
An Axiomatization of a First-order Branching Time

Temporal Logic

Dragan Doder
(Department of Mathematics, Faculty of Mechanical Engineering

Belgrade University, Serbia
ddoder@mas.bg.ac.rs)

Zoran Ognjanović
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1 Introduction

The study of temporal logics started with the Prior’s work [Prior 1957]. Temporal
logics are designed in order to analyze and reason about the way that systems
change over time, and have been shown to be a useful tool in describing behavior
of an agent’s knowledge base, for specification and verification of programs,
hardware, protocols in distributed systems etc., [Emerson 1990, Emerson 1996].

In the early works, classical logic languages are enriched with two temporal
operators: the ”future” operator F and ”past” operator P (for complete axioma-
tization, see [van Benthem 1982]). A stronger, more expressive language with the
new binary operators ”until” (U) and ”since” (S) is introduced in [Kamp 1968];
the corresponding completeness result is presented in [Burgess 1982].

An important division of temporal logics is into linear (each moment of time
has a unique possible future) and branching time (there can be two or more
possible futures) [Burgess 1984].
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A complete axiomatization of propositional linear time logic with the ”next”
operator © and ”until” operator is presented in [Gabbay et al. 1980] and
[Lichtenstein and Pnueli 2000], while its first-order extension is given
in [Manna and Pnueli 1981]. A strongly complete axiomatization (in the first-
order case) is proposed in [Ognjanović 2001], and its probabilistic extension
is presented in [Ognjanović 2006]. A translation of first-order linear time for-
mulas into classical formulas with explicit time parameters is considered in
[Abadi 1989, Abadi 1990, Andréka et al. 1991], and alternative notions of non-
standard completeness (for example, domains that correspond to time parame-
ters need not be countable) are proposed.

Propositional branching time temporal logic with the basic operators ©,
U and A (universal path operator), usually called Computation tree logic, is
introduced in [Emerson and Halpern 1986, Emerson and Sistla 1984]. Unlike the
linear operators © and U , the temporal operator A involves path switching.
There are only a few complete axiomatizations for propositional Computation
tree logic, with respect to different classes of models [Stirling 1992, Kaivola 1996,
Reynolds 2001]. To the best of our knowledge, there is no such result for the first
order case.

In this paper we present a strongly complete infinitary axiomatization for
first-order branching time temporal logic with the operators ©, U and A, with
the meaning: ©α – α holds in the next time moment on the branch, αUβ –
α holds in every time moment (on the branch) until β becomes true, and Aα

– α holds on every branch which passes trough the current state. It is known
that, in the case of first-order linear time logic with © and U , the set of valid
formulas is not recursively enumerable, and there is no recursive axiomatization
of the logic [Abadi 1989, Andréka et al. 1979, Gabbay et al. 1994, Kröger 1990,
Sza�las and Holenderski 1988]. Consequently, the same holds for the correspond-
ing branching logics. Another proof-theoretical problem, even in the proposi-
tional case, is the non-compactness (e.g. consider the set {©α,© © α,© ©
©α, . . .}∪{�U¬α} which is finitely satisfiable, but not satisfiable). Thus, there
is no strongly complete (”every consistent set of formulas has a model”) finitary
axiomatization.

In our logic the term ”infinitary” concerns the meta language only, i.e., the
object language is countable, and formulas are finite, while only proofs are al-
lowed to be infinite. Similar logics are axiomatized in [Sza�las 1987] (the cor-
responding completeness is proved using an algebraic method). In our paper
Deduction theorem is proved and the Henkin construction is used, similarly as
in [Ognjanović 2001, Ognjanović 2006, Ognjanović and Rašković 2000].

The rest of the paper is organized as follows. In Section 2 we introduce
the first-order branching time temporal logic and define the semantics. Section
3 contains an axiomatization of the logic. In Section 4 it is proved that the
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axiomatization is sound and strongly complete with respect to the corresponding
class of models. We conclude in Section 5.

2 Syntax and semantics

We consider a first order language L which contains:

1. the variables x, y, z, . . .;

2. for every integer k ≥ 0, k-ary relation symbols P k
0 , P k

1 , . . ., and k-ary function
symbols F k

0 , F k
1 , . . .;

3. Boolean connectives ¬ and ∧, quantifier ∀, comma, parentheses, and

4. temporal operators © (next), U (until), and A (universal path quantifier).

The function symbols of arity 0 are called constant symbols. Terms and
atomic formulas are defined as usual. The set of formulas is the smallest set
containing all atomic formulas that is closed under the formation rules: if α and
β are formulas, then ¬α, α∧β, (∀x)α, ©α, αUβ and Aα are also formulas. The
other Boolean connectives (∨, →,↔) and existential quantifier (∃) can be defined
as usual, while � and ⊥ are the notations for α∨¬α and α∧¬α, respectively. The
temporal operators F (sometime), G (always) and E (existential path quantifier)
are defined as follows: Fα denotes �Uα, Gα denotes ¬F¬α and Eα denotes
¬A¬α. Sentences (i.e., formulas without free variables) are defined as usual.

An example of a formula is E©P 1
1 (F 0

6 ) → (∀x)A(∃y)(P 2
0 (y, x) U P 2

0 (F 0
0 , y)).

If T is a set of formulas, then ©T denotes {©α|α ∈ T }, while AT denotes
{Aα|α ∈ T }. Furthermore, for k ∈ ω, ©k+1α is an abbreviation for ©(©kα).

We define the notion of a model as a special kind of Kripke model. Namely,
a model M is a tuple 〈S, R, Σ, D, I〉 where:

– S is a non-empty set (of states),

– R is a total binary relation on S, i.e., for every s ∈ S there is t ∈ S such
that sRt,

– Σ is a set of ω-sequences σ = s0, s1, s2,. . . of states from S such that siRsi+1,
for all i ∈ ω. A path is an element of Σ. We assume that Σ is suffix-closed,
i.e., if σ = s0, s1, s2, . . . is a path and i ∈ ω, the sequence si, si+1, si+2, . . . is
also a path.

– D is a non empty domain, and

– I associates an interpretation I(s) with every state s ∈ S such that for all j

and k:
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1. I(s)(F k
j ) is a function from Dk to D,

2. for every t ∈ S, I(s)(F k
j ) = I(t)(F k

j ), and

3. I(s)(P k
j ) is a k-ary relation on D.

Note that we use fixed domain models with rigid function symbols. To simplify
the notation, we introduce the following convention: if σ = s0, s1, s2, . . . , we
write σi for the state si and σ≥i for the path si, si+1, si+2, . . .

Let M = 〈S, R, Σ, D, I〉 be a model.
A variable valuation v assigns some element of the domain to every state s

and every variable x, i.e., v(s)(x) ∈ D. If s ∈ S, d ∈ D, and v is a valuation, then
v[d/x]s is a valuation identical to v with the exception that v[d/x]s(s)(x) = d.

The value of a term t in a state s with respect to v (denoted by I(s)(t)v) is
recursively defined as follows:

– if t is a variable x, then I(s)(x)v = v(s)(x), and

– if t = F k
j (t1, . . . , tk), then I(s)(t)v = I(s)(F k

j )(I(s)(t1)v, . . . , I(s)(tk)v).

We define what it means for a formula α to be satisfied at a path σ in a model
M under a valuation v, denoted by (M, σ, v) |= α, as follows:

– (M, σ, v) |= P k
j (t1, . . . , tk) iff 〈I(σ0)(t1)v, . . . , I(σ0)(tk)v〉 ∈ I(σ0)(P k

j ),

– (M, σ, v) |= ¬α iff (M, σ, v) �|= α,

– (M, σ, v) |= α ∧ β iff (M, σ, v) |= α and (M, σ, v) |= β,

– (M, σ, v) |= ©α iff (M, σ≥1, v) |= α,

– (M, σ, v) |= αUβ iff there is some i ∈ ω such that (M, σ≥i, v) |= β and for
each j ∈ ω, if 0 ≤ j < i then (M, σ≥j , v) |= α,

– (M, σ, v) |= (∀x)α iff for every d ∈ D (M, σ, v[d/x]σ0 ) |= α,

– (M, σ, v) |= Aα iff for every path π, if σ0 = π0 then (M, π, v) |= α.

We write (M, σ) |= α if for every valuation v, (M, σ, v) |= α holds. A sentence
α is satisfiable if there is a path σ in a model M such that (M, σ) |= α. A set T

of sentences is satisfiable if there is a path σ in a model M such that for every
α ∈ T , (M, σ) |= α.

Notice that in the above definition the future includes the present, so that:

– (M, σ) |= Fα if there is j ≥ 0 such that (M, σ≥j) |= α, and

– (M, σ) |= Gα if for every j ≥ 0, (M, σ≥j) |= α.
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3 Axiomatization

In this section we present an axiomatization with the following axiom schemas
and inference rules:

Axiom schemas

A1. all the axioms of the classical propositional logic

A2. (∀x)(α → β) → (α → (∀x)β), where x is not free in α

A3. (∀x)α(x) → α(t/x), where α(t/x) is obtained by substituting all free oc-
currences of x in α(x) by the term t which is free for x in α(x)

A4. ©(α → β) → (©α → ©β)

A5. ¬© α ↔ ©¬α

A6. αUβ ↔ β ∨ (α ∧©(αUβ))

A7. αUβ → Fβ

A8. α → Aα, where α is an atomic formula

A9. Eα → α, where α is an atomic formula

A10. Aα → α

A11. A(α → β) → (Aα → Aβ)

A12. Aα → AAα

A13. Eα → AEα

A14. (∀x) © α(x) → ©(∀x)α(x)

A15. (∀x)Aα(x) → A(∀x)α(x)

Inference rules

R1. from {α, α → β} infer β

R2. from α infer (∀x)α

R3. from α infer ©α

R4. from α infer Aα

R5. from {β → ©iα} for all i ≥ 0, infer β → Gα

Let us briefly discuss some of the above axioms and rules. Note that the
axiom system can be divided into three parts. The first two parts deal with first-
order and temporal reasoning, respectively, while the last two axioms concern
mixing of both of them.

The classical first-order logic is a sublogic of the presented logic (by the
axioms A1. – A3. and the rules R1. and R2.). The axioms A4. and A5. are the
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usual axioms for the next operator ©, as well as the axioms A6. and A7. for the
until operator [Lichtenstein and Pnueli 2000]. The axioms A8. – A13. concern
the non-linear aspect of the temporal logic [Stirling 1992]. The axioms A14. and
A15. are variants of the well known Barcan formula.

The rules R1. and R2. are Modus Ponens and Generalization, respectively,
while the rules R3. and R4. are two forms of modal Necessitation. The only
infinitary inference rule R5. characterizes the always operator.

A formula α is deducible from a set T of formulas (T � α) if there is an
at most countable sequence of formulas α0, α1, . . . , α, such that every αi is an
axiom or a formula from T , or it is derived from the preceding formulas by an
inference rule, with the exception that the inference rules R2. and R3. can be
applied to theorems only. The sequence α0, α1, . . . , α is the proof of T � α

(observe that the length of inference may be any successor ordinal lesser than
the first uncountable ordinal ω1). We say that α is a theorem of the deductive
system, also denoted by � α, if it is deducible from the empty set. A set T of
sentences is consistent if there is at least one formula which is not deducible from
T , otherwise T is inconsistent.

A set T of sentences is said to be maximal if for every sentence α, either α ∈ T

or ¬α ∈ T . A set T of sentences is saturated if it is consistent and maximal and
satisfies:

if ¬(∀x)α(x) ∈ T , then for some term t, ¬α(t) ∈ T .

Lemma1. The above axiomatization is sound with respect to the class of models
defined in Section 2.

Proof. Using a straightforward induction on the length of the inference. For
example, consider the axiom A15.

Suppose that σ is a path in a model M = 〈S, R, Σ, D, I〉, and (M, σ) |=
(∀x)Aα(x), i.e., for every valuation v, (M, σ, v) |= (∀x)Aα(x). It follows that for
every valuation v and every d ∈ D, (M, σ, v[d/x]σ0 ) |= Aα(x). Consequently, for
every v and d, and every path π in M , if σ0 = π0 then (M, π, v[d/x]π0) |= α(x).
Thus, for every v and π, if σ0 = π0 then (M, π, v) |= (∀x)α(x). Finally, for every
valuation v, (M, σ, v) |= A(∀x)α(x), i.e., (M, σ) |= A(∀x)α(x). ��

4 Completeness

From the above definition of deducibility from the set of formulas, the deduction
theorem follows.

Theorem 2 (Deduction theorem). If T is a set of formulas, α is a sentence,
and T, α � β, then T � α → β.
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Proof. We use the transfinite induction on the length of the inference. The cases
when � β or β = α are standard, as well as the cases when β is obtained by the
inference rules R1. and R2.

Assume that T, α � β, where β = Aγ is obtained by the inference rule R4.
Since R4. can be applied to the theorems only, we have � γ. Thus, � β, and
T � α → β. The case concerning the rule R3. follows similarly.

Suppose that T, α � β → Gγ is obtained by the inference rule R5. Then
T, α � β → ©nγ, for all n ∈ ω. By the induction hypothesis, we obtain T � α →
(β → ©nγ), or, equivalently, T � (α ∧ β) → ©nγ, for all n ∈ ω. Hence, using
R5. we obtain T � (α ∧ β) → Gγ, i.e.,T � α → (β → Gγ). ��

The following lemma contains some auxiliary statements.

Lemma3. Let α, β be formulas.

1. � Gα ↔ α ∧©Gα,

2. � G © α ↔ ©Gα,

3. � (©α → ©β) → ©(α → β),

4. � ©(α ∧ β) ↔ (©α ∧©β),

5. � ©(α ∨ β) ↔ (©α ∨©β),

6. Gα � ©iα for every i ≥ 0,

7. if � α, then � Gα,

8. for j ≥ 0, ©jβ,©0α, . . . ,©j−1α � αUβ,

9. if T is a set of formulas and T � α, then ©T � ©α,

10. if T is a set of formulas and T � α, then AT � Aα.

Proof. The proofs are easy consequences of the temporal part of the axiomatiza-
tion. We will consider the statement 10. We will use the induction on the depth
of the derivation of α from T . Suppose that T � (∀x)α is obtained from T � α

by the inference rule R2. Then we have
T � α,
AT � Aα (by the induction hypothesis),
AT � (∀x)Aα (by the inference rule R2.),
AT � A(∀x)α (by the axiom A15).
The other cases can be solved in a similar way. ��

Theorem 4. (1) Let T be a consistent set of sentences in the language L and
C a countably infinite set of constants such that L ∩ C = ∅. Then T can be
extended to a saturated set T in the language L ∪ C.
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(2) If T1 is a saturated set of sentences then the set T2 = {α| © α ∈ T } is also
saturated.

Proof. (1) Let α0, α1, . . . be an enumeration of all sentences in L. We define a
completion T of T recursively:

1. T0 = T .

2. For every i ≥ 0,

(a) If Ti ∪ {αi} is consistent, then Ti+1 = Ti ∪ {αi}.

(b) Otherwise, if αi is of the form γ → Gβ, then Ti+1 = Ti ∪{γ → ¬©j0 β}
for some j0 ≥ 0 such that Ti+1 is consistent (the existence of such j0 is
provided by Deduction theorem; if we suppose that Ti ∪ {γ → ¬©j0 β}
is inconsistent for all j0, we can conclude that Ti � ¬(γ → ¬©j0 β), for
all j0. Using propositional axioms, we obtain

Ti � γ → ©nβ,

for all n, so, by R5., Ti � γ → Gβ, which contradicts the assumption).

(c) Otherwise, if αi is of the form ¬(∀x)β(x), then Ti+1 = Ti ∪ {¬β(c)} for
some c ∈ C such that Ti+1 is consistent (the proof that such c exists is
standard).

(d) Otherwise, Ti+1 = Ti.

3. T =
⋃∞

i=0 Ti.

Obviously, each Ti is consistent.
Let us prove that T is maximal, i.e., for each sentence α, either α ∈ T or

¬α ∈ T . Let α = αi and ¬α = αj . If both α /∈ T and ¬α /∈ T , then, by
construction of T and Deduction theorem we obtain Ti � ¬α and Tj � α. If n is
positive integer such that n > i, j, then Tn � α∧¬α, so Tn would be inconsistent;
a contradiction.

Next, we will show that T is deductively closed, i.e., that T � α implies
α ∈ T . Since any axiom is consistent with any consistent set, each instance of
any axiom is in T , so it is enough to prove that T is closed under the inference
rules R1.–R5.

In the cases of the finitary inference rules R1.–R4. the proof is standard. For
example, let T � Aα be obtained by the rule R4. Then � α (the rule R4. can be
applied on theorems only), and � Aα. Let α = αi. It follows that Ti � Aα and
Aα ∈ Ti+1.

Let γ → Gβ be obtained from T � γ → ©jβ for every j ≥ 0 by the inference
rule R5. Suppose that γ → Gβ �∈ T , which is equivalent to ¬(γ → Gβ) ∈ T by
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maximality of T . Then there are i, j0 ≥ 0 such that ¬(γ → Gβ), γ → ¬©j0 β ∈
Ti. By the induction hypothesis, for every j ≥ 0, γ → ©jβ ∈ T . So there is i′ ≥ i

such that γ → ¬©j0 β, γ → ©j0β, and ¬(γ → Gβ) ∈ Ti′ . So Ti′ � ¬(γ → Gβ)
and Ti′ � γ ∧ ¬Gβ. Since Ti′ � γ → ¬ ©j0 β and Ti′ � γ → ©j0β, we get
Ti′ � ¬©j0 β ∧©j0β which is in contradiction with consistency of Ti′ .

It follows that T is consistent. If T � ⊥, then, by deductive closeness of T ,
⊥ ∈ T , so ⊥ ∈ Ti, for some i ∈ ω which is in contradiction with consistency of
Ti. Finally, the step 2c of the construction guarantees that T is saturated.

(2) We will prove that T2 is consistent and maximal and satisfies: if
¬(∀x)α(x) ∈ T2, then for some term t, ¬α(t) ∈ T2.
Suppose that T2 is not consistent, i.e. T2 � α ∧ ¬α, for any sentence α. By

Lemma 3.8, T1 � ©(α ∧ ¬α). By Lemma 3.4, and and Axiom A5., we have
T1 � ©α ∧ ¬© α which is in contradiction with consistency of T1.

Suppose that T2 is not maximal. There is a formula α such that α /∈ T2 and
¬α /∈ T2. Consequently, ©α /∈ T1 and ¬© α /∈ T1 (by the axiom A.5) which is
in contradiction with the maximality of T1.

Suppose that there is a sentence ¬(∀x)α(x) ∈ T2 such that for every variable-
free term t in L, ¬α(t) �∈ T2. Thus, ©¬(∀x)α(x) ∈ T1, and for every t, ©¬α(t) �∈
T1. Using the axioms A.15 and A.5, we obtain ¬(∀x)©α(x) ∈ T1, and for every
term t in L, ¬© α(t) �∈ T1, which is in contradiction with the assumption that
T1 is saturated. ��

A sentence is a state sentence if it is a boolean combination of variable-
free basic formulas and sentences of the form Aα. We denote the set of all
state sentences by St. The equivalence relation ∼ on the set of saturated sets of
sentences is defined as follows:

T1 ∼ T2 iff T1 ∩ St = T2 ∩ St.

The equivalence class of T is [T ] = {T ′|T ′ ∼ T }.

Lemma5. If T is a saturated set of sentences and Aα /∈ T , then there exists
T ′ ∈ [T ] such that α /∈ T ′.

Proof. Let T = T ∩ St. If T ∪ {¬α} is consistent then, by Theorem 4(1), it can
be extended to a saturated set T ′. Since T = T ′ ∩ St, then T ′ ∈ [T ].

If T ∪ {¬α} is inconsistent then T � α. By Lemma 3.10, AT � Aα. Since
T ⊆ St, by the axioms A8., A12. and A13., T � Aα. Thus, Aα ∈ T which
contradicts the assumption. ��

We define a model M = 〈S, R, Σ, D, I〉 as follows:

– S = {[T ]|T is saturated};
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– sRt if there exist T1 ∈ s, T2 ∈ t such that T2 = {α| © α ∈ T1};

– Σ is the set of paths [T0], [T1], [T2] ,. . . such that Ti+1 = {α| © α ∈ Ti} , for
all i ∈ ω;

– D is the set of all variable-free terms in L;

– for s ∈ S, I(s) is an interpretation such that:

• for every function symbol F k
j , I(s)(F k

j ) is a function from Dk to D such
that for all variable-free terms t1, . . . , tk in L, I(s)(F k

j ) : 〈t1, . . . , tk〉 �→
F k

j (t1, . . . , tk), and

• for every relation symbol P k
j , I(s)(P k

j ) = {〈t1, . . . , tk〉 : t1, . . . , tk are
variable-free terms in L, P k

j (t1, . . . , tk) ∈ T }, for any T ∈ s.

Observe that the total relation R is well defined. Namely, by Theorem 4(2),
if the set T1 is saturated, the same holds for T2 = {α| © α ∈ T1}. A path Σ

consists of a sequence of the classes of equivalence [T0], [T1], [T2] ,. . . representing
states. Since each [Ti] contains many saturated sets, it is possible that a state
belongs to several paths. The definition of interpretation I is also correct, since
every variable-free formula P k

j (t1, . . . , tk) is a state sentence, and it belongs to a
saturated set T if and only if it belongs to any other saturated set from [T ].

If the sequence of saturated sets {Ti}i∈ω determines a path σ, we will write
σ(i) for Ti.

Theorem 6 (Strong completeness theorem). A set T of sentences is con-
sistent if and only if it is satisfiable.

Proof. The (⇐)-direction follows from Lemma 1. In order to prove the (⇒)-
direction we construct M as above, and show that for every sentence α, (M, σ) |=
α iff α ∈ σ(0).

If α is an atomic sentence, by the definitions of I and Σ, (M, σ) |= α iff
α ∈ σ(0).

The cases when formulas are negations and conjunctions can be proved as
usual.

If α = (∀x)β ∈ σ(0), then, by the axiom A3., β(t) ∈ σ(0) for every t ∈ D. By
the induction hypothesis (M, σ) |= β(t) for every t ∈ D, and (M, σ) |= (∀x)β.
If α �∈ σ(0), there is some t ∈ D such that (M, σ) |= ¬β(t), because σ(0) is
saturated. It follows that (M, σ) �|= (∀x)β.

If α = ©β, we have (M, σ) |= α iff (M, σ≥1) |= β iff β ∈ σ(1) iff α ∈ σ(0)
(by the construction of M).

Let α = βUγ. Suppose that (M, σ) |= βUγ. There is some j ≥ 0 such that
(M, σ≥j) |= γ and for every k, 0 ≤ k < j, (M, σ≥k) |= β. By the induction
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hypothesis, γ ∈ σ(j), and β ∈ σ(k), for j ≥ 0, 0 ≤ k < j. By the construction of
M, ©jγ ∈ σ(0), ©kβ ∈ σ(0), for j ≥ 0, 0 ≤ k < j. It follows from Lemma 3.8
that βUγ ∈ σ(0).

Conversely, assume that βUγ ∈ σ(0). It follows from the axiom A5. that
Fγ ∈ σ(0), i.e., that ¬Fγ = G¬γ �∈ σ(0). By the construction of M, for some
j ≥ 0, ©jγ ∈ σ(0), i.e., γ ∈ σ(j). Let j0 = min{j : ©jγ ∈ σ(0)}. If j0 = 0,
γ ∈ σ(0), and by the induction hypothesis (M, σ) |= γ. It follows that (M, σ) |=
βUγ. Thus, suppose that j0 > 0. For every j such that 0 ≤ j < j0, ©jγ �∈ σ(0),
i.e. γ �∈ σ(j). From the axiom A4., Lemma 3.4, Lemma 3.5, and βUγ ∈ σ(0) we
have γ ∨ (β ∧ (©γ ∨ (©β ∧ . . . ∧ (©j0−1γ ∨ (©j0−1β ∧ ©j0(βUγ) . . .) ∈ σ(0).
It follows that for every j < j0, ©jβ ∈ σ(0), β ∈ σ(j), (M, σ≥j) |= γ, and
(M, σ) |= βUγ.

Let α = Aβ. Suppose that (M, σ) |= Aβ. Then for all π such that σ(0) ∼
π(0), (M, π) |= β. By the induction hypothesis, for all π such that σ(0) ∼ π(0),
β ∈ π(0). If Aβ /∈ σ(0), by Lemma 4 there exists π such that σ(0) ∼ π(0) and
β /∈ π(0), a contradiction.

For the other direction, suppose that (M, σ) �|= Aβ. Then there exists π such
that σ(0) ∼ π(0) and (M, π) |= ¬β. By the induction hypothesis, ¬β ∈ π(0) and
β �∈ π(0). By Axiom A10., Aβ �∈ π(0). Since Aβ is a state formula, we obtain
Aβ /∈ σ(0).

Finally, By Theorem 4, T can be extended to a saturated set T , and [T ] ∈ S.
Since T is satisfied in M, the same holds for T s. ��

5 Conclusions

We have introduced a first-order branching time temporal logic. Its infinitary
axiomatic system has been proved to be complete. Actually, our results establish
strong completeness. We believe that it is not only of a theoretical interest to
give an infinitary and complete first order proof system, since the set of all valid
formulas is not recursively enumerable [Abadi 1989, Gabbay et al. 1994], and no
complete finitary axiomatization is possible in this undecidable framework.

The propositional fragment of our logic provides strong completeness for
propositional branching time temporal logic. That also cannot be proved using
finitary means. As we mentioned above, Compactness theorem does not hold, and
it is well known that in this case we cannot hope for the strong completeness
having a finitary axiomatic system. Note that there is an unpleasant logical
consequence of finitary axiomatization when the lack of compactness is present:
there are unsatisfiable sets of formulas that are consistent with respect to the
assumed finitary axiomatic system. In spite of that, the paper [Stirling 1992]
presents an axiomatization for the propositional fragment of our logic, for which
simple completeness is showed. In [Reynolds 2001] that result is extended to the
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so called full computation tree logic. Up to our knowledge no strongly complete
axiomatization for that logic has been proposed.

In the axiomatization and the proof of the completeness we follow the ideas
from [Ognjanović 2001, Ognjanović 2006, Ognjanović and Rašković 2000]. In
[Ognjanović 2006] a probabilistic extension of first-order linear time temporal
logic is presented. So, the question of axiomatization of a probabilistic extension
of first-order branching time logic naturally arises as a topic for further research.
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