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Abstract: All processes of life are controlled by networks of interacting biochemical
components. The purpose of modelling these networks is manifold. From a theoret-
ical point of view it allows the exploration of network structures and dynamics, to
find emergent properties or to explain the organisation and evolution of networks.
From a practical point of view, in silico experiments can be performed that would be
very expensive or impossible to achieve in the laboratory, such as hypothesis-testing
with regards to knock-out experiments or overexpression, or checking the validity of a
proposed molecular mechanism. The literature on modelling biochemical networks is
growing rapidly and the motivations behind different modelling techniques are some-
times quite distant from each other. To clarify the current context, we review several of
the most popular methods and outline the strengths and weaknesses of deterministic,
stochastic, probabilistic, algebraic and agent-based approaches. We then present a com-
parison table which allows one to identify easily key attributes for each approach such
as: the granularity of representation or formulation of temporal and spatial behaviour.
We describe how through the use of heterogeneous and bridging tools, it is possible
to unify and exploit desirable features found in differing modelling techniques. This
paper provides a comprehensive survey of the multidisciplinary area of biochemical
networks modelling. By increasing the awareness of multiple complementary modelling
approaches, we aim at offering a more comprehensive understanding of biochemical
networks.
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1 Introduction

The evaluation of biochemical networks is an ever advancing challenge, which
requires the use of the latest modelling techniques to capture system dynamics
and properties. State of the art modelling techniques are drawn from a highly
diverse range of different research areas, e.g., mathematics, computer science,
statistics, etc. As a result the selection of appropriate modelling techniques for
a specific research area has become an arduous task.

When selecting a satisfactory modelling technique, a number of considera-
tions are taken into account. These can be divided into two key points of view:

Journal of Universal Computer Science, vol. 16, no. 9 (2010), 1152-1175
submitted: 28/10/09, accepted: 15/4/10, appeared: 1/5/10 © J.UCS



1. User considerations: limited empirical data, knowledge and familiarity with
existing modelling techniques.

2. Modelling considerations: biological accuracy, range of applications, compu-
tational complexity.

In the development of systems biology, a variety of modelling techniques for
biological reaction networks have been established in recent years [Alon, 2007].
Inspired by different methodologies, five fundamental concepts have emerged
and are identified as follows:

– Deterministic: Chemical reactions are approximated as continuous de-
terministic processes at the macroscopic/system level. The system’s
variable states are uniquely determined by the pre-specified parameters
describing the reactions (e.g., molecular concentration, reaction rates,
etc.) and initial states of these variables. Given an initial set of pre-
specified parameters, deterministic models enable one to monitor, predict
and describe the dynamics of the system over time and/or space. Ex-
amples of deterministic modelling techniques include: ordinary/partial
differential equations [Zwillinger (Ed.), 1992, Polyanin and Zaitsev, 2003,
Eungdamrong and Iyengar, 2004, Huang and Ferrell, 1996], Michaelis-
Menten models [Heinrich and Schuster, 1996] and power-law models
[Vera et al., 2007].

– Stochastic: In contrast with deterministic approaches, stochastic models ex-
plicitly account for the uncertainty that is involved in molecular processes.
The system’s variable states are determined by the pre-specified system’s
parameters and through the use of random variables. By addressing random-
ness or variability, stochastic models provide a more detailed representation
of the system’s potential dynamics (and not only the average behaviour as
in deterministic approaches). Multiple executions of a stochastic model gen-
erate unique (from one another) dynamics/observations. The latter can be
used to estimate probability distributions of the system’s potential states (as-
sisting in the construction of probabilistic models, see below). Examples of
stochastic modelling techniques include: Markov chains [Gomez et al., 2001]
and chemical master equations [Gillespie, 2001].

– Probabilistic: Here, the description of stochastic processes/data is addressed
in terms of probability. Probabilistic modelling techniques are determinis-
tic approaches which may infer probabilistic relationships between molec-
ular species/system’s states from empirical observations. In contrast with
stochastic approaches, a probabilistic model is a statistical inference and
description technique which does not represent the underlying stochastic
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molecular mechanics. Given the initial states of the molecular species, these
approaches provide a probability-based description of the system’s states.
The predictive power of these techniques relies on the probabilistic distri-
butions inferred by the model upon a range of in vivo/silico experimental
observations (i.e., the training set). An example of probability modelling
technique include: Bayesian networks [Sachs et al., 2002] and hidden Markov
models [Goutsias, 2006].

– Algebraic: Modelling discrete characteristics of chemical reaction networks
is principally achieved with algebraic approaches. A common basic as-
sumption for these approaches is a finite or recursive enumerable num-
ber of elementary objects. Each object is considered as the smallest unit
that can be processed by the system model. In particular, a definition
of objects determines the granularity and abstraction level of correspond-
ing models (hierarchically composed of objects, classes of objects, and
temporal interaction rules). Both biomolecules and processes can form
these objects. Interaction between these objects is usually specified by
a relationship between system configurations. The whole system descrip-
tion is based on discrete transitions. This allows structural and compar-
ative analysis of both system composition and behaviour, independent
of numerical simulation results. Examples of algebraic modelling tech-
niques include: P-systems [Paun, 2002, Paun et al., 2006], broadcast lan-
guage [Holland, 1992], Alchemy [Fontana and Buss, 1994], Boolean networks
[Genoud and Metraux, 1999], π-calculus [Regev et al., 2001] and Petri nets
[Reddy et al., 1993].

– Agent-based : Agent-based models (ABMs) extend the algebraic framework
by introducing richer features in the computational units (i.e., agents).
ABMs are commonly implemented with Object-Oriented programming en-
vironments in which agents are instantiations of object classes. The lat-
ter is a collection of properties (e.g., size, location, concentration, etc.)
and methods (e.g., move, die, react, etc.). Agent-based simulations typi-
cally involve a larger number of molecular and/or cellular agents which
are executed in a concurrent or pseudo-concurrent manner. Each of these
agents possess its own distinct state variables, can be dynamically cre-
ated/deleted and is capable of interacting with the other agents. The agents’
computational methods may include stochastic processes resulting in a
stochastic behaviour at the system level. Examples of agent-based mod-
elling techniques include: Stochsim [Le Novère and Shimizu, 2001], Cellu-
lat [Gonzalez et al., 2003] and AgentCell [Emonet et al., 2005]. A review of
agent-based techniques is given by [Chavali et al., 2008].

Deterministic and stochastic approaches are the most frequently employed
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and studied approaches in the field, whereas the attention given to the use of
probabilistic, algebraic and agent-based approaches is more recent but rapidly
growing.

In this paper we review a number of prominent modelling techniques and
examine the individual attributes of each modelling technique. Following on
from this we construct a model comparison table. This paper does not attempt
to nominate a single most applicable modelling technique, but rather to illu-
minate the decision process of selecting modelling techniques. Moreover, com-
putational inference methods (i.e., techniques employed to infer the network
structure from experimental data) are not addressed in this paper. This is in-
deed beyond the scope of this paper, nevertheless the reader may find further
details in [Soinov et al., 2003, Laubenbacher and Stigler, 2004, Li et al., 2006,
Ponzoni et al., 2007].

2 Principles of biochemical networks in vivo

As opposed to engineered networks (e.g., electronic circuits) whose topologies can
be easily traced, biochemical network connections are invisible. The circuitry of
these natural networks is identified through interactions between their molecules.

Biochemical reaction networks found in pro- and eukaryotic cells represent
processes from which higher level properties of life are composed. Despite their
high degree of complexity and interdependency, they are hierarchically arranged
in modular structures of unexpected order.

A strong division of tasks, predefined reactions and transduction pathways as
well as an efficient share of resources characterise biochemical networks. Mainly
based on proteins as information carrier with high variability in structure, the
range of interconnected reaction processes implies the function of a cell and
its subunits. Three essential types of biochemical networks in vivo can be dis-
tinguished: metabolic networks, cell signalling networks (CSN), and gene reg-
ulatory (GRN) networks [Alberts et al., 2003]. Metabolism consists of coupled
enzymatically catalysed reactions at a minimum level of free energy. This pro-
vides conservative functions for the organism. CSNs perform internal and exter-
nal information processing in concert with GRNs that control protein synthesis.
Slight malfunctions or perturbations within these fine-grained and sensitive net-
work structures can have life-threatening consequences. Modelling, analysing
and simulating these networks assist us in understanding and prediction of these
complex events.

Proteins form central functional elements of the cell. For instance, they sub-
sume the enzymes, hormones, factors, receptors, messengers, and subsidiary sub-
stances of which the cell is composed. Therefore, CSNs and GRNs, as control
systems for protein generation based on both inherited genetic data and envi-
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Figure 1: Biological principle of signalling in eukaryotic cells: from arriving stim-
uli to specific cell response.

ronmental influences, play a major role. In cell signalling, here exemplified by
eukaryotic cells [Krauss, 2003], three main steps can be identified (Figure 1):
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Figure 2: Information flow in CSNs via activation cascades

1. Signal reception: External signals arrive from other cells, from the environ-
ment, or from the cell’s own feedback loops. These stimuli are encoded ei-
ther by proteins (like second messenger hormones, growth factors), auxiliary
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substances (like ions, ligands), or by physical conditions (e.g., light). They
reach specific receptors embedded in the outer cell membrane. Ion channels
transmit the signal by transporting substances into the inner cell; whereas
enzyme-linked and G-protein-linked receptors transmit the signal simply by
changing their conformation.

2. Signal transduction: Messenger proteins, originally bound to these receptors
at the inner membrane face, are then emitted into the cytosol. Here, they
initiate activation cascades for further signal transduction, evaluation, com-
bination, and amplification, as illustrated in Figure 2. Activation of enzyme
messengers occurs by stepwise addition of phosphates from adenosintriphos-
phate (ATP) to specific binding sites of messenger proteins. Alternatively,
G-protein messengers bind to guanosindiphosphate (GDP). These processes
can be accompanied by forming specific protein complexes.

3. Cell response: The resulting biomolecules then enter the nucleus where they
can effect a specific gene expression controlled by a GRN, thus producing
the cell response to the primary signal. The intensity of gene expression
is determined by transcription factors. They act as promoters or repressors
controlling the amount of mRNA transcribed from genetic DNA. Subsequent
translations lead to the final protein. Typical biochemical networks can con-
tain interactions between several hundred proteins including intermediate
states and complexes.

In the next Section, our multidisciplinary survey of computational techniques
for the modelling, simulation and analysis of biochemical networks is provided.

3 Survey of modelling approaches

We review a selection of modelling techniques used in the study of biochemi-
cal networks: differential equations, Markov chains, chemical master equations,
Bayesian networks, Term Rewriting Systems, Petri nets, π-calculus, Cellulat and
Agent-based Learning Classifier Systems. We then present the Systems Biology
Markup Language (SBML) and CellML which allow one to specify and dissemi-
nate biochemical network models using a standardised language. These markup
languages also permit the migration of reaction network models between differing
modelling approaches.

3.1 Differential equations

Chemical reactions are approximated as continuous deterministic processes
at the macroscopic level. Differential equations provide a global un-
derstanding of a system and are commonly employed to model chem-
ical reaction networks [Zwillinger (Ed.), 1992, Polyanin and Zaitsev, 2003,
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Eungdamrong and Iyengar, 2004, Huang and Ferrell, 1996]. Given an initial set
of pre-specified properties describing the reactions (e.g., molecular concentration,
reaction rates, etc.), this modelling approach enables one to monitor, predict and
describe the dynamics of the system over time and/or space.

Here, state variables represent the concentrations of molecular species oc-
curring in a well-stirred reactor with no in/out-flows. The following equation
governs the dynamics of each species S whose rate of change in concentration
[S] depends on the production and consumption rates vp and vc:

d[S](t)
dt

= vp([S](t)) − vc([S](t)). (1)

In mass-action kinetics, these rates result from the reactant concentrations,
their stoichiometric factors ai,j ∈ N (reactants), bi,j ∈ N (products) and ki-
netic constants kj ∈ R+ assigned to each reaction quantifying its velocity. For a
reaction system with a total number of n species and r reactions

a11S1 + a12S2 + . . . + a1nSn
k1−→ b11S1 + b12S2 + . . . + b1nSn

a21S1 + a22S2 + . . . + a2nSn
k2−→ b21S1 + b22S2 + . . . + b2nSn

...

ar1S1 + ar2S2 + . . . + arnSn
kr−→ br1S1 + br2S2 + . . . + brnSn

the corresponding ordinary differential equations (ODEs) read:

d [Si]
d t

=
r∑

j=1

(
kj · (bji − aji)

n∏
h=1

[Sh]ajr

)

In order to obtain a concrete trajectory, all initial concentrations [Si](0) ∈ R+,
i = 1, . . . , n have to be specified. Solving this ODE system together with given
initial values allows us to describe the temporal behaviour of the reaction system
[Dittrich et al., 2001].

Reaction-diffusion models take into account the spatial location of molecules
and allow species concentrations in different spatial locations to vary contin-
uously. These models are specified with sets of Partial Differential Equations
(PDEs) [Fritz, 1982]. Solutions to PDEs derived from reaction-diffusion models
provide an approximation of the species concentrations as a function [S](t, x) of
both time t and space x:

∂[S](t, x)
∂t

= D
∂2[S](t, x)

∂x2
−v([S](t, x))

∂[S](t, x)
∂x

+vp([S](t, x))−vc([S](t, x)) (2)

Equation 2 is an example PDE where the variables and functions represent:
[S] concentration of species S, D ∈ R+ diffusion coefficient, v([S](t, x)) convec-
tive velocity, and vp([S](t, x)), vc([S](t, x)) production and consumption rates.
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Differential equations (especially ODEs) are the most commonly employed
techniques to model biochemical systems due to their strong establishment in
the sciences. Nevertheless using these methods (particularly PDEs) may also
represent a significant mathematical challenge when attempting to solve large
systems of non-linear differential equations. Moreover, it has been argued that
the main challenge of this approach is the limited ability to describe biochemi-
cal systems with low species concentrations [Fontana and Buss, 1996]. Chemical
kinetic models specify the cell with limited structural descriptions. Biological
systems are made of collections of objects whose identities are maintained and
continuously evolve. These evolving properties may include the activation state,
concentration, or the location.

Since analytic solutions of ODEs can be obtained only in few cases, numer-
ical solutions are commonly employed, predominantly the higher order Runge-
Kutta approach characterised by rapid convergence and numerical stability
[Atkinson et al., 2009]. The approach is based on discretisation of the time in-
terval and iterative adaptation of the species concentrations. Since each species
induces one specific ODE, the computational complexity grows linearly with the
number of species.

3.2 Markov chains

Another method to examine biochemical systems is to express them as Markov
chains [Gomez et al., 2001], in which the state of the chain represents either ap-
proximations or exact number of the molecules present. Reactions are modelled
as transitions between these states. The system is memoryless (“Markovian”)
since the future development only depends on the present, not on the past.
Therefore, the term Markov chain denotes time-discrete systems which are de-
fined as a sequence of random variables X1, X2, X3, ... with the Markov property,
i.e., P (Xt+1 = x|Xt = xt, Xt−1 = xt−1, ..., X1 = x1) = P (Xt+1 = x|Xt = xt).

Provided there is no feedback in the system, the analysis of Markov chains is
well developed, and the steady-state probability distribution of the process can
be derived. Feedback, which is an inherent feature of many reaction networks,
poses problems for analysis since a steady-state distribution of the system does
not have to exist in this case.

Many straightforward, yet interesting simulation techniques which utilise
the Markov property are based on explicit collisions between randomly se-
lected molecules. This technique has the advantage of being easy to imple-
ment in a non-spatial case, and yet simple to extend to spatial simulations.
A representative example of this type of algorithm is given by StochSim
[Le Novère and Shimizu, 2001].
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3.3 Chemical master equation

Where the model’s time is continuous rather than discrete, the Markov chain
is replaced by a “continuous-time Markov process”. Here, the system again has
a finite, discrete set of states, but now a continuous time index t exists. For
simplicity, we focus on the case in which each state is given by the number of
molecules per molecular species (i.e., a vector x ∈ N

k). At any given point in
time, the system occupies each state with a certain probability, yielding a prob-
ability distribution over all the states. The Chemical Master Equation (CME)
provides a means to describe the temporal change of this distribution exactly for
the case of a well-stirred and homogeneous reactor space [Van Kampen, 2007].
Since chemical systems can be considered as Markovian, the CME approach is
a special case of the continuous-time Markov chains.

[Gillespie, 1976, Gillespie et al., 1977] proposed two precise “Stochastic Sim-
ulation Algorithms” (SSA) to simulate instances of the random process defined
by the CME. These algorithms are widely used in the stochastic simulation of
biochemical reactions [Meng, 2004] due to their significant efficiency in terms of
computational cost. The principal factors in SSAs are reaction propensities fμ,
i.e., the likelihood of a reaction μ to occur in the next (small) time step dt. These
are computed from the mesoscopic rate constants and the number of molecules
available as substrates to the reaction. From these, the next reaction and the time
for that reaction have to be decided. This is done by using two random numbers.
From the CME, it can be shown that the probability density function for reac-
tion μ to occur as the next reaction after time τ is P (μ, τ) = fμexp(−τ

∑
j fj),

which is the basic equation SSAs are built on.
Gillespie’s original work has been extended several times, most notably by the

“Next Reaction Method” [Gibson and Bruck, 2000]. This reduces the complexity
from linear to logarithmic time in the number of reactions. Another technique is
given by the “tau-leap methods” [Gillespie, 2001, Chatterjee and Vlachos, 2005],
which approximates the exact solutions obtained from SSAs. For larger numbers
of molecules and reactions, however, these algorithms still suffer from high com-
putational requirements. [Bernstein, 2005] extended the Gillespie algorithm to
reaction-diffusion equations by dividing the reaction volume into several com-
partments and modelling diffusion between them.

3.4 Bayesian networks

A Bayesian network (BN) is a directed acyclic graph commonly used as a proba-
bilistic modelling tool [Pearl, 1988]. Modelling chemical networks with BNs was
introduced by [Sachs et al., 2002]. In a BN, variables (a molecular property) are
represented as nodes in the graph. Directed edges express the dependence re-
lation between nodes. A variable can be either discrete or continuous and may
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form a hypothesis, a known value (e.g., a concentration) obtained by experi-
mental measurement or a latent variable. Variables which are not connected by
edges are “conditionally independent”.

If the state of a variable is known then the state of other variables can be
predicted. This is accomplished through the use of:

p(x) =
∑

yp(x, y) (3)

This formula sums the probabilities of all routes through the graph, thus allowing
one to predict, with some probability distributions, the state of an unknown vari-
able x. Continuous values for probabilities could be specified with a probability
density function (e.g., [Needham et al., 2006] employs Gaussian distributions).

BNs have been used to reverse-engineer and infer the structure of biochem-
ical networks [Sachs et al., 2002, Kim et al., 2003, Needham et al., 2006]. How-
ever, the setting of probabilities (learning) of BNs requires static experimen-
tal data, otherwise this may result in increasing the complexity of the task
[Li and Lu, 2005, Chickering, 1996]. The solid foundation of BNs in statistics
enables the handling of the stochastic behaviour of real chemical networks and
noisy experimental measurements [de Jong, 2002]. Another attribute of using
BNs is that they can be employed when incomplete or only steady-state data
on the reaction network are available. In this common case, kinetic models have
been found to be less useful [Woolf et al., 2005]. [Pe’er, 2005] discussed the var-
ious techniques to infer BN models from experimental data.

A computational analysis of a Bayesian network requires tracing through the
nodes and edges. Its computational complexity grows linearly with the number
of nodes.

3.5 Term rewriting systems

Regulated term rewriting is a basic principle of information processing.
Biomolecules, their polymeric subunits or groups of similar biomolecules are in-
terpreted as objects encoded by character strings (terms). Sets of term rewriting
rules describe possible interactions among objects and system components (e.g.,
pathways or membrane structures). Each application of a rule performs a discrete
step of a process. The terms as a whole contain all information about the system
status. Term rewriting systems can run in a massively parallel manner consid-
ering nondeterministic recombinations. Classes of grammar systems, P-systems
[Paun, 2002], broadcast language [Holland, 1975, Holland, 1992] and Alchemy
based on the lambda calculus fall into this category [Fontana and Buss, 1994].
We demonstrate this modelling approach with the broadcast language (BL).

Holland originally proposed the BL formalism to assist his research on the
“adaptive plan”. Holland argued that the BL provides a straightforward repre-
sentation for a variety of natural models such as biochemical networks.

1161Decraene J., Hinze T.: A Multidisciplinary Survey ...



The BL basic components are called broadcast units which are strings formed
from the set of “monomers” Λ = {0, 1, ∗, :, ♦, �, �, �, p, ′}. Molecular species
are broadcast units which can be viewed as condition/action rules. Whenever a
broadcast unit conditional statement (pattern matching expression) is satisfied,
the computational action statement is executed, i.e., when an enzyme broadcast
unit detects, in the environment, the presence of one or more specific substrate
signal(s) then the broadcast unit broadcasts an output product signal. General
signal processing can also be performed with broadcast units: e.g., a broadcast
unit may detect a signal I and broadcast a signal I ′, so that I ′ is some modifi-
cation of the signal I. The broadcast monomers/symbols encode for the pattern
matching and computational/enzymatic functions of molecular species. In addi-
tion, broadcast symbols may act as both operators and operands addressing the
reflexive nature of molecular species (i.e., a molecule may act as both an enzyme
and/or substrate).

Limited stochastic elements are involved in the computational functions of
broadcast units which result in a semi-stochastic behaviour at the system level.
The modelling of genetic regulatory networks (which addressed only the regu-
latory/qualitative aspects of biochemical networks) using the BL was proposed
by [Decraene et al., 2007]. Although possible, no quantitative studies have been
previously reported to have been conducted with the BL. Finally the BL for-
malism does not account for spatial information.

The computational complexity for simulations depends on the functional
structure of the molecular species. Here, complexity grows linearly with the
term (string) length/complexity of the molecules.

3.6 Petri nets

Petri nets (PNs) are a graph-oriented formalism originally from formal software
engineering. Developed in the early 1960s [Petri, 1962, Peterson, 1981], Petri
nets provide a means to model and analyse systems, which comprise of properties
such as concurrency and synchronisation. Petri nets consist of “places”, “tran-
sitions”, and “arcs”. “Arcs” are used to connect the “transitions” and “places”,
“input arcs” connect “places” with “transitions”, while “output arcs” start at a
“transition” and end at a “place”.

The modelling of biochemical networks with Petri nets was introduced by
[Reddy et al., 1993]. Here, place nodes are used to represent molecular species
(enzymes, compounds, ions etc.) and transition nodes to denote chemical reac-
tions. Other elements can be defined to specify in detail the chemical reactions
to occur [Pinney et al., 2003].

Ordinary Petri nets provide an accessible modelling tool with well-established
analysis techniques. For this reason, the use of Petri nets for qualitative analysis
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of biochemical network is growing. However, due to their timeless nature, Petri
nets are limited regarding dynamic network analysis.

A computational simulation of the dynamical Petri net behaviour takes simul-
taneously into account all places considering the number of (molecular) objects
necessary to conduct a transition. The computational cost increases linearly with
the number of places.

3.7 π-calculus

The π-calculus is a process calculus, which is a formal method for modelling
concurrent communicating processes [Hoare, 1983, Milner, 1999]. The π-calculus
provides a framework for the representation, simulation, analysis and verification
of such systems. The π-calculus allows the application of algebraic reasoning in
order to determine the equivalence between processes.

When modelling biochemical networks using π-calculus, molecules and
their individual domains are treated as computational concurrent processes
[Regev et al., 2001]. Complementary structural and chemical determinants cor-
respond to communication channels. Chemical interactions and subsequent mod-
ifications coincide with communication and channel transmission.

The π-calculus provides a highly detailed description of network nodes. How-
ever, the basic π-calculus gives only a semi-quantitative view. A significant
factor to be considered is the lack of an associated temporal dimension and
as a result all interactions can occur with the same probability/rate. Exten-
sions of the basic π-calculus address this limitation [Regev and Shapiro, 2004,
Blossey et al., 2008].

The computational costs for simulations of Milner’s pi-calculus heavily de-
pend on the process structure. In the computationally worst case, a continuously
forking or branching scheme, the reasoning requires exponential resources in the
number of calculus primitives.

3.8 Agent-based models

In an agent-based model (ABM), several computational objects called agents
are simulated to reproduce real phenomena within an artificial environment.
ABMs originate from the late forties with the development of Cellular Au-
tomata [von Neumann, 1949] and have been extensively used in the following
fields: complex systems, multi-agent systems, and evolutionary programming
[Luck et al., 2004, Winikoff and Padgham, 2004]. An ABM is typically imple-
mented with an object-oriented framework [Rumbaugh et al., 1991]. Each agent
or class is defined with particular properties and methods. Agents are situated
in space and time, interactions between with each other may occur following

1163Decraene J., Hinze T.: A Multidisciplinary Survey ...



rules. Global and complex behaviour may emerge from these local agent-agent
interactions and properties.

ABMs provide a flexible framework to: specify and refine with ease
rules governing agent behaviours and interactions (e.g., using production
rules or Boolean logic), secondly, to model emergent system or global be-
haviours [Ausk et al., 2006]. Preliminary works to model bio-chemical net-
works using ABMs appeared in the late nineties [Schwab and Pienta, 1997,
Fisher et al., 1999]. ABMs consider the cell and its components as agents with
cognitive capabilities. Two distinct ABM approaches are presented:

1. In Cellulat, which was developed by [Pérez et al., 2002,
Gonzalez et al., 2003], a cell is seen as a collection of adaptive autonomous
agents. Communication between agents is performed via propagating signals
on a shared data structure, named “blackboard” referring to the blackboard
architecture [Nii, 1986a, Nii, 1986b]. An agent receives a signal or a combi-
nation of signals from a designated blackboard level and transduces these
into another signal (or set of signals) on the same or different blackboard
level. Transduction mechanisms of the signal depend of the cognitive
capabilities of the agent. A blackboard level could represent extracellular,
membrane, cytosol or nucleus region, this enables the modelling of spatial
organisation.

2. A second ABM is described where Learning Classifier Systems (LCS) are
used to specify the agents’ behaviour and interactions. LCS are systems con-
structed from condition-action rules called classifiers. LCS can be seen as a
simplification of the broadcast language where classifiers are binary strings
that can be viewed as IF/THEN statements. Holland’s initial work was mod-
ified a number of times and at present many different varieties of learning
classifier systems are available [Lanzi et al., 2002, Bull and Kovacs, 2005].

LCS are commonly used as a machine learning technique. However
[Holland, 2001] proposed an agent-based model where the agents’ behaviour
and adaptation are determined by the use of LCS. This work argued that
LCS could be used to evolve a simple repertoire of condition-action rules to
a more complex goal directed set of rules.

In typical biochemical networks, interactions between molecules follow the
same condition-action mechanisms. Thus Holland suggested that this ap-
proach could be used to model and simulate biochemical networks. His
proposition to design chemical networks was to start with a LCS-based
“over-general” model of a biological phenomenon (e.g., transformation of a
healthy cell to a cancer cell). Then this general phenomenon could be refined
through several iterations. At each iteration, the details (e.g., compartment
level) of the occurring interactions can be specified. These iterations were
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continued until the desired network level/granularity was reached, where the
submolecular objects are specified (e.g., protein ligand, receptor, ions etc.).
This refining process highlights the top-down/hierarchical approach and de-
scriptive power of LCS to model and simulate complex biochemical networks.
Moreover this approach can be naturally coupled with Genetic Algorithms.
This evolutionary feature may allow one to examine phylogenetic relation-
ships between different reaction networks (where the signalling differences
may be due to random molecular mutations). However no actual implemen-
tation and experimental examination of this system have ever been reported,
therefore this proposal and associated potential benefits remain conjectural.

3.9 SBML & CellML

Modelling techniques may be employed in conjunction with a markup language
to store generated models. The use of a standard format facilitates the analysis,
visualisation, simulation and exchange of biochemical network models within
the modelling community, providing opportunities for refinement and incorpo-
ration of new knowledge. So far, two approaches have emerged, resulting in
the model-description languages SBML (Systems Biology Markup Language)
[Hucka et al., 2004] and CellML [Lloyd et al., 2004], both based on the XML
markup language [Bray et al., 2000].

– In SBML, a biochemical network is described in terms of the molecules taking
part in it - termed species - and the reactions taking place between them.
The present amount of each species can be expressed either in terms of its
concentration or of the number of molecules present. Each reaction has an
associated kinetic law, which defines the rate of the reaction depending on the
present amount of its substrates. Additionally, the model can be subdivided
into a fixed set of well-stirred compartments to include a non-hierarchical
spatial component. Nevertheless SMBL models cannot specify fluxes between
compartments at present (i.e., in SBML level 2 version 4 release 1).

– In CellML, a more general approach is taken, in which a model consists
of components and connections between components. Each component can
contain variables and a reaction between them, and connections are used to
transfer the value of variables from one component to another.

Although CellML is following a slightly more general approach, it is not as
widely used as SBML, for which a large collection of software tools is avail-
able (see www.sbml.org for a list of these tools). Additionally, the first model
repositories have started to use SBML as a representation language, e.g., see
the BIOMODELS database at www.ebi.ac.uk/biomodels. Therefore, SBML
can be seen as the first emerging specification standard for biological models at
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the cellular level. Finally the use of such a common language provides the abil-
ity to analyse and complement intersecting information on differing compatible
modelling techniques.

4 Comparison of approaches

In this section, we compare the previously introduced methods to model bio-
chemical networks by using a set of defined criteria. Following this, a compari-
son table is presented to summarise this review. The intention is to determine
a suitable modelling technique to be employed. We identify evaluation criteria
with regards to stochasticity, time, granularity, space, topology and modularity.

4.1 Evaluation criteria

Relevant criteria are outlined here in order to compare the modelling techniques
presented in Section 3:

– Stochasticity: This property reflects the range of possible processing sce-
narios that may be identified by the model.

• Deterministic: The system behaviour purely depends on inherent data.
No external or statistical fluctuation may occur and influence the sys-
tem’s dynamics. The system may only operate along one known path.

• Nondeterministic: A number of alternative paths for system processing
may exist which can be completely explored by the model. All possible
scenarios are taken into account by the model in which no unanticipated
events may affect the system’s dynamics.

• Stochastic: In contrast, stochastic models select one possible path in a
random manner that can be based on a given probability distribution.
This implies uncertainty (external and statistical fluctuation may be
accounted for) and inhibits repeatability of systems runs.

– Time: This property describes how time is represented within the model.

• Atemporal : When executed, the model remains static and introduces no
temporal consideration.

• Events : A sequence of pre-identified events defines the granularity of
time. An event is an action within the system which characterises the
progress of the system processing. Events are not necessarily equidis-
tant in time. Dependencies between processes, their synchronization and
concurrency may also be based on the interplay of events.
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• Discrete: Temporal changes are characterised by fixed periodic intervals.
A discrete time interval defines the smallest unit measuring the system’s
dynamic behaviour. Discrete time points allow one to express recursive
formulation of the system processing. Discrete time may be referred as
a global clock for the system.

• Continuous : Infinitesimal time intervals allow the finest granularity for
measuring time represented by real numbers. Computer-based simula-
tion techniques, by their nature, require an approximate discretisation
of points in time.

– Granularity: This property designates how the molecules or particles are
represented in the model. It refers to the abstraction level of their specifi-
cation. The finer the granularity the more detailed the system that can be
described. Granularity also constrains the level of monitoring capabilities.

• Submolecular : This level allows one to compose molecules by atomic
specifiers or functional units (e.g., protein domains).

• Molecular : Molecules are considered as the smallest expressible unit.
A mapping between the chemical substance and the assigned identifier
(e.g., symbol) is either assumed or abstracted.

• Species : An enumerable amount of molecules having the same chemical
substance is regarded as a species. This level of granularity enables one
to quantify a molecular species as a whole within the system, however
one cannot isolate an individual molecule of a given species.

• Concentration: Allows one to quantify the relative amount of a particular
molecular species existing in a system. As represented by real numbers,
transforming absolute molecular amounts into concentrations can require
an approximation. Concentrations can be viewed as an approximation
of the molecular species quantities.

– Space: When handling molecules of given granularity within a model, a sys-
tem component which is analogous to a reactor is assumed. This component
can provide space if the positioning of the molecules (within the reaction
system) is taken into consideration.

• Implicit : Particle or molecule identifiers include spatial information, e.g.,
using an index. System components that control the evolution can be
equipped with regulation schemes for updating this information. Here, a
homogeneous distribution of the molecules within the reactor is assumed.
In this “well-stirred” reactor, no boundaries are specified, and there is
no explicit definition of space in the model.
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• Compartmental : A hierarchically nested or graph-based number of ex-
plicit compartments is distinguished. Each molecule is assigned to one
of the specified compartments and can move from one compartment to
another. Within each compartment, no further specification of molecular
positioning is defined.

• Grid : Apart from the compartmental structure, a spatial geometry is
used to locate molecules more precisely. This way, discrete spatial dis-
tributions of molecules can be mapped using the model.

• Continuous : The finest granularity of defining space is given by continu-
ous values. Here, each molecule can be positioned arbitrarily within the
reactor. Analogous to continuous time, computer-based simulations may
require discretisation which would imply approximation.

– Topology: This designates the ability of the model to dynamically modify
its structural components (e.g., pathway structure, dependencies between
compartments, active membranes, receptor dynamics).

• Fixed : A static system structure is assumed.

• Dynamic: Principles or rules are defined that allow the system structure
to change over time and space. These rules are a part of the model
description.

– Modularity: This refers to the ability of the model to subdivide a given
biological reaction system into functional sub-units (i.e., modules). The sub-
division process is carried out through algorithmic strategies applied on the
model. Modules are determined/classified according to specific properties
(e.g., network topology/clusters, functions) across these sub-units. Modular-
ity may facilitate the study of a system by examining sub-units indepen-
dently instead of the system as a whole.

• No: The whole reaction system is regarded as a monolithic entity which
currently prevents the identification of sub-units.

• Hierarchical structure: The sub-units are represented as nodes forming
a tree-based structure. Modules communicate with each others (e.g.,
transmission of molecules from one sub-unit to another) via specified
interfaces, typically through diffusion over transduction/communication
channels.

• Graph-based structure: These structures are a generalisation of tree-
based structures which does not necessarily account for a hierarchical
organisation.
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4.2 Comparison table and discussion

As a summary of previous sections, a comparison table is presented (Table 1)
which uses the criteria that were discussed above. The table provides an im-
mediate comparison of differing modelling techniques and allows one to identify
desirable attributes which may be necessary for modelling a specific biochemical
system.

Model Type Time Granularity Space Topology Modularity Complexity

Ordinary DE deterministic cont. conc. implicit fixed no O(N)
Partial DE deterministic cont. conc. cont. fixed no O(N)

Markov chains stochastic discrete species implicit fixed graph-b. O(cN ) †
Master equation stochastic cont. species implicit fixed graph-b. O(logN) ‡
Bayesian networks probabilistic atemporal species implicit fixed graph-b. O(N)
Term Rewr. Syst. algebraic discrete (sub)mol. implicit dynamic graph-b. O(m)

π-calculus algebraic events molecular implicit fixed graph-b. O(cN ) †
Petri nets algebraic events molecular implicit fixed graph-b. O(N)

Cellulat agent-based discrete (sub)mol. compart. dynamic
hierarch. or
graph-based

O(n)

Agent-based LCS agent-based discrete (sub)mol. implicit dynamic hierarch. O(n)

† Worst computational case. ‡ Using the Next Reaction Method, O(n) otherwise.

Table 1: Comparison of modelling approaches with respect to previously defined
classification scheme. Let N be the number of molecular species, n the number of
molecular/object instances (i.e., compartments, molecules, sub-molecular com-
ponents, etc.), m is the sum of molecular species (expressed as terms or strings)
lengths and c ≥ 1.

In modern systems biology, we notice an increasing refinement of available
experimental data and resulting models. While early attempts to discover re-
action network structures and properties typically focused on the steady-state
analysis and probabilistic issues, current studies prefer to capture dynamical
aspects through the identification of specific reactions or diffusion kinetics.

Nevertheless, the level of abstraction may significantly vary within the models
available. Well-curated repositories tackle the challenge of integrating data and
findings into assembled frameworks of established modelling techniques. We aim
at providing a general classification of modelling techniques according to their
capabilities and advantages from a user’s point of view. The classification scheme
should be as simple as possible and clearly state which kind of information can
be obtained from a model and which cannot.

5 Bridges between approaches

Historically the development of each of the modelling techniques resulted in a
number of different approaches being explored. A result of this was a difficulty to
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express each model in a “common language”. A number of models have been de-
veloped which attempt to “bridge” between the principal modelling approaches:

– The heterogeneous approaches allow for a combination of two or more mod-
elling approaches into a single model. These unified approaches combine the
advantages of each individual modelling technique, and ultimately would al-
low a researcher to construct models addressing the individual needs. From
Table 1 we presented the principal properties of the differing modelling tech-
niques. Through heterogeneity it is possible to create models which have
arbitrary combinations of these properties. This allows for more flexibility
in model composition with regards to experimental constraints. These ap-
proaches facilitate the finding of intersections of described issues.

For example, stochastic differential equations (SDEs) extend differential
equations to express stochasticity through the introduction of a stochastic
term ξx(t) into the governing reaction equations. These terms are perceived
as random perturbations to the deterministic system. Further examples of
heterogeneous approaches include: the Stochastic π-calculus [Priami, 1995,
Lecca and Priami, 2007] and the Metabolic P systems [Manca, 2007] which
gives an example for embedding continuous kinetics into a multiset-based
framework.

– Differing modelling techniques can be unified without the requirement to
produce new heterogeneous modelling techniques. Although heterogeneous
modelling may create interesting combinations of two or more modelling
types, it still leaves us with the problem of developing yet another mod-
elling type. This perpetuates the ongoing difficulty of interoperability across
models, and may also lead to an increase in complexity of a given model by
incorporating more information.

An alternative approach is to transform existing models to embrace infor-
mation interchange rather than creating more incompatible and independent
modelling techniques. The simplest approach is to utilise a common language
(e.g. SBML, CellML) which allows for efficient information storage and in-
terchange and also provides the ability to analyse and complement intersect-
ing information on differing compatible modelling techniques. Note that the
SBML possesses a longer history than CellML and has subsequently become
the standard language for storing biochemical networks models. Therefore
employing the SBML as a means to migrate and disseminate biochemical
network models is advocated.
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6 Conclusion

Systems biology is focused on achieving detailed descriptions of intra- and inter-
cellular processes. It aims at a comprehensive mathematical model along with
simulation studies able to explain and predict biological functions as a whole.
From today’s perspective, much effort is still required to reach this objective.
Although the amount of available biological data is rapidly growing, its analysis
and integration into one consistent global framework presents a serious challenge.
In this context, an appropriate parameterisation of model specifications coping
with partially incomplete wetlab experimental results is needed. We contribute
to overcome this insufficiency by presenting a more global view on modelling
approaches, their similarities and differences. Along with the widely used deter-
ministic and stochastic descriptions of the reaction network and its dynamical
behaviour, we emphasise the growing impetus of algebraic and agent-based de-
scription techniques. From a comparison study of recently relevant model types
within these major description techniques, we suggest that algebraic (includ-
ing agent-based) frameworks provide most flexibility. Because of their discrete
composition of structural entities, they can act at different levels of abstrac-
tion ranging from sub-molecular interactions up to summarised system global
function. Embedding analytical or stochastic information is enabled either by
heterogeneous models or by model transformation. We believe that stages of
interoperability between models for biochemical processes might promote sys-
tems biology towards a unified approach for all facets of biological information
processing.
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