
A Service-Oriented Platform for Ubiquitous Personalized
Multimedia Provisioning

Zhiwen Yu
(School of Computer Science, Northwestern Polytechnical University, Xi’an, P. R. China

zhiwenyu@nwpu.edu.cn)

Changde Li
(School of Computer Science, Northwestern Polytechnical University, Xi’an, P. R. China

lichangde@gmail.com)

Xingshe Zhou
(School of Computer Science, Northwestern Polytechnical University, Xi’an, P. R. China

zhouxs@nwpu.edu.cn)

Haipeng Wang
(School of Computer Science, Northwestern Polytechnical University, Xi’an, P. R. China

haipeng.wang@gmail.com)

Abstract: As multimedia contents are becoming widely used in ubiquitous computing
environments among many application fields, e.g., education, entertainment, and live
surveillance, the demand of personalized access to these contents has increased dramatically.
The provisioning of ubiquitous personalized multimedia services (UPMSs) is a challenging
task, which involves a lot of heterogeneous entities ranging from objects, devices to software.
In this work, we propose a three-layer software platform, called UPmP to support efficient
development and deployment of UPMSs. It fulfills the core functionalities for ubiquitous
personalized multimedia provisioning including service management, multimedia
recommendation, adaptation, and delivery. We adopt service-oriented approach in building the
platform. The enabling technologies such as component representation, service lifecycle
management, platform configuration, and service composition are described in detail. The
experimental results show that the UPmP is flexible to be configured under different settings.

Keywords: ubiquitous multimedia, personalization, platform, service-oriented, service
management, service composition, platform configuration
Category: H.3.1

1 Introduction

With rapid development of multimedia and communication technologies, it becomes
possible to offer multimedia content to people whenever and wherever they are
through different devices, such as personal computer, personal digital assistants
(PDAs) and mobile phones. Multimedia content has been widely used in ubiquitous
computing environments among many application fields, e.g., education,
entertainment, and live surveillance. The choices of multimedia content offered to the
user can be quite overwhelming. To quickly and effectively provide the right content

Journal of Universal Computer Science, vol. 16, no. 10 (2010), 1291-1310
submitted: 29/7/08, accepted: 9/3/09, appeared: 28/5/10 © J.UCS

from large amounts of media information, in the right form, to the right person, we
need to customize multimedia content based on the user’s preferences and his current
contextual information, such as time-of-day, user location, and device capabilities [Yu
et al, 06a]. Such service is so-called ubiquitous personalized multimedia services
(UPMSs).

The provisioning of UPMSs is a challenging task. First, UPMSs are highly
dynamic. They are likely to be adapted at run time according to the current changing
context. Second, delivering UPMSs involves a lot of heterogeneous entities ranging
from objects, devices to software. The entities interact and service one another to
complete complex tasks. The interoperability is a big problem because these entities
may originate from different sources and therefore use different ways to present their
capabilities and connectivity requirements. The two issues can be addressed by using
service-oriented architecture.

Service-oriented architecture (SOA) is a software architectural concept that
defines the use of services to support the requirements of entities (McGovern et al,
03). In a SOA framework, entities in the environment are represented in form of
services and made available to other entities in a standardized way. As the functions
of every entity are described using common convention, entities can thus understand
each other and collaborate to achieve a certain goal.

In this paper, we propose a software platform, namely UPmP (Ubiquitous
Personalized multimedia Platform) that enables UPMSs to be achieved easily and
systematically. It takes the service-oriented system architecture and contains a number
of collaborating components. There are several benefits from using the UPmP
software platform. First, it integrates third-party software to accomplish software
reusability and complex function consummation. Second, the platform is configurable
and allows service provider to select different functions based on the service needs.
Third, the atomic components within the platform can be taken from pre-existing
applications. It facilitates service development so as to reduce the cost of development
as well as the time to market.

The rest of this paper is organized as follows. Section 2 introduces the three-layer
architecture of the UPmP. Section 3 presents a hierarchical model to organize service
components and a description language, namely SCDL based on XML to describe
them. Section 4 gives the ubiquitous personalized multimedia service lifecycle
management model. Section 5 describes an XML-based platform configuration
language (XPCL). Section 6 illustrates the service composition under different
conditions. The implementation and experiment results are presented in Section 7,
followed by Section 8 with related work. Finally, we conclude in Section 9.

2 UPmP Architecture

The UPmP architecture consists of three layers: multimedia resources, service
function components, and service instances (UPMSi), as shown in Figure 1.

1292 Yu Z., Li C., Shou X., Wang H.: A Service-Oriented Platform ...

Figure 1: UPmP architecture

2.1 Multimedia Resources

Multimedia resources are composed of multimedia content and corresponding
description metadata. For the sake of interoperability with third-party services and
applications, we adopt MPEG-7 (MPEG7, 03) description schema to represent
multimedia metadata. The MPEG-7 Creation DS and Classification DS are used to
describe information about the media item, such as the title, keyword, director, actor,
genre, and language. This information is used to match user preferences. The
Variation DS is used to specify variations of media content as well as their
relationships. The Variation DS plays an important role in our content
recommendation by allowing the selection among the different variations of the media
content in order to select the most appropriate one in adapting to the specific
capabilities of the terminal devices and network conditions.

Multimedia content and metadata are stored in two distinct databases. A file
repository is used for storing media content. The content repository stores media of
various kinds of media modalities, file formats, bit-rates and resolutions. An XML
database Xindice (Xindice, 03) is used for storing media metadata (MPEG-7 XML
files) because of its efficient querying.

The multimedia resources layer can integrate varied multimedia repositories from
a wide range of content providers by leveraging the O.K.I (Open Knowledge
Initiative) Repository OSID (Open Service Interface Definition), which gains access
to content in a manner that hides the technical detail by which that content is provided
(Thorne and Sim, 05). The O.K.I Repository Specification has been used to
successfully integrate several applications with multiple content repositories.

2.2 Service Function Components

The service function components are deployed as two sub-layers. The top layer is
Service Manager. The bottom layer contains three components: Multimedia
Recommendation, Multimedia Adaptation, and Multimedia Delivery. The Service
Manager is responsible for lifecycle management of services. It interacts with services
directly, and invokes functionalities supported by the function components in the
bottom layer. Multimedia Recommendation is to select the right content in the right
form for a service request. It takes user preference, terminal capability, and network
condition into account. Multimedia Adaptation adjusts multimedia content to different

UPMSi UPMSi … UPMSi

Multimedia Resources

Service Manager

Multimedia
Recommendation

Multimedia
Adaptation

Multimedia
Delivery

Service Function Components

1293Yu Z., Li C., Shou X., Wang H.: A Service-Oriented Platform ...

requirements from service manager. It mainly involves two kinds of processes:
content summarization and content transcoding, e.g., video-to-image conversion.
Multimedia adaptation can be statically done at authoring time prior to delivery or
dynamically done on-the-fly if needed. Multimedia Delivery is responsible for
streaming or downloading media content to various terminals through different
networks. If the modality recommended is continuous video or audio, the media
deliverer streams the content to terminals. On the other hand, if the modality is static
image or text, the content is just downloaded.

2.3 Service Instances

The service instances are concrete ubiquitous personalized multimedia services
requested by a wide range of devices in ubiquitous environments. A service usually
proceeds as follows:

(1) A user logs on the system, and sends a request for personalized multimedia.
The request contains user preferences, terminal capabilities, and network
static characteristics.

(2) Multimedia objects are ranked according to the user preferences and the
recommendation list is sent to the user.

(3) The user selects one item from the list.
(4) The system determines the appropriate presentation form of the content

according to terminal capabilities and network static characteristics. If the
desired variation is not existed, it will be generated.

(5) The multimedia object in right form is streamed or downloaded.

3 Component Representation Model

We adopt component-based approach to represent software entities in our system.
Component-based software design has been widely utilized in many fields to
implement complex functions. A software component is a unit of composition that
can be deployed independently and is subject to composition by a third party
(Szyperski, 98). Three major component models are presented and used successfully
today: COM (COM, 03), CORBA (CORBA, 00), and Javabeans (JAVA, 03).

Service components are functional units forming the UPmP platform. They can
be composed to provide ubiquitous personalized multimedia services. A component
comprises two parts: a metadata description and a processing entity. Component
description presents detailed information of the component including component
name, category, programming language, interface, hardware requirement, and
software requirement (e.g. libraries and depended components). The component
description is mainly used in platform configuration as well as service composition.
Component entity is a software program (code) to accomplish a particular function.

1294 Yu Z., Li C., Shou X., Wang H.: A Service-Oriented Platform ...

Figure 2: Component hierarchy

For the sake of efficient organization, we model the components as a hierarchy.
We give 3-layer definition to UPmP component hierarchy classification. The root
element UPmPComponent is the abstraction for all components. It is mainly divided
into four categories, i.e. the second layer includes four items, which are
ServiceManaging, ContentRecommendation, ContentAdaption, and ContentDelivery.
The leaf components are different implementation algorithms or mechanisms of the
abstract function in the upper layer. The UPmP component hierarchy structure is
shown in Figure 2. For space consideration, we here merely present the detailed
structure of ContentAdaptation component.

For efficient discovery and reuse, information about the component should be
described and advertised. Then the system can lookup and match desired components
for a particular service according to the component metadata. We propose a service
component description language (SCDL) based on XML to describe component.
Figure 3 shows the DTD (Document Type Definition) structure of SCDL. SCDL
defines three kinds of information of a component: general information, public
interface, and composition logic. The general information indicates a component’s
name, category, parent class, and also gives a brief annotation for the component. The
category structure is the same as component hierarchy presented above. Category and
annotation are very useful for component search and match. The public interface
describes input and output formats, and also the real running entities of the
component. The composition logic is provided to support service composition. It
indicates the order of a component when it is composed with other categories of
components using the Following and FollowedWith elements. It also indicates
whether a component can be combined with its brother components. The components
with the same parent class are regarded as brother components. For instance,
Video2Image and Video2Text are brother components.

Video2Video Video2Audio Video2Image Video2Text Audio2Text Image2Text

ContentAdaptationContentRecommendationServiceManaging ContentDelivery

UPmPComponent

Image2Image Audio2Audio

1295Yu Z., Li C., Shou X., Wang H.: A Service-Oriented Platform ...

Figure 3: The DTD structure of SCDL

Ready When a multimedia object is assigned to a service, it jumps to the Ready
state, and is ready for scheduling. If a service is selected to run, it jumps to the
Running state. If it is ended by the user or the service provider, the service will enter
the state of Completed.

Running Service in the Running state means media streaming or file
downloading. In the process of running, (i) if the service finishes successfully or is
broken by the user or service provider, it jumps to the Completed state; (ii) if network
available bandwidth decreases and makes the multimedia delivering impossible, the
service enters the Blocked state.

Figure 4 shows a component metadata example. The component’s name is
SComponentExample and its category is Video2Image. The annotation and parent
class are also given. From PublicInterface part, it can be seen that the input of the
component is MPEG file, and the output is JPEG or BMP files. Two executors,
mpeg2jpeg.jar and mpeg2bmp.jar are specified as the real running entities of the
component. The composition logic indicates that the component can follow the
components of ContentRecommendation and ContentDelivery, and can be followed
by the components of ContentDelivery in composing a service. However, it cannot be
combined with its brother components.

<!-- Top level element -->
<!ELEMENT SComponent (SComponentDescription)>
<!ELEMENT SComponentDescription (GeneralInformation, PublicInterface, CompositionLogic)>

<!-- GeneralInformation declaration -->
<!ELEMENT GeneralInformation (Name, Type, Annotation, ParentClass)>
<!ELEMENT Name(#PCDATA)>
<!ELEMENT Type(#PCDATA)>
<!ELEMENT Annotation(#PCDATA)>
<!ELEMENT ParentClass(#PCDATA)>

<!-- PublicInterface declaration -->
<!ELEMENT PublicInterface (Input, Output, Executors)>
<!ELEMENT Input (Format)*>
<!ELEMENT Format (#PCDATA)>
<!ELEMENT Output (Format)*>
<!ELEMENT Format (#PCDATA)>
<!ELEMENT Executors (Executor)*>
<!ELEMENT Executor (#PCDATA)>

<!-- CompositionLogic declaration -->
<!ELEMENT CompositionLogic (Following, FollowedWith, CombinedWithBrotherComp)>
<!ELEMENT Following (Type)*>
<!ELEMENT Type (#PCDATA)>
<!ELEMENT FollowedWith (Type)*>
<!ELEMENT Type (#PCDATA)>
<!ELEMENT CombinedWithBrotherComp(#PCDATA)>

1296 Yu Z., Li C., Shou X., Wang H.: A Service-Oriented Platform ...

Figure 4: Component metadata (example)

4 Service Lifecycle Management Model

We deploy the FSM (Finite State Machines) to represent and manage service state of
our ubiquitous personalized multimedia services. A ubiquitous personalized
multimedia service (UPMS) is modeled as a deterministic FSM.
Definition 1 (UPMS State Machine), A UPMS State Machine is a 5-tuple
UPMS=(S, I, f, s0, F):

• S is a finite set of service states;
• I is a finite set of elements, which is defined in Definition 2, each element is an

input to the state machine;
• f: SIS →×)(is the transition function;
• s0 ∈ S is the initial state;
• F ⊂ S is a finite set of final states.

<?xml version=“1.0” encoding=“UTF-8”?>
<SComponent xmlns=“http://www.dcel.nwpu.edu.cn/SComponent_Schema”>
<SComponentDescription>
<GeneralInformation>

<Name>SComponentExample</Name>
<Category>Video2Image</Category>
<Annotation>Transforming a video content into images.</Annotation>
<ParentClass>ContentAdaptation</ParentClass>

</GeneralInformation>
<PublicInterface>

<Input>
 <Format>MPEG</Format>

</Input>
<Output>

 <Format>JPEG</Format>
 <Format>BMP</Format>

</Output>
<Executors>

 <Executor>mpeg2jpeg.jar</Executor>
 <Executor>mpeg2bmp.jar</Executor>

</Executors>
</PublicInterface>
<CompositionLogic>

<Following>
<Category>ContentRecommendation</Category>
<Category>ContentDelivery</Category>

</Following>
<FollowedWith>

<Category>ContentDelivery</Category>
</FollowedWith>
<CombinedWithBrotherComp>NO</CombinedWithBrotherComp>

</CompositionLogic>
</SComponentDescription>
</SComponent>

1297Yu Z., Li C., Shou X., Wang H.: A Service-Oriented Platform ...

Definition 2 (Input of UPMS State Machine, I), I is a finite set of elements as
inputs to the state machine. Each element is a 2-tuple (R, E). R represents the reason
why the event E takes place. In each element, R can be NULL, while E cannot be
NULL.

Figure 5: UPMS State Machine Model

Figure 5 shows the state machine model and complete state transition of UPMS.
A service request from terminal user brings a new UPMS into birth. In its lifecycle, a
UPMS could be in several states, represented by ellipses in the figure. The arrows
between states represent state transitions, and corresponding character strings (I1, …,
I10) stand for conditions of the transitions.

The element values of UPMS State Machine are presented in Table 1.
The states in UPMS State Machine are described in detail as follows.
Evaluating When a client sends a request to the server for multimedia service,

the service is in the Evaluating state. In this state, the server selects or generates a
multimedia object according to user preferences, terminal capabilities, and network
characteristics: (i) if there exist media content satisfying the three requirements, the
service enters the state of Ready directly; (ii) if there is a content meeting the user’s
preference, but not suitable for the device and network, the system first performs
adaptation for the content, and then make the service be Ready; (iii) if there is no
content that can satisfy the user’s preference, the service jumps into the Terminated
state; (iv) if the user or the service provider stops the service, the service will be
Completed.

Evaluating Ready Running

Blocked Waiting

Completed

Terminated

Service
request I1 I3

I2
I4, I5

I5

I6I5

I7, I9

I8

I9

I10
I5 I5

1298 Yu Z., Li C., Shou X., Wang H.: A Service-Oriented Platform ...

Table 1: UPMS state machine element values

Blocked When a service is in the Blocked state, it continuously monitors the
network bandwidth (Fang et al, 2005), and makes transcoding for the multimedia
object; (i) if the adjusted object can be delivered in the current network condition,
then the service is woken up, and put into the Ready state; (ii) before the transcoding
finishes, the bandwidth changes to be sufficient for delivering the original version, the
service enters the Ready state immediately; (iii) whatever trancoding is made, the
object cannot be delivered in the current network condition, then the service jumps to
the Waiting state; (iv) if the user or the service provider stops the service, the service
will be Completed.

Waiting When a service is in the Waiting state, (i) the network bandwidth
increases and is sufficient for the object to be delivered, then the service is woken up,
and be put into the Ready state, i.e., waiting for another scheduling; (ii) the preset
waiting time is over, then the service enters the Terminated state; (iii) if the user or
the administrator ends the service, then the service enters the Completed state.

Element Value
S {Evaluating, Ready, Running, Blocked, Waiting, Completed, Terminated}
I {I1, I2, I3, I4, I5, I6, I7, I8, I9, I10}

I1=(Satisfy user preferences, device capabilities, and network static
characteristics, Join())
I2=(Cannot satisfy user preferences, device capabilities, and network static
characteristics, Discard())
I3=(NULL, Schedule())
I4=(Service successfully finishes, Finish())
I5=(User or service provider stops the service, Finish())
I6=(Cannot transfer for network bandwidth changes, Block())
I7=(Can transfer after transcoding, WakeUp())
I8=(Cannot transfer after transcoding, LayAside())
I9=(Network bandwidth is satisfied for delivery, WakeUp())
I10=(Time over, Discard())

f f(Evaluating, I1)=Ready;
f(Evaluating, I2)=Terminated;
f(Evaluating, I5)=Completed;
f(Ready, I3)=Running;
f(Ready, I5)= Completed;
f(Running, I4)=Completed;
f(Running, I5)=Completed;
f(Running, I6)=Blocked;
f(Blocked, I7)=Ready;
f(Blocked, I9)=Ready;
f(Blocked, I8)=Waiting;
f(Blocked, I5)=Completed;
f(Waiting, I9)=Ready;
f(Waiting, I5)=Completed;
f(Waiting, I10)=Terminated

s0 Evaluating
F {Completed, Terminated}

1299Yu Z., Li C., Shou X., Wang H.: A Service-Oriented Platform ...

Completed The service successfully finishes or is stopped by the user or service
provider. It releases all of its resources (such as service identifier, priority, etc.).

Terminated The function is similar to the Completed state. The difference is that
the Terminated state means a service abends due to resource dissatisfaction (e.g.,
multimedia, terminal capabilities, and network).

According to the definition of state and its transition, there are three service
queues in the system, ready queue, blocked queue, and waiting queue. Selecting
services in the blocked or waiting queues into the ready queue is simply complying
the FCFS (First Come First Serve) principle. To select a service in the ready queue for
running is a little complex. Our scheduling mode is Non-Preemptive based on
dynamic priority. It is invoked at two occasions: (1) a service enters the queue of
ready services, or (2) a specific running service enters the state of Completed or
Blocked. We define that the larger the priority is, the earlier the service will run. The
determination of priority conforms to two principles: FCFS and BWFS (Blocked or
Waiting First Serve).

5 Platform Configuration

The UPmP platform offers a set of optional functionalities, which can be switched off
at the platform initialization time. This flexibility is useful because not all the systems
need to exploit the completed capabilities offered by the platform. In the simplest
cases, the platform should support the development of lighter systems, which reduce
the overhead during the interaction with the user. In particular, the developer may
choose the multimedia recommendation techniques best suiting the requirements of
the application domain. For instance, collaborative filtering efficiently supports
recommendation of multimedia, but it only works if ratings of the items are available.
In contrast, content-based filtering is more suitable to the cases where meta-level
information about the items is available.

To provide this flexibility, we have made the platform configurable so that the
developers can select the functionalities offered by the platform. A GUI-based tool,
called UPmPConfigurator, is proposed to customize platform functionalities
according to user needs or characteristics of different systems. The
UPmPConfigurator mainly includes four parts: service managing strategy, content
recommendation strategy, adaptation strategy, and delivery strategy as shown in
Figure 6.

Figure 6: UPmP configurator

UPmPConfigurator

ManagingStrategy

RecommendationStrategy

AdaptationStrategy

DeliveryStrategy

1300 Yu Z., Li C., Shou X., Wang H.: A Service-Oriented Platform ...

For purpose of configuration at initialization time, an XML-based platform
configuration language (XPCL) is designed. The Extensible Markup Language
(XML) is an ideal configuration language, because it is the universal format for
structured documents and data on the Web and also extensible. Besides, several XML
query languages, e.g. XQuery (Boag, 05) and XPath (Clark and DeRose, 99) can be
used to access and lookup the XML-based configuration file. However, XML itself
does not tell platform administrator how to specify platform configuration parameters
for his/her services. We define a set of suitable tags to specify platform running
policies based on XML syntax. The XPCL is accordingly divided into four parts. The
<UPmPConfiguration> tag is the root tag. It contains the entire four parts parameter
or policy configuration. The <ServiceManagingStrategy> tag contains two tags:
<EnterBlockedState> and <EnterWaitingState>, which specify whether the services
enter Blocked or Waiting state respectively. The <RecommendationStrategy> contains
at least one <RecommendationAlgorithm> tag, which specifies a particular algorithm,
e.g. content-based recommendation. The <AdaptationStrategy> contains at least one
<Transcoding> tag, which is also a container tag. The <Transcoding> tag has one
required attribute, “type”, which identifies the type/class of the transcoding. It
contains at least one <Transcoder> tag. The <DeliveringStrategy> contains at least
one <DeliveringMode> tag.

Figure 7: Platform configuration (example)

<?xml version=“1.0” encoding=“UTF-8”?>
<UPmP xmlns="http://www.dcel.nwpu.edu.cn/UPmP_Schema">
<UPmPConfiguration>

<ServiceManagingStrategy>
<EnterBlockedState>YES</EnterBlockedState>
<EnterWaitingState>NO</EnterWaitingState>

</ServiceManagingStrategy>
<RecommendationStrategy>

<RecommendationAlgorithm>Content-based Recommendation</RecommendationAlgorithm>
 <RecommendationAlgorithm>Rule-based Recommendation</RecommendationAlgorithm>

</RecommendationStrategy>
<AdaptationStrategy>

<Transcoding type=“Video2Image”>
<Transcoder>MPEG2JPEG</Transcoder>

</Transcoding>
<Transcoding type=“Video2Text”>

<Transcoder>MPEG2TXT</Transcoder>
</Transcoding>
<Transcoding type=“Audio2Text”>

<Transcoder>WAV2TXT</Transcoder>
</Transcoding>

</AdaptationStrategy>
<DeliveryStrategy>

<DeliveringMode>Streaming</DeliveringMode>
<DeliveringMode>Downloading</DeliveringMode>

</DeliveryStrategy>
</UPmPConfiguration>
</UPmP>

1301Yu Z., Li C., Shou X., Wang H.: A Service-Oriented Platform ...

Figure 7 gives an example of UPmP platform configuration. The services are set
to enter the Blocked state but not the Waiting state. Two recommendation algorithms,
content-based recommendation and rule-based recommendation are included. For
multimedia adaptation, this configuration sets three transcoding mechanisms:
Video2Image, Video2Text, and Audio2Text. The corresponding transcoders are
MPEG2JPEG, MPEG2TXT, and WAV2TXT. The delivery strategy includes
audio/video streaming and image/text downloading.

An XPCL-based description file is generated after a user completes the
configuration through the visual UPmPConfigurator tool. The configurator interprets
the configuration file, loads specified components, and builds a running platform.

6 Service Composition

A multimedia service is built as the composition of UPmP supported functional
components. In our system, service composition is the selection of suited service
components in order to deliver the service to a terminal in appropriate form. It mainly
consists of two steps. The first step is abstract function selection, e.g. multimedia
adaptation. The second one is concrete handler selection, e.g. Video-to-Image
transcoder.

(a) S A J T (b) S A F J T (c) S A I F J T

(d) S A E I H J T (e) S AB E I H J T

Figure 8: Service composition examples

T S
I
J

A
B
C

D
E
F
G
H

TS
I
J

A
B
C

D
E
F
G
H

T S
I
J

A
B
C

D
E
F
G
H

TS
I
J

A
B
C

D
E
F
G
H

A
B
C

TS
I
J

D
E
F
G
H

 Recommendation components Adaptation components Delivery components

1302 Yu Z., Li C., Shou X., Wang H.: A Service-Oriented Platform ...

Figure 8 illustrates several composition paths for multimedia services under
different conditions. S denotes the start point of services, while T stands for the
terminal point. The rectangle contains components for recommendation purposes
including components A, B and C (e.g, Rule-based Recommendation, Content-based
Recommendation, and Collaborative Recommendation). The oval contains adaptation
components D, E, F, G, and H (e.g, Video2Image, Video2Audio, Video2Text,
Image2Text, and Audio2Text). The delivery components I and J (e.g., Video/Audio
Streaming and Image/Text Downloading) are represented in the rounded rectangle. In
Figure 8a, since the appropriate variation already exits, the service goes directly to
deliver it. In Figure 8b, the service firstly performs video-to-text transcoding, and then
downloads the text. In Figure 8c, the service first performs video streaming under
high bandwidth, then for the decrease of bandwidth, it performs video-to-text
transcoding, and then delivers the text. In Figure 8d, the service first performs video-
to-audio transcoding, then audio streaming, and then for bandwidth decrease
dramatically it has to perform audio-to-text transcoding and last sends the text. In
Figure 8e, component A and B are combined for the recommendation.

Figure 9: Main interface of UpmPConfigurator

7 Implementation and Experiment

7.1 Prototype Implementation

We have implemented a prototype of UPmP. The visual platform configuration tool
UPmPConfigurator was implemented in Java Swing. The components were all
implemented in Java and built as .jar files. Some media adaptation components were
integrated from third party. The service components were deployed in a network of
computers, which improved the performance of the system in terms of throughput and
scalability. To handle component dependency during platform configuration and

1303Yu Z., Li C., Shou X., Wang H.: A Service-Oriented Platform ...

service composition, we utilized the Dependency Injection (Fowler, 04) pattern
provided by the Spring framework (Spring, 04). Figure 9 shows the main interface of
UPmPConfigurator. It allows the developer to choose different strategies for service
management, content adaptation, content delivery, and content recommendation.
When a content adaptation button, e.g. Video-to-Image, is clicked, a list of
transcoders will be presented for user’s choice. For ubiquitous multimedia
recommendation, rule-based technique is always combined with the other
recommendation algorithms. It is used to infer the appropriate presentation form of a
selected content from network condition and device capability (Yu et al, 06b, Yu et al,
08). The developers can directly choose some existing rules or define specific rules of
their own.

Figure 10: Service manager interface

Figure 11: Service detailed specification

Figure 10 shows the main interface of service manager. It provides basic
information of the services including service ID, state, and priority. When the service
provider wants to break off a specific service, he can select it and click the “Stop
Service” button to stop it. Once a service is selected and the button of “Detailed

1304 Yu Z., Li C., Shou X., Wang H.: A Service-Oriented Platform ...

Specification” is clicked, details of the service will be showed (see Figure 11). In this
dialogue, service information, such as user name/account, terminal type, IP address,
user preferences, terminal capabilities, as well as network conditions, are displayed in
detail.

7.2 Experimental Results

We mainly evaluated our system by measuring the overhead of UPmP’s configuration
in terms of time. It includes the time to parse and interpret the configuration XML
file, load specified components, and link them together. The experiment was
conducted on a PC with 1.6 GHz Pentium 4 CPU, and 1 GB RAM running Windows
XP. There were five different setup configurations involved in this experiment. The
configuration details are presented in Table 2. Configuration 1 is a completed setup
with all the four categories of components selected. Configuration 2, 3, and 4 test the
overheads of different types of components. Configuration 5 is the configuration for a
real running system. When selecting a category of content adaptation component, e.g.
Video-to-Image, we simply selected all the transcoders of it.

Table 2: Configuration details

0

2000

4000

6000

8000

10000

1 2 3 4 5

Configuration

Ti
m

e
(m

s)

Figure 12: Overhead of UPmP configuration

Configuration Selected components
1 all the four categories of components
2 all the service managing and recommendation components
3 all the content adaptation components
4 all the content delivery components
5 Enter Blocked State, Video-to-Image, Video-to-Text, Audio-to-

Text, Streaming, Downloading, Content-Based Recommendation,
and Rule-Based Recommendation

1305Yu Z., Li C., Shou X., Wang H.: A Service-Oriented Platform ...

The experimental results are shown in Figure 12, in which the time for each
configuration is an average value of 10 runs. The completed configuration (loading
and linking all components) takes about 8.5 seconds. We can also observe that the
main configuration overhead comes from linking content adaptation components,
which takes nearly 75% of the total configuration time. The time spent on the loading
and liking service managing and recommendation components is merely 0.6 s. Also
the configuration of content delivery components takes only about 1 second. The real
running system configuration, Configuration 5 costs 2.9 s, which is acceptable. In
general, the overhead of platform configuration is merely generated during the
platform setup. It does not affect the performance of service delivery at running time.
Through this experiment, we could conclude that the UPmP is flexible to be
configured under different settings, and the overheads are acceptable.

(a) (b)

Figure 13: Application: (a) deployment; (b) client user interface

7.3 Application

Based on the UPmP platform, we developed a ubiquitous movie recommender. It can
recommend interesting movies to users according to their preferences, devices,
networks, and locations (e.g., office, home, and public vehicle) with the infrastructure
support of the UPmP. Figure 13a illustrates the application deployment. The UPmP
platform is deployed on a Dell workstation serving as a multimedia server. The
application runs at both server and client sides. There are two types of clients,
wireless mobile phone and wired PC. The mobile phone connects to the server
through Bluetooth and GPRS, while the PC uses Ethernet. Figure 13b shows a user
interface on the mobile phone. Through it users can select different environmental
profiles. Then the system performs recommendation based on the user profile and
current context, such as device capability, network connection and, activity
(accompanying parents at home or being alone in public vehicle). We mainly evaluate
the application from user’s perspective by analyzing user feedback, e.g., whether the
users were satisfied with the recommended content, whether they were satisfied with
the presentation form, and whether they were satisfied with the time latency. The
results showed that the recommendation precision values were around 0.7 (i.e., most

1306 Yu Z., Li C., Shou X., Wang H.: A Service-Oriented Platform ...

of the content recommended were interesting for the users), the users were generally
satisfied with the movies and their presentations, and they found the time latency
acceptable although there was some delay in content provisioning. The application
also verifies the effectiveness of our infrastructure.

8 Related Work

A number of service-oriented systems have been proposed for multimedia services.
ISIS (Mlivoncic et al, 05) is a service-oriented grid infrastructure for multimedia
management in digital libraries. All functionalities are encapsulated by services, such
as storage services and feature extraction services that are used to compose the ISIS
applications. The CASSANDRA Framework (Lange et al, 07) is a modular, real-time
and distributed media processing system that supports cooperation of connected
consumer electronics devices through a service oriented approach. The USON
framework (Takemoto et al, 02) is a service provision framework for a ubiquitous
computing environment based on P2P technology. The system automatically chooses
and uses suitable devices among the ubiquitously surrounding terminals. Although the
above mentioned systems achieve flexible content provision by using service-
orientated approach, they did not support multimedia personalization in ubiquitous
computing environments. Kohncke and Balke (Kohncke 06) proposed to adapt
multimedia content to the terminal capabilities of the user by integrating MPEG-21
metadata with a complex preference framework. They use Web services as basic
modules for building multimedia applications. The European Daidalos project (Yang
et al, 05) aims at building a service-oriented architecture to personalize services in
pervasive environments, such as tailoring content, services and interfaces. The basic
idea of these two works is similar to ours. But our system provides more capabilities
such as service lifecycle management, service composition and platform
configuration.

There has been much research work done specifically to provide systematic
architectural support for ubiquitous multimedia delivery. Gamma (Lee et al, 03) is a
content-adaptation server for wireless multimedia applications, which supports the
automatic and transparent transcoding for individual users according to their pre-
configured user profiles. CANS (Fu et al, 01) is an application-level infrastructure for
injecting application-specific components into the network. It supports automatic
deployment of transcoding components for ubiquitous and network-aware access to
Internet services. Dali (Ooi et al, 99) is a set of reusable libraries, which can be used
for building processing-intensive multimedia software. Gamma, CANS, and Dali are
mainly towards content adaptation without the support of service management and
multimedia recommendation. QCompiler (Wichadakul et al, 02) is a programming
framework to support building ubiquitous multimedia applications, which are mobile
and deployable in different ubiquitous environments, and provide acceptable
application-specific Quality-of-Service (QoS) guarantees. However, QCompiler does
not involve server platform configuration and personalization functionalities.
CAPNET (Davidyuk et al, 04) is a context-aware middleware for mobile multimedia
applications. It fulfils broad functionalities including service discovery, event
management, context storage, media content retrieval and adaptation to various
mobile devices. But CAPNET is not built based on service-oriented architecture.

1307Yu Z., Li C., Shou X., Wang H.: A Service-Oriented Platform ...

Kalasapur et al (05) built adaptive multimedia services in heterogeneous wireless
networks by exploiting a general middleware for pervasive computing. There is no
sufficient support of content adaptation and recommendation with their system.

Recently, to deliver personalized multimedia to ubiquitous devices, some
researchers (e.g., Onur and Alatan, 07; Rho et al, 05; Steiger et al, 03; Lemlouma and
Layaida, 03; Belle et al, 02) have considered both user preference and device/network
capability to generate appropriate presentation to terminals. However, none of them
are proposed from the middleware perspective.

9 Conclusion

We described the architecture and key features of the UPmP, a general-purpose
platform to support the deployment of ubiquitous personalized multimedia services.
The major contributions of this paper include: (1) proposing a service-oriented
software platform architecture; (2) introducing a component representation model that
is helpful for component organization, indexing, and description; (3) presenting a
service lifecycle management model; (4) designing a configuration tool and an XML-
based platform configuration language; (5) illustrating service composition under
different conditions.

Even though our UPmP platform supports ubiquitous personalized multimedia
provisioning quite well and is flexible to be configured under different settings, there
is still much work to do to develop different applications, e.g., healthcare,
entertainment, and e-learning using the platform and improve the design. We also
plan to extend the platform to support re-configuration for adapting to new changes at
running time.

Acknowledgements

This work was partially supported by the High-Tech Program of China (863) (No.
2009AA011903), the National Natural Science Foundation of China (No. 60903125,
60803044), and the Program for New Century Excellent Talents in University (No.
NCET-09-0079).

References

[Belle, 02] Belle, L.T., Lin, C.Y., and Smith, J.R.: Video Summarization and Personalization
for Pervasive Mobile Devices. SPIE Electronic Imaging 2002 - Storage and Retrieval for Media
Databases, San Jose, CA, 359-370, 2002

[Boag, 05] Boag, S., Chamberlin, D., Fernandez, M. F., Florescu, D., Robie, J., and Simeon, J.:
XQuery 1.0: An XML Query Language, W3C Recommendation, 2005

[Clark, 99] Clark, J. and DeRose, S.: XML Path Language (XPath), W3C Recommendation,
1999

[COM, 03] COM, http://www.microsoft.com/com, 2003

[CORBA, 00] CORBA, http://www.omg.org/corba, 2000

1308 Yu Z., Li C., Shou X., Wang H.: A Service-Oriented Platform ...

[Davidyuk, 04] Davidyuk, O., et al.: Context-aware middleware for mobile multimedia
applications. The 3rd International Conference on Mobile and Ubiquitous Multimedia, 213-220,
2004

[Fang, 05] Fang, Q., Jia, W., and Wu, J.: Available Bandwidth Detection with Improved
Transport Control Algorithm for Heterogeneous Networks. The Third International Workshop
on Mobile Distributed Computing (MDC), in conjunction with ICDCS’05, 656-659, 2005

[Fowler, 04] Fowler, M.: Inversion of Control Containers and the Dependency Injection
pattern. http://www.martinfowler.com/articles/injection.html, 2004

[Fu, 01] Fu, X., Shi, W., Akkerman, A., and Karamcheti, V.: CANS: Composable, Adaptive
Network Services Infrastructure. USENIX Symposium on Internet Technologies and Systems
(USITS), March 2001, 135-146, 2001

[JAVA, 03] JAVA, http://java.sun.com, 2003

[Kalasapur, 05] Kalasapur, S., Kumar, M., and Shirazi, B.: Personalized Service Composition
for Ubiquitous Multimedia Delivery. The Sixth IEEE International Symposium on World of
Wireless Mobile and Multimedia Networks (WoWMoM’05), 258-263, 2005

[Kohncke, 06] Kohncke, B. and Balke, W.T.: Personalized Digital Item Adaptation in Service-
Oriented Environments. The First International Workshop on Semantic Media Adaptation and
Personalization (SMAP’06), 2006

[Lange, 07] Lange, F. et al: CASSANDRA Framework: A Service Oriented Distributed
Multimedia Content Analysis Engine. Eight International Workshop on Image Analysis for
Multimedia Interactive Services (WIAMIS’07), 2007

[Lee, 03] Lee, Y.W., Chandranmenon, G., and Miller, S.C.: Gamma: A Content-Adaptation
Server for Wireless Multimedia Applications. Lucent Technologies white paper, 2003

[Lemlouma, 03] Lemlouma, T., and Layaida, N.: Encoding Multimedia Presentations for User
Preferences and Limited Environments. IEEE ICME, 165-168, 2003.

[McGovern, 03] McGovern, J., Tyagi, S., Stevens, M., Mathew, S.: Service Oriented
Architecture, Chapter 2, Java Web Services Architecture, The Morgan Kaufmann Series in
Data Management Systems, July 2003.

[Mlivoncic, 05] Mlivoncic, M. et al.: A Service-Oriented Grid Infrastructure for Multimedia
Management and Search. In: Peer-to-Peer, Grid, and Service-Orientation in Digital Library
Architectures: 6th Thematic Workshop of the EU Network of Excellence, 167-187, 2005

[MPEG7, 03] MPEG7, http://www.chiariglione.org/MPEG/standards/mpeg-7/mpeg-7.htm,
2003

[Onur, 07] Onur, O.D. and Alatan, A.A.: Video Adaptation Based on Content Characteristics
and Hardware Capabilities. The Second International Workshop on Semantic Media Adaptation
and Personalization (SMAP’07), 15-20, 2007

[Ooi, 99] Ooi, W.T., et al.: Dali: A Multimedia Software Library. Proceedings of 1999 SPIE
Multimedia Computing and Networking, 264-275, 1999

[Rho, 05] Rho, S.M., Cho, J.W., and Hwang, E.J.: Adaptive Multimedia Content Delivery in
Ubiquitous Environments. WISE 2005 Workshops, 43-52, 2005

[Spring, 04] Spring Framework, http://www.springframework.org/, 2004

[Steiger, 03] Steiger, O., Ebrahimi, T., and Sanjuan, D.M.: MPEG-based Personalized Content
Delivery. IEEE Intl Conf. on Image Processing, 45-48, 2003

1309Yu Z., Li C., Shou X., Wang H.: A Service-Oriented Platform ...

[Szyperski, 98] Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, Reading, Mass, 1998

[Takemoto, 02] Takemoto, M. et al.: The Ubiquitous Service-Oriented Network (USON)—An
Approach for a Ubiquitous World Based on P2P Technology. In Proc. of International
Conference on Peer-to-Peer Computing, 2002

[Thorne, 05] Thorne, S., and Sim, S.: Integrating Applications with Repositories Using the
O.K.I Repository OSID. JA-SIG Conference, 2005

[Wichadakul, 02] Wichadakul, D., Gu, X.H., and Nahrstedt, K.: A Programming Framework
for Quality-Aware Ubiquitous Multimedia Applications. ACM Multimedia 2002, 631-640,
2002

[Xindice, 03] Xindice, http://xml.apache.org/xindice/, 2003

[Yang, 05] Yang, Y. et al: A Service-Oriented Personalization Mechanism in Pervasive
Environments. In Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web
Intelligence (WI’05), 2005

[Yu, 06a] Yu, Z.W., Zhou, X.S., Zhang, D.Q., Chin, C.Y., Wang, X.H., and Men, J.:
Supporting Context-Aware Media Recommendations for Smart Phones, IEEE Pervasive
Computing, Vol. 5, No. 3, pp. 68-75, July-September, 2006

[Yu, 06b] Yu, Z.W., Zhang, D.Q., Zhou, X.S., et al.: An OSGi-Based Infrastructure for
Context-Aware Multimedia Services, IEEE Communications Magazine, Vol. 44, No. 10, pp.
136-142, 2006

[Yu, 08] Yu, Z.W., Nakamura, Y., Zhang, D.Q., et al.: Content Provisioning for Ubiquitous
Learning, IEEE Pervasive Computing, Vol. 7, No. 4, pp. 62-70, October-December 2008

1310 Yu Z., Li C., Shou X., Wang H.: A Service-Oriented Platform ...

