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Abstract: Information Systems usually rely on external and independent data sources. When 
integrating the data to build the integrated repository it is possible to make use of the temporal 
characteristics of the data sources to improve the whole integration process and the quality of 
the integrated data, which support the organization’s decision-making tasks. In this work the 
usage of an Ordered Weighted Averaging-based operator is presented as the best option when 
the data sources refer to similar facts but the data on each data source is expressed with 
different temporal characteristics. This is a common issue in Information Systems development.  
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1 Introduction  

The ability to integrate data from a wide range of data sources is an important field of 
research in data engineering. Data integration is a prominent theme in many areas and 
enables widely distributed, heterogeneous, dynamic collections of information 
sources to be accessed and handled, supporting, in most cases, the organization’s 
decision-making tasks. 

Information Systems (IS) usually rely on external and independent data sources, 
which the data is extracted from. Due to this fact, finding data sources which refer to 
measures about the same or similar facts is rather common. The problem arises when 
these measurements are expressed with different temporal characteristics and need to 
be integrated into the IS repository.  Given a set of data sources, there are basically 
two issues which should be resolved in order to build an integrated repository: 

- identify the concepts in the data source set which refer to the same facts 
(synonyms, specializations...) and, 

- extract and transform each data source value corresponding to each 
integrated concept so it makes sense integrating all the values which refer to 
the same concept (scale, level of detail...) and como from the data source set. 

This work is focused on solving the latter issue although some considerations 
have been adopted for facilitating the former. The temporal characteristics of the data 
sources can be used for improving the quality of the integrated data. In particular, this 
work focuses on the situations in which the integration of the data should be 
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performed in such a way that the resultant data should be produced more frequently 
than some of the data sources are. To perform this kind of integration it is assumed 
that the information to be integrated is related to and varies in a similar way within 
each of the different data sources. This assumption is true in the case of the IS where 
detailed information is not usually needed and the underlying information is 
aggregated for supporting managers’ decisions.  

The aggregation of the data is carried out by means of the Ordered Weighted 
Averaging operator (OWA). This operator has been widely applied in decision 
supporting tasks. Basically, the OWA operator is used when the information given by 
some members of the group is more representative than the rest but the accuracy of 
each member’s given value varies along time. We can take advantage of this feature 
of the OWA operator for integrating the data given by some different sources which 
vary in a similar way. At every instant, the integrated value is set according to the 
data sources which give more information about the tendency of the measure. 

So as to support this task we have developed an architecture which encompasses 
most of the processes needed to perform the whole integration process. The 
information about the temporal characteristics of the data source is annotated in the 
data source scheme by means of an ontology based model. This model has been 
created for supporting tasks such as the identification of similar concepts in the data 
sources schemes. It is possible to take advantage of the reasoning capabilities of the 
ontologies for these kinds of tasks. The temporal metadata in the data sources 
schemes serve as the input for the integration algorithm presented in this work. 

There have been some approaches to the data integration problem. In [Russo 04] 
a multilayered, fuzzy architecture is presented. Although it is mainly dedicated to 
image segmentation purposes, their architecture is general enough to support the data 
integration process in an IS environment. In [Abdulghafour et al. 94] another fuzzy 
method for aggregating values coming from different sources is presented. They 
propose a formula for determining the weight of each value. Nevertheless, none of the 
previous works encompass the aspects of the integration of the data according to its 
temporal and spatial characteristics. There are other interesting approaches which try 
to incorporate this information within the integration process and allow the integration 
of data with different periods of time, also using OWA-based aggregators [Xu 08], 
[Xu, Yager 08]. The main difference between those methods and the one presented in 
this paper is the necessity of having the same number of values to be integrated in 
each data source. In our case, each data source can provide a different number of 
values for each period of time. 

The remaining part of this paper is organized as follows. In the following section 
a running example is presented in order to ease the understanding of the examples 
proposed in subsequent sections. In the same section some basic concepts are also 
introduced and our previously related works are reviewed. In section 3 the integration 
algorithm is presented. Its results are compared to other similar techniques in section 
4. Finally, the concluding remarks are exposed. 

2 Preliminaries 

In this section some basic concepts necessary for understanding the proposed 
algorithm are introduced. Firstly, a simple integration example is presented in order to 
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clarify the problem we face in this work. Then, the general integration architecture is 
reviewed briefly. Some basic temporal concepts are reviewed and, finally, the OWA 
operator is explained. 

2.1 A running example: the temperature of the province of Granada 

For our better understanding of the process, in the rest of the work we will make 
references to the example given in this section. 

It is easy to see that the simple average aggregation operator can only be used 
when the quantity of values provided by each of the data sources implicated are 
similar. Using the average aggregation operator when there is a data source with a 
greater number of values, makes the final, integrated result tends to that data source. 

This latter situation, which appears somewhat extraordinary, is the situation we 
had to face when trying to aggregate the temperature of each province in Andalucía 
(southern region of Spain) for our decision support system for soaring site 
recommendation [Araque et al. 06]. The information about the temperature for this 
system is gathered from two mainly kinds of data sources: 

- US National Weather Web Service for getting weather hourly measurements 
(temperature, pressure, humidity, etc) at Granada airport. 

- Granada City Council‘s website. It is possible to obtain a temperature value 
for the city of Granada every half an hour. 

- Motril City Council‘s website. The web site of this City Council, in the 
Granada province, gives only information about the maximum and the 
minimum daily temperature. 

Following the rule about the level of the detail of the intended integrated 
repository we have set before in this section, we can use a simple arithmetic average 
operator for integrating the values if we need the monthly temperature or a longer 
period because we have enough data from each data source. This is not the case if we 
need to give an monthly average temperature value for each province . In some cases 
we are not able to get valid values from some less detailed city council webs.  

Considering that the temperature of each location varies in a similar way, 
although their values will be, in most of cases, different, the problem we face now is 
how to integrate those data sources in order to obtain the provinces average hourly 
temperature. Should we discard the latter data sources? Should we consider only the 
data sources with known values exactly each hour? 

2.2 General architecture for data integration 

There are two well known architectures for integrating data: Data Warehouses (DW) 
and Federated Database Systems (FDBS). Inmon defined a DW as “a subject-
oriented, integrated, time-variant, non-volatile collection of data in support of 
management’s decision-making process” [Inmon 02]. A DW is a database that stores 
a copy of the operational data with an optimized structure for query and analysis. A 
FDBS is formed by different component database systems; it provides integrated 
access to them: they co-operate with each other to produce consolidated answers to 
the queries defined over the FDBS. The FDBS has no data of its own unlike the DW. 
Queries are answered in the FDBS by accessing the component database systems. We 
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have extended the Sheth & Larson five-level FDBS architecture [Sheth, Larson 90], 
which is very general and encompasses most of the previously existing architectures.  

In order to carry out the integration process, it will be necessary to transfer from 
the data of the data sources, probably specified in different data models, to a common 
data model, that will be the used as the model to design the scheme of the warehouse.  
OWL is the ontology definition language we have chosen as the Common Data Model 
(CDM). It has been extended to support the adequate representation of spatial 
information (geographical, topological…) and the correct treatment of temporal 
information about all the data repositories in the system. We call this extension 
STOWL (Spatio-Temporal OWL).  

Taking paper [Sheth, Larson 90] as point of departure, we propose the reference 
architecture in [Araque et al. 07]. The following relevant components of the 
architecture are outlinedbelow. 

- Each data source will have a Native Schema expressed in its own data model, 
the data inherent to the source and the metadata (availability, temporal and 
spatial level detail…). 

- In the Preintegration phase, the semantic enrichment of the data source‘s 
native schemas is made by the Conversion processor.  In addition, the data 
source temporal and spatial metadata are used to enrich the data source 
schema with temporal and spatial properties. We obtain the component 
schema (CS) expressed in the CMD [Salguero et al. 08].  

- From the CS, expressed  in STOWL, the Negotiation processor  generates the 
export schemas (ES) also expressed in STOWL. The ES represents the part 
of a component schema which is available for the Integrated Repository (IR) 
designer. For security or privacy reasons part of the CS can be hidden. 

- The IR schema corresponds to the integration of multiple ES according to the 
IR designer needs. It is expressed in the CDM.  This process is carried out by 
the Schema Integration Processor which suggests how to integrate the Export 
Schemas, thus helping to solve semantic heterogeneities, and defining the 
Extracting, Transforming and Loading processes.  

- After the schema integration and once the IR schema is obtained, its 
maintenance and update will be necessary. This function is carried out by the 
Data Integration Processor. The algorithm explained in section 3 falls into 
this part of the architecture. 

2.3 Temporal concepts 

Due to the nature of the IR the annotation properties will usually refer to the temporal 
characteristics of data, so a set of annotation properties is defined to describe the 
sources according to some of the temporal concepts studied in [Araque et al. 06b].  

STOWL defines, for instance, the Extraction Time of a change in a data source. 
The Extraction Time parameter can be defined as the time expended in extracting a 
data change from the source. Some examples of the temporal parameters which we 
consider of interest for the integration process are: Availability Window, Extraction 
Time, Transaction time, Storage Time, Temporal Granularity... 

Definition 1. An historical value h is defined as 〉〈= dvh ,  where v is the value 
given by the data source for the instant d.  H denotes the set of historical observations. 
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Definition 2. The function V is a mapping ℜ→HV :  defined as vdvV =〉〈 ),( . 
The function D is a mapping ℜ→HD :  defined as ddvD =〉〈 ),( .  

Definition 3. Let pS  be a data source consisting of a collection of historical 
observations about the feature p with the form 〉〈= i

p hhS ,...,1 , where hi corresponds 
to the ith historical value given by the data source for the parameter p. The granularity 
G of the source S for the parameter p is defined as 
 

},)}(min{max{)( TgjiHhhhhDggSG jiij
p ∈<∈∀−≤=  (1) 

 
where T is the set of temporal units (millisecond, day, year...). In other words, the 

granularity of a source for a parameter is the smallest time unit which is equal to or 
greater than the smallest interval between two consecutives changes in that source for 
that parameter. As a consequence, there can be only one valid value for each source, 
for each parameter at the same temporal granule. 

Example. Given the data sources commented upon in the introductory section, 
the Granada airport and Motril sources have granularity of an “hour”. None of them 
are capable of giving more than one temperature value within the same hour. The 
granularity concept stands for the portion of the time the value has significance. The 
former data source has relevant values for each of its granules. The latter data source 
only has one relevant value every twelve granules. The granularity of the Granada 
city council’s source is a “minute”. 

Sometimes, the granularity of a data source is also referred as its “level of 
temporal detail”. The smaller the granule the higher the temporal level of the detail of 
the source and the lower its granularity. 

To make the algorithm more efficient we relax the constraints of the previous 
definition and we define the subgranularity concept G* as  
 

},,,,)}(min{max{
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In other words, the subgranularity can be set as multiple units of a granule (two 

seconds, ten days…). Furthermore, the subgranularity of a source for a given 
parameter is the lowest multiple of a time unit which better fits the minimum interval 
between two consecutive changes (two days instead of forty eight hours). 

 Following the running example presented in the introductory section, the airport 
data source has a subgranularity of an hour, the Granada City Council’s Web data 
source has a subgranularity of thirty minutes and Motril City Council’s Web has a 
subgranularity of twelve hours. In this case the subgranularity coincides with the 
changing rate of the sources because we suppose there are no missing values. 

2.4 The Ordered Weighted Averaging operator (OWA) 

The concepts in the previous section help us to find the values which should be 
integrated together. Once these values  are determined,  a solution based on the OWA 
operator is used to aggregate them. We shall introduce it briefly in this section. 
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The OWA operator was proposed by Yager in [Yager 88] as a new aggregation 
technique. It basically consists of performing a weighted average aggregation where 
the weights are not associated with the position the values hold, but the position they 
hold in the set after applying a particular ordering function to them. 

Definition 4. An OWA operator of dimension n is a mapping ℜ→ℜnf :  that 
has an associated n vector W=[w1 w2 ... wn]T such that wi∈[0,1] and ∑ wi = 1. 
Furthermore f(a1,...an) = ∑ wjbj where bj is the jth largest of the ai. 

Yager also introduced some measures associated with an OWA operator [Yager 
88]. One of these measures, which we consider of interest for this work, is the orness 
measurement, defined as  
 
Orness(W) = ∑ =

⋅−
−

n

i iwin
n 1

))((
1

1  

 

(3) 

This measurement illustrates how the weighting vector values are displaced near 
the top (Orness(W) > 0.5) or near the bottom (Orness(W) < 0.5). 

One of the main problems when using the OWA operator is the election of the 
weighting vector. In our case, the weighting vector is dynamically built every time an 
aggregating operation has to be performed for obtaining the value of each integrated 
granule. For this task we make use of a Basic Unit-interval Monotonic (BUM) 
function, introduced in [Yager 96]. A BUM function is a mapping f:[0,1]→[0,1] 
defined such that f(0)=0, f(1)=1 and if x > y then f(x) ≥ f(y). Each component of a 
weighting vector of dimension n is obtained as 
 

⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛=

n
jf

n
jfwj

1
 

(4) 

 
Depending on the election of a specific BUM function, the orness of the 

weighting vector will vary between 0.5 (with f(x) = x) and 1 (with f(x) = {1 if x=1, 0 
otherwise}), i.e. we can determine how the vector values are displaced to the top. We 
will use this function for building the weighting vector dynamically according to the 
number of available data sources at each instant. 

3 Data integration 

In previous section, we argue that the usage of an OWA-based aggregation operator 
improves the overall quality of the resultant integrated information when dealing with 
data sources referring to measurements which evolve in a similar way. In this section 
the steps to perform this integration are detailed. 

To measure the quality of the integration methods which are going to be 
described in this section we have defined three noisy sinusoidal functions which will 
represent the values of the data sources presented in the running example. In this way, 
the real integrated function can be calculated because all the values are known at 
every moment. We use this real data to compare the results obtained by each 
integration method. To simulate the temporal granularity of the data sources in the 
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example, only one valid value is given for each granule of each data source in the 
example. We suppose there are no granules with missing values. 

Given two or more data sources with a different temporal level of detail and the 
intended level of detail of the integrated data repository, there is basically two 
possibilities when performing the integration:  

- All values averaging (AVA). Divide the time in granules with the same size 
as the granules in the integrated data repository and assign them the average 
value of all the values of the data sources within this period of time. This 
method, as illustrated in figure 1(a), has an significant problem: the result of 
the integration tends to the data source with the highest quantity of values. 
The resulting integrated value for the target granule [“2:30”-“3:30”] is the 
average value of the values in table 1 (rounded in figure 1(a)). The real value 
for “2:00” is 18.67, obtained as the average of the artificial sinusoidal 
functions described previously. 
 

Motril  Granada  Granada's airport  

- - 02/01/2008 2:30 16,46 02/01/2008 3:00 11,76 

- - 02/01/2008 3:00 17,04 - - 

  Average: 15,09 

  Error: 3,58 

Table 1: AVA-based aggregation for granule [02/01/2008 2:30 - 02/01/2008 3:30] 

- Closest values averaging (CVA). Divide the time in granules with the same 
size as the granules in the integrated data repository and assign them the 
average value of the closest values of each data source to the centre of the 
granule, as illustrated in figure 1(b). The table 2 shows the values involved in 
the aggregation operation for the target granule [“2:30”-“3:30”]. 

 
Motril  Granada  Granada's airport  

01/01/2008 12:00 20,65 01/01/2008 16:00 17,04 01/01/2008 16:00 11,76 

  Average: 16,48 

  Error: 2,19 

Table 2: CVA-based aggregation for granule [02/01/2008 2:30-02/01/2008 3:30] 

Most of the usual IS packages use one of the previous approaches for aggregating 
the information. These techniques work well in most cases but there are some 
situations in which they fail. Given the granularity of the data sources containing the 
parameter which is going to be integrated and the desired granularity of this 
parameter’s values in the IR we can distinguish two different situations: 

- The granularity of all the data sources containing the parameter to be 
integrated is lower than the desired granularity for the parameter in the IR. 
This means that all the data sources are capable of supplying at least one 
value for each of the integrated granules.  

28 Salguero A., Araque F.: Integration of Similar Evolving Data Sources ...



 

Figure 1: Comparison between the AVA, CVA and OWA-based aggregation 
techniques for the target granule [“2:30”-“3:30”]. 

- The granularity of some data sources is higher than the desired granularity 
for the parameter in the IR. This situation implies that there is at least one 
data source not capable of giving one value for each integrated granule. 

In the former situation, both integration approaches give good results. It is 
supposed that there are enough values in all the data sources to discard those which 
introduce noise in the result. If using an AVA-based aggregation (ABA) operator it is 
possible to discard values from the data sources which contributes the larger quantity 
of values  so as to prevent the result tending to those data sources. When using a 
CVA-based aggregation (CBA) operator the higher the quantity of values in the data 
sources the higher the possibility of finding a representative value for the integrated 
granule (closer to the integrated granule centre). 

Although the CVA-based aggregation seems to be the most effective approach, in 
the latter situation it does not give very good results because the values of the data 
source with higher granularity contribute to many integrated granules. When the data 
sources to be integrated vary in a similar way the OWA-based aggregation (OBA) 
method proposed in this work provides a better solution.  

Some data sources vary in a similar way when a variation in the values of one of 
them implies a similar variation in the values of the rest. This means that if a 
parameter in a data source is increased by ten units at some point, the value of the 
same parameter of the rest of the data sources have probably been increased in a 
similar way. This occurs in many situations and very often when designing DW based 
IS (integration of weather measurements of near locations, prices…). 

Basically, the OBA operator acts over a set of time related historical values 
coming from all the data sources. After selecting the values to be integrated the OBA 
process is performed. Both steps are explained in the following section. 
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3.1 Step1: Selecting the values to be integrated 

Each Data Integration Processor is responsible for undertaking the incremental 
capture of its corresponding data source and transforming the data to solve the 
semantic heterogeneities according to the integration rules obtained in the integration 
phase. In order to keep the integrated repository up to date without having to 
repeatedly query each data source, a set of algorithms for determining when they 
should be queried, according to their temporal characteristics, was proposed in 
[Araque et al. 06b].  

The Global Data Integrator Processor, which takes the information from the data 
buffers provided by each Data Integration Processor, determines the sets of related 
data which should be integrated together (those in the same target granule) and passes 
it to the aggregation operator. The processor retrieves the temporal characteristics of 
the sources by accessing the STWOL data sources schemas [Salguero et al. 08] which 
have been extended to support this kind of metadata. All the changes detected in this 
data source are aggregated into one unique value according to the procedure 
introduced in the following section.  

3.2 Step 2: The OWA-based Aggregation Operator 

Once the values which influence the integrated granule are determined, an 
aggregation operation is needed in order to obtain a unique value corresponding to the 
integration of those values. In this case we propose the usage of an OWA-based 
operator. Below we explain the steps to build the required structures: the vector of 
values and the weighting vector. 

It makes no sense to apply the OWA operator directly to the values to be 
integrated. In this case, the result would tend to the data source with the highest 
values. Instead, the importance (the order) of the values is going to be established by 
the amount of information the values provide about the tendency of the integrated 
function. In other words, the values are ordered according to the difference between 
the actual value and the value corresponding to the general shape of the function (low 
frequencies) at the same point.  

The values to be integrated are obtained in the previous step. The weighting 
vector is calculated dynamically for each integrated granule according to a BUM-
based function provided for each specific problem. The most complex task in this step 
is to obtain the order of the values. For this task the following algorithm is proposed. 
This algorithm is performed every time the calculation of an integrated value for an 
integrated granule is needed. It takes as the input the historical values related to the 
target integrated granule. In most cases, due to the fact that most of the data sources 
change at every granule unit, there will be at least one valid value for each data source 
corresponding to each integrated granule. On the other hand, as defined previously, 
the granularity of a data source does not imply that the data source must supply a 
valid value for each granule. In the event of existing missing values the algorithm still 
works reasonably well and better than the other techniques. The unique difference is 
that the BUM-based weighting vector would contain fewer items. 
Firstly, the algorithm determines the historical values closest to the start, the end and 
the center of the integrated granule for each of the data sources. Then, for each 
historical value closest to the center of the granule a linear interpolated value is 
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calculated according to the values corresponding to the start and the end of the 
granule (i.e. to the closest ones). The integrated value corresponds to the average of 
all the interpolated values plus the OWA-based aggregation of all the differences 
between the interpolated values and the actual known values. This way, the result is 
guided by the data sources which provide more information about the changes of the 
subjacent data at every point. In other words, the integrated function is the result of 
the arithmetic mean of the basic shape of the sources plus the difference between this 
and the actual value of the sources with the highest energy at every point.  

 
Procedure name: OWA integration. 
Input:  

H{s}{n}: nth historical value for data source s. 
Tstart: integrated granule start 
Tend: integrated granule end 
B: BUM function for building the weighting vector. 

Output:  
I: integrated value. 

Procedure: 
 
Granule_center = (Tend-Tstart)/2 

 
-- determine the closest value to the granule center for each source 
For i=0 to Count(H) 
Begin 

Closestsstart{i} = closest_value(H{i}, Tstart) 
Closestsend{i} = closest_value(H{i}, Tend) 
Closestcenter{i} = closest_value(H{i}, Granule_center) 

End 
 

-- for each data source 
For i=0 to Count(H) 
Begin 

interpolated{i} = linear_interpolation(D(Closestcenter{i}), 
Closestsstart{i}, Closestsend{i}) 

Interpolated_value = Interpolated_value + V(interpolated{i}) / 
Count(H) 

 
Differences{i} = V(Closestcenter{i})-V(interpolated{i}) 

End 
 
Weights = build_BUM_weighting_vector(B, Count(H)) 
 
I = Interpolated_value + OWA(Differences, Weights) 

 
According to the method previously described, firstly it is necessary to determine the 
previous and the next reference points according to the granularity of the data sources. 
In this case, the reference starting and ending points for the target granule are, 
respectively, “02/01/2008 00:00” and “02/01/2008 12:00”. These correspond to the 
previous and the next points of the data source with higher granularity with respect to 
the target granule center. For each data source the closest values to those points are 
retrieved (see table 3). 
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 Closest value to 02/01/2008 00:00 Closest value to 02/01/2008 12:00 
Motril 02/01/2008 00:00 20,65 02/01/2008 12:00 35,25 
Granada 02/01/2008 00:00 15,96 02/01/2008 12:00 25,26 
Granada’s airport 02/01/2008 00:00 10,47 02/01/2008 12:00 20,25 
Mean 02/01/2008 00:00 15,69 02/01/2008 12:00 26,92 

Table 3: Closest values to higher granularity source limits 

According to the mean values shown in table 3 a linear interpolation function 
between those mean values is defined as: 
 

)()(
)()())(()()(),,(

01

010
010 pDpD

pVpVpDdDpVppdI
−

−−+=  
(5) 

 
Where V and D corresponds to the functions defined in section 2.2, p0 and p1 

correspond respectively to the previous and next reference mean points of the 
corresponding data source. Note that these reference points belong to H, i.e. they have 
an associated value for the instant they represent. Considering the mean of all the 
starting and ending values, i.e. <02/01/2008 00:00, 15.69> and <02/01/2008 12:00, 
26.92>, we would obtain a temperature of 18.5 for the “02/01/2008 03:00”. 

Once we have the base value for that point the OWA operator is used to improve 
it. The idea consists basically of getting the differences between this base value and 
the real values each data source provided for that point and performing an OWA 
aggregation where the weighting vector is built according to these differences. The 
problem is that in most cases the sources do not provide data for that specific point, so 
we use the closest one of each data source (column “A” in table 4). We suppose that 
the greater the difference between the interpolated value at those points and the real 
values given by the sources (absolute value of column “D” in table 4) the more 
relevant the information  supplied by a data source at that point, so the higher its 
importance (absolute value of column “D” in table 4). 
 

 
A = Closest to 
“02/01/2008 03:00” 

B = Interpolate(A) D=A-B Order 
ABS(D) 

W=Associated 
Weight 

D*W 

Motril 
02/01/2008 00:00, 
20’65 

20,65 0 3 (1/3) 2=0,11 0 

Granada 
02/01/2008 03:00, 
17’04 

18,29 -1,25 1 1-(2/3)2=0,56 -0.69 

Granada’s 
airport 

02/01/2008 03:00, 
11’76 

12,92 -1,16 2 (2/3)2-
(1/3)2=0,33 

-0.38 

     Sum: -1,08 

 
    Mean 

interpolated: 
18,5 

     Total: 17,42 

     Error: 1,25 

Table 4: OWA-based aggregation for granule [02/01/2008 02:30-02/01/2008 03:30] 
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The selection of the underlying BUM functions depends on the specific problem.  
In this case, for sake of simplicity, we have chosen f(x)=x2 as the underlying BUM 
function. More information about the BUM function is given in the following section. 

It can easily be seen that the OWA-based aggregation obtains better results than 
the other two classical methods for the same point. In the following section the 
integration results of each method considering the entire data sources are discussed. 

4 Experimental results 

In order to determine the advantages of using the integration method presented in this 
work a case study is presented in this section.  

Knowing the values of all the sources at every point allows us to determine the 
real integrated function and use it to compare the aggregation techniques presented in 
this work. It is not possible to use real data sources because we are unlikely to know 
the actual values between the values supplied by the data source and we cannot 
measure how well the aggregation techniques work. 

Knowing the values of all the sources at every instant allows us to determine the 
real integrated function and use it to compare with the aggregation techniques 
presented in this work. It is not possible to use real data sources because we would not 
know the actual values between the values supplied by the data source and we cannot 
measure how well the aggregation techniques work. 
In figure 2, a comparison between the CBA, ABA and OBA aggregation techniques is 
illustrated. The first three data series correspond to the data of the three data sources 
presented in the running example: the first of the series corresponds to the 
temperature in Motril whereas the second and third correspond to the temperature in 
Granada and Granada airport, respectively. Some noise has been introduced into the 
data in order to produce more realistic temperature measurements. 

As explained before, to simulate the temporal characteristics of the data only 
some of the real data will be introduced into the integration algorithms. We suppose 
there are no missing values. The next three series in figure 2 correspond to this data. 
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Figure 2: Results of the CVA, AVA and OWA-based aggregation techniques. 

Depending on the granularity of the data source its series is more or less similar 
to the real one (marks have been drawn in the figure to indicate when the data is really 
available). The data source corresponding to Motril City Council’s web is, for 
instance, far from realistic data because only one value is provided by this data source 
every twelve hours. On the other hand, the data source corresponding to Granada 
airport is very similar to the actual data because it provides data more frequently. 

Once we have the data corresponding to the data sources the aggregation 
algorithms are carried out. Firstly, the series corresponding to the theoretical 
integration of the data sources, i.e. the integration performed knowing all the values at 
every point, is calculated. The next three data series correspond to the AVA-based 
aggregation, the CVA-based aggregation and the OWA-based aggregation.  

As can be seen in the figure 2, the AVA-based aggregation method obtains the 
worst results. As expected, the integrated function using this technique tends to the 
data source which contributes more values, i.e. the source with the lowest granularity. 

Both the CBA and the OBA obtain results which tend, as desired, to the 
theoretical integrated function. To compare the performance of each method three 
series are added to the chart consisting of the difference between the result of each 
integration method and the theoretical integrated function. These are shown in the 
bottom of figure 2. Both the CVA and the OWA-based method work well when there 
are many values available from the sources. This is the case, for instance, at 00:00 and 
at 12:00 of every day. All the data sources provide accurate values for those points.  

The problem arises when the closest values supplied by the data sources are far 
from the integrated granule. At 06:00 or 18:00 the closest value of the data source 
corresponding to Motril City Council’s web is six hours apart. This is the reason the 
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CVA-based aggregation method fails when dealing with these kind of data sources. 
On the other hand, this method obtains very good results when all the data sources 
provide data closest to the reference point. To take advantage of this situation the 
underlying BUM function would need to be modified according to this so as to 
improve the OBA method even more: use an underlying BUM function with a 
medium orness value when many of the sources provide actual data for the reference 
point (perform an arithmetic mean) and use an underlying BUM function with a 
higher orness value in the opposite situation in order to give importance to the sources 
which give more information. 

5 Conclusions 

In this paper, our work for the data integration of autonomous data sources, taking 
into account its temporal metadata properties, has been presented. For this integration 
process we have proposed an algorithm in order to obtain more precise data in the 
integrated repository. Improving the quality of the underlying data the quality of the 
decision-making processes based on this data is also enhanced. 

In fact, the method proposed is focused on the situations where some of the data 
sources being integrated have a lower level of temporal detail than the desired detail 
for the integrated repository and evolve in a similar way. In these situations the 
improvement of the method with respect to the classical ones has been proven. 
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