2002.

[Lee, 07] Lee, W., Kang S., Lee, D.: Product Line Approach to Role-Based Middleware
Development for Ubiquitous Sensor Network, In Proc. 7th IEEE Int. Conf. on Computer and
Information Technology, pp. 1032-1037, Japan, October, 2007

[Loughran, 08] Loughran, N. et al.: Language Support for Managing Variability in
Architectural Models, LNCS Software Composition, Vol. 49, pp 36-51, 2008.

[Morais, 09] Morais, Y., Burity T., Elias, G.: A Systematic Review of Software Product Lines
Applied to Mobile Middleware, In Proc. 6th Int. Conf. on Information Technology: New
Generations, USA, April, 2009.

[Pohl, 05] Pohl, K., Böckle, G., Linden, F.: Software Product Line Engineering – Foundations,
Principles, and Technique, Springer, Berlin, Heidelberg, New York, Aug. 2005.

[Sarnovsky, 08] Sarnovsky, M. et al.: First Demonstrator of HYDRA Middleware Architecture
for Building Automation, In Proc. Znalosti 2008, pp. 204-214, Feb. 2008.

[Rajendran, 03] Rajendran, V. et al.: Energy-efficient collision-free medium access control for
wireless sensor networks, In Proc. Int. Conf. on AmI Networked Sensor Systems, USA, 2003.

[Wang, 08] Wang, M. et al.: Middleware for wireless sensor networks: A survey, Journal of
Computer Science and Technology. Vol. 23, No. 3, pp. 305-326, May 2008.

[Zhang, 07] Zhang, W. et al.: Product Line Enabled Intelligent Mobile Middleware, In Proc.
12th IEEE Int. Conf. on Engineering Complex Computer Systems, pp. 148-160, 2007.

1611Fuentes L., Gamez N.: Configuration Process of a Software Product Line ...

