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Abstract: Automatic workflow generation is becoming an active research area for dealing with 
the dynamics of grid infrastructure, because it has a pervasive impact on system usability, 
flexibility and robustness. Artificial intelligence technology and explicit knowledge have been 
exploited in some research for workflow construction or composition. With the increasing use 
of knowledge, its quality has growing impact on system performance. In this report, we present 
the process pattern as a vehicle for knowledge representation to capture process expertise at the 
business level. A pattern-based planning approach is proposed for automated workflow 
generation. Our pattern-oriented approach decreases user-visible complexity and makes 
systems more scalable and flexible by utilizing explicit knowledge support. Then we propose a 
hybrid method of pattern knowledge optimization for pattern-based workflow generation 
planning; experts define the primary model, and subsequent classifier training adjusts and 
improves the pattern knowledge settings. Experiments with a prototype application 
demonstrated that this approach can substantially reduce modelling difficulties and effectively 
improve pattern knowledge quality. 
 
Keywords: workflow pattern, workflow generation, knowledge management, business 
knowledge optimization, classifier training 
Categories: C.2.4, H.1.0, H.4.3, I.2.6 

1 Introduction  

With the ever-increasing popularity of grid computing, grid workflow, which is an 
important enabling technology for complex grid applications, has become an active 
research area. Nowadays, grid workflow offers an attractive basis for supporting 
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processes ranging from in silico experiment analysis in bioinformatics to global 
business activities spanning different organizations. 

Generally, a grid workflow system accepts a group of tasks or jobs and assigns 
them to suitable services or resources for execution. Most existing grid workflow 
systems build an entire process specification before execution in the grid environment. 
A process specification can be constructed based on simulation [Cao, 03] or 
performance prediction [Berman, 01], or even manually [Oinn, 04] [Montoto, 08]. 
Because all information needed in the execution stage is specified, this method is also 
called full-ahead plan. In this case, users are often required to know many technical 
details of the grid environment (e.g. resources’ physical locations, service endpoints) 
for defining the process specification. Moreover, the full-ahead plan often raises 
exceptions owing to hardware failures or resource usage policy changes at runtime. 
The situation gets even worse when workflow duration spans several days or weeks. 
To deal with the issues in large-scale, complex and dynamic environment like grids, 
automatic workflow construction is becoming necessary. The demand is growing in 
visibility as grid computing shifts from the scientific community to the business 
context.  

Recently, techniques utilizing artificial intelligence (AI) for automated workflow 
generation have emerged in some research. This approach offers several advantages. 
First, it eases the users’ burden and improves system usability. Some potential users 
who are afraid of grid complexity will be encouraged to use the grid [Gil, 04]. Second, 
the workflow becomes more fault-tolerant and responds more rapidly to exceptions 
[Cheatham, 05], because the system can promptly handle an error by producing an 
alternative process plan.  

Pegasus [Pegasus, 04] [Deelman,03] is a typical workflow system that integrates 
AI planning techniques for workflow construction. It is used in GriphyN  
[GriPhyN, 00] developed by the University of Southern California. Pegasus can take a 
user’s highly specified desired results and then generate a valid workflow for 
execution. In more detail, Pegasus takes the desired data product as a “goal state”, and 
takes the application components as “operators”. Like a typical AI planning system, 
Pegasus receives inputs of the current state of the environment, a declarative 
representation of a goal state, and a library of operators that can change states and 
then searches for a valid, partially ordered set of operators that will transform the 
current state into goal state with heuristics. The planning result is an executable 
workflow. It can be transformed into a directed acyclic graph for execution by Condor 
DAGMan [Frey, 02] to provide the target data product. 

The main disadvantage of this planning approach is its lack of explicit knowledge. 
More exactly, its planner and the knowledge used in planning are mixed together. 
Therefore, when the description becomes abstract or contains less detail, the planner 
has more difficulty to yield a good planning result. On the contrary, when the 
description becomes more exhaustive, the result may be better, but the planner has to 
understand more complexity. In other words, the planner is tightly bound to a specific 
domain. This drawback jeopardizes the domain independence of the planner and may 
harm system scalability. As the problem scale grows, the search space will expand to a 
huge size and certainly overwhelm the planner. 
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WMP van der Aalst proposed the “workflow pattern” [Aalst, 03] for 
systematically analyzing the functionalities of workflow management systems (WfMS). 
These workflow patterns have been utilized to analyze the workflow behaviour 
expressiveness of some description languages for the implementation of web service 
interfaces [Musicante, 06]. Here we propose the use of process patterns to carry the 
knowledge necessary for workflow planning. Although a process pattern seems very 
similar to a workflow pattern, they are essentially different. A workflow pattern is 
mainly about workflow functions and is organized according to control flow structures, 
e.g. sequence, parallel split. Furthermore, a workflow pattern has no context or 
solution part in its description. In contrast, a process pattern is a kind of business 
expertise which is designed to represent knowledge for dynamic workflow generation. 
A process pattern provides a process solution for a specific user task or goal in a 
particular scenario, e.g. an express claim procedure in insurance. Problem, context and 
solution are absolutely necessary in a process pattern. 

In some research [Chung, 03] [Rohit, 04], the system has a pre-defined process 
library for improving planning efficiency. A process pattern is also substantially 
distinct from a process library. First, a process pattern is a synthesis of business 
expertise and workflow knowledge. It is defined in an application domain, whereas a 
process library is a collection of workflow definitions and is defined at the technical 
level. Second, a process pattern is a dynamic description in multiple dimensions 
including problem, scenario and solution. The current state of the environment plays 
an important role in choosing a process pattern. On the contrary, a process in a library 
is a static description of activities and their dependencies and is used as a building 
block. Context changes have no direct influence on which process will be used. 

As Yolanda Gil et al. [Gil, 04] conclude: “to address more aspects of the grid 
environment’s workflow management problem … we find that, as mentioned, a more 
distributed and knowledge-rich approach is required.” In this work, we put forward 
the process pattern as a knowledge representation structure to capture process 
expertise at the business level. Based on process patterns, a knowledge-rich, goal-
driven planning approach is proposed to automatically generate grid workflow. 
Besides declarative representation of grid resource entities, it utilizes process patterns 
to capture business expertise and knowledge. Using pattern-oriented workflow 
generation planning, the user can submit the business goal in application terms, and 
the system will generate an executable workflow that can achieve the specified goal.  

With the increasing growth in popularity of knowledge, the quality of the 
knowledge has a significant impact on workflow system performance [Dustdar, 05]. 
Therefore, a new question has arisen: How can we ensure the correctness and 
efficiency of knowledge in workflow? This paper also focuses on that problem. To 
help with this effort, we propose a hybrid mechanism that combines ‘expert fuzzy 
modelling’ and ‘machine learning’ to construct and refine knowledge in pattern-
oriented planning. Experts first build the fundamental pattern models based on their 
business experience. For some elaborate parameters in a process pattern, the experts 
assign them estimated values. Then, after necessary tagging of workflow history data, 
we can calibrate these parameters in more precisely via machine learning. 
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2 Pattern-oriented planning 

In order to develop scalable, domain-independent mechanisms for dynamic workflow 
generation, knowledge should be integrated into the grid workflow management 
system. In the grid workflow context, we categorize related knowledge into two basic 
types: grid environment knowledge and application level knowledge. Grid 
environment knowledge is the declarative representation of grid resource entities and 
their relationships, capabilities and usage policies. Application level knowledge 
consists of business process expertise, user preferences, policy constraints, and other 
intelligence related to business procedures. 

Compared with grid environment knowledge, it seems that the value of 
application-level knowledge is underestimated; it is not addressed adequately in recent 
research. However, high-level knowledge is even more important when we broaden 
the range of applications outside the scientific community. In the past, grid workflow 
often performed MPI/PVM jobs or data-intensive analysis tasks, which are more 
related to underlying resources, such as computation and storage capacity. Nowadays, 
grid workflow has broadened its field and begun to supports business processes, i.e. 
procurement, supply-chain, and coordination of activities or services in different 
organizations. In these cases, application level knowledge probably plays a more 
significant role than environment knowledge in the coordination of workflow 
generation, execution and exception handling. 

This section first introduces the process pattern as the knowledge structure that 
captures implicit knowledge. Then, we introduce the knowledge base used in the 
system. Finally, pattern-oriented planning is described.  

2.1 Process Pattern 

There are some requirements for a knowledge representation for grid workflow 
management, especially workflow generation. First, it should be suitable for 
representing procedural knowledge. In the workflow domain, the most important 
knowledge is procedural knowledge; the representation approach must be adequate for 
describing it.  Second, it should be efficient for use. We integrate it in applications, so 
the representation structure must be convenient to program and manipulate. Third, it 
should be easy to understand, so that a user from a business field could smoothly 
accept it, use it and examine it. 

According to these criteria, some traditional knowledge representation techniques, 
like predicate logic, frames, semantic networks, rule-based methods etc. are not 
suitable. The rule-based method is not fit for describing procedural knowledge; frames 
and semantic network are hard to program into systems; and predicate logic seems too 
intricate for users and business experts. 

In this work, the process pattern is proposed for knowledge representation in the 
grid workflow generation process.  

Pattern originally comes from the architecture domain, and “describes a problem 
which occurs over and over again in our environment, and then describes the core of 
the solution to that problem, in such a way that you can use this solution a million 
times over [Alexsander, 77]”. The basic pattern structure, as shown in Figure 1, 
includes three parts: problem, scenario and solution. Problem is a description of the 

1927Xiang Y., Zhang S., Shen Y., Shi M.: Pattern-Oriented Workflow Generation ...



  

task to be handled; Scenario describes the contextual information of the environment 
that the problem inhabits; Solution provides a guideline to perform the task or gives 
answer to the problem. A practical pattern may contain more properties such as intent, 
diagnosis, known uses etc. [Lukosch, 04]. In summary, a pattern can be considered as 
a kind of expertise about a problem and its solution in a specific context. 
 

 

Figure 1: Process pattern simple form 

The process pattern is the fundamental business knowledge representation 
structure. It is an extension of the pattern concept to the workflow domain; it can be 
thought of as a process solution for a specific business task or goal in a particular 
situation. It is a kind of empirical knowledge that describes how to solve a problem in 
specific situation.  

, ,pattern task scenario solution=   (1) 
As illustrated in (1), pattern.task describes the business goal or the problem that 

needs to be solved. It is often a reference to a task instance. pattern.scenario portrays 
the most suitable environment for applying this pattern by some context terms. The 
scenario section identifies context information about the characteristic environment. 
pattern.solution provides a guideline to achieve the task. It is often a relatively 
cohesive process fragment provided for solving the pattern’s problem, and consists of 
a series of activities, transitions and data dependencies. 

Figure 2 gives an example of a process pattern in XML format. The <Problem> 
section uses <goal> to describe the pattern’s objective. The goal uses the domain 
attribute to denote the question domain that it belongs to. In planning, the domain is 
used to filter patterns in different areas.  

 <Scenario> describes the situation in order to decide whether or not to apply this 
pattern. The context terms in the scenario are divided into two groups: positive factors 
and negative ones. <PositiveFactors> describe situations suitable for using this 
pattern, while negative factors describe situations in which the pattern should not be 
adopted. <NegativeFactors> has an impactRatio to measure the intensity of the 
dissuasive influence. When the current situation matches the pattern scenario, this 
pattern can be applied. Each <ContextTerm> has a weight attribute to describe the 
importance of this term in quantitative evaluation. Contextinfo identifies the related 
context name, while benchmark is the reference value of the context information. 
Evaluator is the evaluation function for this context term. Factor is the custom 
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parameter of the term, which influences this term’s evaluation sensitivity. The 
designer can calibrate factor values for specific preferences or fine-grained control.  

<Solution> is a functionally independent process fragment, called a 
<workflowlet>. It consists of a set of related, cohesive actions for achieving the 
pattern objective. A workflowlet includes <actions>, <Transitions> and 
<RelevantData>. An action is an abstract activity that is a placeholder for a set of 
services matching the action description. In some cases the cardinality of the set is 
more than one. If an action has the Goal type, it means that the action is a sub-goal 
that needs replanning and refinement by other appropriate patterns. Replanning can be 
done at planning time or at runtime according to the pattern’s category attribute.  

<Pattern> has two categories: Operational and Strategic. When a strategic 
pattern is applied, all the goal type actions in the workflowlet must be expanded by 
replanning before execution. Operational patterns may also contain goal type actions, 
but their refinements are left to runtime. 

<Transitions> describe the control and data dependencies between actions. 
<RelevantData> is a collection of parameters or variables used in the workflowlet.  
 

<Pattern id=” 4bec39c6-b727-4a2f-b83f-6f00669c2706” category=”operational” 
name=”Express procedure”>
<Problem>
<Goal id=”…” name=”Car Damage Claim” domain =”business.finance.insurance.carDamage”>
…</Goal>

</Problem>
<Scenario>
<PositiveFactors>
<ContextTerm weight=”0.7” contextinfo=”ClientType” benchmark=”VIP” 
evaluator=”eGreater” factor=”0” />
<ContextTerm weight=”0.3” contextinfo=”CreditLevel” benchmark=”85” 
evaluator=”eGreater” factor=”0.2” />
</PositiveFactors>

<NegativeFactors impactRatio=”0.3”>
<ContextTerm weight=”1” contextinfo=”Amount” benchmark=”3000” evaluator=”eGreater” 
factor=”0.2” />
</NegativeFactors>

</Scenario>
<Solution>
<Workflowlet id=”…”>
<Actions>
<Action id=”…” type=”BEGIN” name=”” … />
<Action id=”…” type=”NORMAL” name=”Record” … />
<Action id=”…” type=”GOAL” name=”Assessment”…/>
<Action id=”…” type=”NORMAL” name=”Payment” …/>…
</Actions>
<Transitions/>
<RelevantData/>

</Workflowlet>
</Solution>
</Pattern>  

Figure 2: A sample process pattern 

In brief, a workflowlet is the preferred process for solving the pattern problem in 
a situation conforming to the pattern scenario. When solving a sophisticated problem, 
the business goal may be decomposed into sub-goals through pattern matchmaking. 
After all sub-goals have been refined, the initial goal is mapped to several 
workflowlets. These workflowlets can be composed into a larger logical process 
definition. 

The pattern structure satisfies the requirements mentioned at the beginning of this 
section. First, a pattern is adequate and suitable for representing procedural 
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knowledge. In fact, a pattern naturally connects a process with its objective. Because 
there are no additional constraints for process specification, users can define a process 
in any way they like.  

Second, a pattern is well structured and cost-effective. It is easy to program in 
applications. The system mainly uses goal and context information in the planning 
phase and finds appropriate process solutions for the execution phase. This is simpler 
than taking all details such as operators, preconditions, and effects into consideration 
from the beginning of planning. 

Grain size or granularity is another important issue in knowledge representation. 
A pattern can describe knowledge at different levels of abstraction resolved to various 
levels of detail. A well-organized hierarchical pattern library minimizes visible 
complexity for the user and also provides adequate details for utilization. This feature 
makes it possible for existing planners to use patterns to generate workflows.  

Moreover, patterns are relatively independent of one another. This is convenient 
for building and updating a pattern library incrementally. A pattern-oriented system 
can expand its knowledge by finding implicit patterns during repeated planning for the 
same result in specific scenarios.  

2.2 Knowledge Base 

Without adequate declarative and expressive information about the environment and 
the application, making sophisticated planning and scheduling decision become very 
difficult or even impossible. In order to build a flexible and intelligent grid workflow 
system, patterns alone are not enough. More ontologies and metadata that describe the 
grid environment and business activities are needed as the semantic basis for 
matchmaking, reasoning and planning. 

A suggested knowledge base structure is shown in Figure 3. At the bottom, 
metadata and a shared ontology are defined in the form of OWL. The shared ontology 
describes basic elements of collaborative activity, including organization, task, event, 
goal, space, time and so on. This ontology and basic configuration are shared by the 
entire system. The application ontology and knowledge are built on top of the shared 
ontology. The application ontology describes the business entities (e.g., meta-context, 
goal, evaluator) and their relationships. Process patterns and supported goals are 
usually established by business experts. A policy includes rules, constraints and 
preferences, and is used for more elaborate process management.  
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Figure 3: Structure of knowledge base 

If the system needs to support a new application, the knowledge of this 
application domain should be added to the knowledge base, as shown on the right side 
of Figure 3. Theoretically, a system can support new business domains incrementally 
by adding new sets of application-specific knowledge and doing some configuration 
and administrative work. 

Obviously, how well the system performs mostly depends on the quality of the 
knowledge base. Although the ontologies and patterns are created by workflow 
experts and business analysts, knowledge, especially patterns, still needs to be 
validated, updated and improved in practice. Further discussion of knowledge 
management, especially process pattern conflict detection and resolution, will appear 
in a sequel to this paper. 

2.3 Pattern-oriented planning 
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Figure 4: Pattern-oriented planning 

Figure 4 outlines the basic procedure of pattern-oriented workflow generation. 
The knowledge base is shown decomposed into an ontology repository, a pattern base 
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and a policy. The ontology repository contains representations of goals supported by 
system. The pattern-oriented planning approach has multiple phases: a goal transform 
phase, a matchmaking phase, a planning phase and an execution phase. A business 
goal is mapped to a suitable process pattern according to the current situation. Then, 
sub-goals in the pattern solution can also refined by process matching. In this way, the 
goal is incrementally refined to an executable process. 

In detail, Figure 5 gives the basic algorithm for pattern-oriented planning. 
First, the user submits a business goal in terms of application vocabulary. The 

system then parses the user request and transforms it into the system goal format and 
attaches some context information to the user request. 

Second, the system checks the goal-context relationship in the policy, and finds 
the ‘most common context’ related to the goal. If there are some new contexts related 
to the goal, the system get their values from the corresponding context services. After 
that, system gets a declarative representation of the goal and a group of relevant 
context information. 

Third, a partial workflow, which is the interim result of the planning process, is 
initialized and the goal node is sent to the planning queue. 

Fourth, the system retrieves goal nodes from the planning queue in sequence, 
performs pattern matching and chooses suitable process patterns. 

 
Algorithm: GenerateWorkflow ( BizGoal task)

Input: bizTask
Output: proc

<g, cxt>  Parser.transform(task) 
<g, cxt>  getMostRelatedContext(g, cxt)            
partialFlow φ   
queue.enQueue( new node(g))

while ( node = queue. deQueue( ) )≠  φ  do
if node.type = goal then

p  MatchMaker.PatternMatching(node.goal, cxt)   
partialFlow.add(p.solution)                     
if p.category = strategic then

foreach (action in p.solution) then
queue.enQueue(new node(action))

end foreach
end if

end if
end while

proc  WorkflowComposer.compose(partialFlow)     
return proc  

Figure 5: Planning algorithm 
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Fifth, the solution of the applied pattern is added to the partial workflow. If the 
pattern is strategic, the system converts goal type actions to goal nodes and adds them 
to the queue. The system repeats these steps until the planning queue is empty. 

Finally, the partial workflow may have several workflowlets after planning. The 
system needs to compose and orchestrate these workflowlets into an integrated 
process according to the inter-dependencies of the corresponding patterns. After that, 
the process result probably still contains unexpanded portions. These sub-goal actions 
will be refined by replanning at runtime.  

Pattern matching includes domain filtering, goal matching and context matching. 
Every goal belongs to a specific domain. The system uses the target goal domain as a 
filter in the pattern library to reduce the scope of patterns. Then, all domain patterns 
are matched with the target goal to get candidate patterns that could solve the target 
problem. Finally, context matching measures the fit between the current situation and 
the scenarios in candidate patterns to decide whether or not to apply a pattern.  

The context terms in pattern scenarios are organized into two categories: positive 
factors and negative factors. The former depict suitable circumstances for application 
of this pattern, while the latter characterize situations in which this pattern should not 
be adopted. A score can be calculated to measure the concordance between the current 
situation and the pattern scenario. This context-scenario matching evaluation is shown 
as (2): 

1 1

( , ) ( , )
n m

i i j j

P P P N N N
i j

s r w f x p r w f x p b
= =

= − +∑ ∑     (2) 

where x  denotes current context data. ()i

Pf  and ()j

Nf  are specified as context 
evaluation functions. p  contains additional parameters for the context evaluators. 
Each evaluator returns a decimal score in [0, 1] assessing the context suitability. 

1
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n
i i

P P P
i
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∑ is the quantitative metric of the pattern’s degree of suitability. i

Pw  
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Pw ≥ , 0j
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w w

= =

= =∑ ∑ . The weights reflect the different importance of context terms in 

the pattern scenario. rP measures the intensity of the positive factors’ influence. For 

convenience, we often let rP=1. Similarly, 
1

( )
m

j j
N N N

j
r w f x

=
∑  assesses the degree of 

unsuitability of the pattern in the current environment. b is a bias constant; we often let 
b=0. 
The activities in pattern.solution are categorized into two types: atomic activity or 
abstract activity. An atomic activity can be directly bound to a resource for execution, 
whereas an abstract activity describes a business goal/sub-goal in the process. 
Pattern-oriented hierarchy planning can be summarized in five steps as follows: 

1) Parsing the business goal and collecting relevant context information. 
2) Pattern matching, including domain filtering, goal matching and context 

matching. Choosing the winning pattern for the goal by evaluation scores. 
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3) Taking abstract activities in the pattern solution as new goals for pattern 
matching and planning. 

4) Repeating matching until all pending abstracts node have been expanded.  
5) Finally, creating a new process in compliance with the plan tree.  
After planning, the workflow generated is assigned to appropriate services or 

resources by a scheduler for execution. The enactment engine can be a distributed job 
scheduler like DAGMan, a service choreography engine such as BPEL4WS, or 
another, user-developed enactment engine. The partially-specified portions of the 
process, i.e. goal type actions, will be refined at runtime on the basis of the context 
and the current state of the execution. 

In this approach, planning and execution is decoupled into two independent 
phases. The design of interleaved planning and execution stages makes the system 
more flexible for choosing suitable execution schemes for specific business domains. 
More importantly, the planner does not need to understand technical-level operators. 
This will help the planner to be domain-independent. 

The key issue that differentiates our approach from Pegasus is that we exploit 
high-level business knowledge to assist workflow generation. The knowledge and 
expertise of business processes are expressively represented as process patterns. As 
mentioned before, Pegasus lacks explicit knowledge. Its planner and the knowledge 
used in planning cannot be separated, so it is tightly bound to a specific application 
domain.  In contrast to Pegasus, the pattern-oriented approach separates the planner 
from the knowledge. The process pattern is proposed as a knowledge representation 
structure and is used in workflow generation. It is domain-independent and these 
features enable the system to be more flexible and scalable. 

Currently, semantic web research has provided some service choreography 
methods for process management, e.g. Web Service Modelling Language (WSML) 
[wsml, 06] and METEOR-S [Rohit, 04]. METEOR-S deploys QoS and preferences as 
constraints to turn the service composition problem into a constraint satisfaction 
problem. The process designers can bind Web Services to an abstract process based 
on constraints and generate an executable process. In contrast to the METEOR-S 
constraint satisfaction problem, our approach utilizes application knowledge to solve 
business tasks. From the user perspective, it is goal driven and more convenient to use. 
In addition, METEOR-S depends on semantic web service technology, whereas our 
approach can choose any suitable execution technology because the planning and 
execution stages are interleaved. In this way, the system can avoid being tightly 
coupled to underlying implementation techniques. 

3 Pattern Modelling and Optimization 

As the semantic basis of matchmaking, reasoning and planning in workflow 
generation, knowledge, such as the goal ontology, context and especially the process 
patterns, plays an essential role in the system. It is not only the foundation for 
workflow generation planning, but also promotes understanding between developers 
and workflow users.  

The scenario is the most complex and essential part of a pattern. Although every 
variable in (2) has a clear meaning, it is still a big challenge for experts to define 
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pattern scenarios. First, a complicated pattern scenario may involve many variables. It 
is very difficult for experts to accurately specify them depending only on empirical 
experience. Second, experts have to define appropriate context evaluators for each 
context term in a scenario, which requires considerable insight into business as well as 
mathematical capability. Finally, long-term, delicate manual modelling is costly.  

In order to reduce the difficulties in pattern modelling and make knowledge more 
precise, we provide a three-step method: predefined context evaluators, expert fuzzy 
modelling and machine learning. 

1) A set of evaluation functions ( ){ },iF f x p=  are provided by the system. The 
modeller can directly choose proper functions rather than define them. These 
evaluators cover the most common numerical comparison and set operators. 
In addition to the context input x , the evaluation function can also accept 
additional parameters p  for fine-grained adjustment of the evaluation 
calculation. 

2) Specialists build patterns using domain expertise, including choosing 
evaluators, determining parameters and weights, etc. For some abstruse 
parameters, experts can provide estimates. 

3) After a period of running, the pattern knowledge can be calibrated by the 
results of machine learning. We use tagged history data as the training sample, 
and then update the parameters of scenarios by classifier training. 

There are several advantages to this approach: First of all, the prior knowledge is 
utilized in pattern modelling. Although some parameters are estimates, the values 
given by experts are still approximately correct. This makes the subsequent training 
converge more rapidly. Second, because every variable in the context evaluation 
formula has a clear definition, the effect of changing the parameters is easier to 
understand for the user. This helps experts gain deeper insight into the business. For 
example, if a weight value grows substantially after training, it indicates that the 
experts probably underestimated the importance of the relevant context. Finally, this 
approach reduces difficulties and the workload of process pattern knowledge 
modelling. 

3.1 Pattern scenario classifier 

We first introduce the concepts of pattern cluster and scenario classifier. 
Definition 1: A pattern cluster is a set of patterns which have the same task or goal. 
PatternCluster(t) denotes the pattern cluster of task t. The count of patterns in a 
pattern cluster is called the cluster cardinality. 
Definition 2: A scenario classifier is a two-layer feed forward network for pattern 
clusters. The input units of layer 1 consist of the evaluation functions of pattern 
scenarios in PatternCluster(t) and a bias unit. Layer 2 contains sum units. The number 
of sum units is the cluster cardinality. There are weighted connections between the 
units in the two layers. The classifier takes a context vector as input and outputs 
scenario evaluation scores for patterns in the cluster.  The scenario classifier of 
PatternCluster(t) is named Classifier(t).  
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Figure 6: Pattern scenario classifier 

As shown in Figure 6, the context x  is the input vector of evaluation units f1, …, 
fn. In addition to x , evaluator fj also accepts an additional parameter vector jp , and 

returns ( ),j j jy f x p= . The connection between the k-th output unit and j-th 

evaluation unit has the weight kjw . The sum output unit calculates the dot product of 
the evaluators’ outputs and the weights of relevant connections. Hence, the output of 
scenario classifier sk is by definition: 

( ) 0
1

,
n

k kj j j k
j

s w f x p w
=

= +∑   (3) 

Obviously, (3) can be easily transformed to the previous scenario evaluation 
equation (2), so sk is the context-scenario matching score of the k-th pattern in the 
cluster. 

3.2 Sample acquisition 

In pattern matching, the system evaluates pattern suitability by matching the context 
with the pattern scenario. Candidate patterns are sorted in descending order of 
evaluation score in a queue called CP. The main purpose of machine learning is to 
generate more appropriate pattern sequences from context-scenario evaluation. 

The sample data provides an ideal CP for specific context information. It 
determines the priority of applying patterns for achieving the cluster’s task. 

First, context data is generated by a simulation program. The simulation can be 
specified with different probability distributions on sampling intervals. Then, the 
system takes the context input, evaluates matching scores on corresponding pattern 
clusters and returns relevant CPs. Finally, business analysts review the data, and 
modify some CPs based on their experience. 
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Therefore, the sample data TS is composed of two parts: automatic data TSA and 
revised data TSM. They have different significances; the automatic data calculated by 
the system confirms the correct aspects of prior knowledge, while the revised data 
modified by users reflects the unsatisfactory aspects.  

3.3 Classifier training 

In Figure 6, the outputs of the scenario classifier are the context matching scores for p1, 
p2, …, pc. In training, the output of the feed-forward calculation s  is compared with a 
target vector t . The training algorithm will adjust the classifier according to the 
comparison error to reduce the difference between s  and t . 

The back propagation (BP) algorithm is adopted in classifier training. It is a 
supervised learning technique based on gradient descent. BP is widely used in training 
neural networks and is successful in many fields. Based on back propagation, the 
training algorithm is listed in Table 1. 

The classifiers are saved in hash table CM. The training sample DS is divided into 
two sets: training set TS and validation set VS. 

The algorithm adopts a stochastic training protocol. At the beginning of each 
epoch, a training instance , ,td tk x i=< >  is randomly selected. Then, the system 
performs a feed forward calculation and gets score vector s . After that, the 
components of s are sorted in descending order, returning a new score vector 's and 
subscript vector 'i . 'i  records the original positions of the components in s . If 'i  is 
not equal to i in the training data, the system would train classifier(tk) with this error. 

 

ClassifierTraining (DS, tkList) 

Input:    DS: sample data set 
              tkList: task list for training. 
Output:  null 

foreach tk  in tkList         // tk is the goal/task 
[ ] ( )CM tk classifier tk←   // construct classifiers 

end foreach 
( ),TS VS partition DS←  

do 
0rE ←                // error ratio 

foreach td  in TS  
   , ,tk x i td< >←  
   ( )[ ],s forwardCalculation CM tk x←  

   ( )', ' ,s i sort s DESC< >←  

if 'i i≠  then 
  ( ', )t resortByIndex s i←     
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( )[ ] [ ], ,CM tk backpropagation CM tk x t←  
end if 

end foreach 
foreach td  in VS  
   , ,tk x i td< >←  
   ( )[ ],s forwardCalculation CM tk x←  

   ( )', ' ,s i sort s DESC< >←  

if 'i i≠  then 1r rE E← +   
end if 

end foreach 
r rE E VS←   

until | |rE εΔ ≤  or _epoch EPOCH MAX>  

( )updatePatterns CM       // update process patterns 

Table 1: Classifier training algorithm 

Because there are no teacher scores in the training data, the algorithm obtains a 
teacher vector t by resorting 's based on i . For example, supposing 
that 0.56, 0.71, 0.33s = ; after resorting we have ' 0.71, 0.56, 0.33s = , 

{ }' 2, 1, 3i = ; if in the sample data 3,1, 2i = , then the teacher vector is 

0.56, 0.33, 0.71t = . 

4 Case study 

4.1 Overview 

S-Power is a pilot application of a cooperative research project in the logistics field 
that combines process management and a variety of wireless technologies. Pattern-
oriented workflow generation is the essential component of S-Power. This section uses 
the sub-task “determining transportation mode” in a logistics process to illustrate how 
to model and optimize the related process pattern knowledge. 

First of all, we specified the most related contexts of the goal “determine 
transportation”. As shown in Table 2, the contexts are the most important factors for 
choosing the most suitable transport mode. The value ranges for each context were 
assigned empirically. SpecialLevel denotes the degree of difficulty of the transport. 
For example, special freight, such as oversize, overweight, fragile or liquid, will make 
the transportation more arduous and costly. 
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 Sym Range Notes 
ClientLevel c 0 ~ 100 Customer importance 
Distance d 2~3000 km Comm. distance 
Urgent u 0 ~ 10 Urgency degree 
TimeLeft t 1 ~ 200 Time left for delivery 
InsuranceAmt i 100~ 100000 Value 
DangerLevel a 0 ~ 10 Hazardous material 

level 
SpecialLevel s 0 ~ 100 Laboriousness  

Table 2: Contexts in transportation 

After that, an expert constructed the process patterns for different transportation 
modes. According to practice, the PatternCluster(lgs:transportation) had 5 patterns, 
including special plane pattern sap , air transport pattern ap , railway pattern rp , 
express truck pattern stp  and road transport tp . Thus, the transportation problem 
involved 7 contexts and 5 patterns with dozens of parameters. It was very difficult for 
experts to specify every parameter accurately. Therefore, fuzzy evaluation and 
estimation were used in pattern construction. 

As demonstrated in Table 3, experts gave fuzzy partitions of each context and 
estimated each evaluator’s weight. Literals such as ‘High’ or ‘Average’ denote 
different context evaluation functions. Negative values are the weight values of 
negative factors in pattern scenarios, while a value in row ‘-‘ is the negative impact 
ratio. 

 
SA. sap  Air ap  Rail rp  Exp. stp  Truck tp  

c Highest 
0.2 

High 
0.2 

Average 
0.2 

High 
0.2 

Average 
0.14 

d Far  
0.2 

Far  
0.2 

Average 
0.2 

Far  
-0.5 

Near 
0.15 

u Highest 
0.2 

High 
0.2 

Average 
-0.5 

Higher 
0.2 

Low 
0.14 

t Less 
0.2 

Little 
0.2 

Much 
0.2 

More 
-0.5 

Average 
0.15 

i High 
0.2 

Average 
0.2 

Average 
-0.5 

High 
0.2 

Low 
0.14 

- 0.3 0.3 0.3 0.3 0 
a Low 

-0.5 
High 
-0.5 

Low 
0.2 

High 
0.2 

Low 
0.14 

s Average 
-0.5 

High 
-0.5 

High 
0.2 

Low 
0.2 

Average 
0.14 

Table 3: Primary pattern modelling 
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The fuzzy concept gives experts a more convenient way to describe business 
expertise. When a problem is complicated, precise definitions will be very difficult or 
impossible. Consequently, using fuzzy and qualitative estimation is a feasible 
approach that brings stronger fault-tolerance to knowledge representation. For 
evaluating the context ClientLevel, the expert adopted three predefined evaluation 
functions: FuzzyGreater ( f> ), FuzzyEqual ( f= ) and FuzzyLess ( f< ) for describing 
highest, high and average rankings of client level. The fuzzy evaluators were 
implemented by Gaussian-like or Sigmoid-like functions. Fuzzy evaluators give the 
system more flexibility and smoother performance.  

The fuzzy partition and qualitative estimations seem imprecise, but they were still 
approximately correct because they were based on prior knowledge. These parameters 
would be optimized in subsequent classifier training. Therefore, this approach 
provided a good balance between correctness and modelling workload. 
 

 
Air transport ap  Rail transport rp  

c 0.2×f=(6, 85) 0.2×f<(0.6, 80) 
d 0.2×f>(0.01, 2100) 0.2×f=(300, 1500) 
u 0.2×f=(1, 7) (-0.5)×f=(1, 6) 
t 0.2×f=(16, 60) 0.2×f=(16, 140) 
i 0.2×f=(1400, 3000) (-0.5)×f=(1400, 3000) 
- 0.3 0.3 
a (-0.5)×f>(2, 6) 0.2×f<(2, 6) 
s (-0.5)×f>(0.3, 75) 0.2×f>(0.3, 75)  

Table 4: Pattern evaluator parameters 

Because many contexts were involved in each pattern, the weights of the contexts 
were initialized uniformly, as shown in Table 3. Table 4 shows two pattern scenario’s 
evaluators and parameters in detail. Only patterns | ap  and | rp  are listed due to space 
limitations. 

Supposing context , , , , , ,x c d u t i a s=< > , according to (2) and Table 4, the 
scenario matching score of railway transport pattern rp  could be calculated as follows: 

( , ) 0.2 (0.6,80, ) 0.2 (300,1500, )
0.2 (16,140, ) 0.2 (2,6, ) 0.2 (0.3,75, )
0.3 [0.5 (1,6, ) 0.5 (1400,3000, )]

rs p x f c f d
f t f a f s

f u f i

< =

= < >

= =

= ⋅ + ⋅
+ ⋅ + ⋅ + ⋅
− ⋅ ⋅ + ⋅

 

      
x  <84.7, 2132, 8, 106, 88902, 2.85, 87.5> 

CP 4 3 5 2 1 

Table 5: A training sample 
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The sample data could be obtained as described in Section 3.2. Table 5 shows a 
sample training instance, where CP=(4 3 5 2 1) represents the pattern sequence <Pst 
Pr Pt Pa Psa>. The scenario classifier training was offline learning implemented in 
Matlab 7.0. 

4.2 Result analysis 

First, the classifier(lgs:transportation) was built. It had 7 input components and 25 
evaluation units. There were 5 output components in layer 2 representing the matching 
scores of sap , ap , rp , stp , tp  respectively. Training set DS contained 500 sample 
data. The first 350 samples comprised the training set TS and the remaining 150 the 
validation set VS. The result of training is shown in Figure 7. 
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0.45

0.5
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Figure 7: Classifier training result 

The X-axis scale represents training epochs, and the Y-axis scale represents error 
ratio. The training error curve indicates the efficiency of the training algorithm, and 
the validation error curve reflects the generalization ability of the network. As shown 
in Figure 7, the training error ratio and validation error ratio decreased dramatically 
during the training. The initial errors of training and validation were both 
approximately 30%. After 5 epochs, the error ratios declined to about 10%. After 50 
training epochs, the error ratios were both under 10%, reaching 4% and 7.3% 
respectively. A small amount of overfitting after the 10th epoch occurred because some 
constraints had been applied to the parameters and weights according to their 
attributes in the evaluation functions. 

The initial error shows that the system performance couldn’t meet the users’ 
expectations with the primary knowledge modelling. However, the classifier training 
can could effectively optimize pattern knowledge and improve system performance. 
Furthermore, the training result could help the expert to better understand the business. 
For instance, in the primary modelling, the weights of positive factors in ap  and rp  
were set to 0.2, and the negative factor weight was -0.5. After training, the weight 
values were changed as shown in Table 6. 
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 Air transport ap  Rail transport rp  

c 0.17302 0.1784  
d 0.22332 0.20448  
u 0.21809 -0.5361 
t 0.21287 0.16371  
i 0.18644 -0.4531 
a -0.5458 0.19612 
s -0.4336 0.23947  

Table 6: Context weights after training 

The changes of weights indicated that different contexts had different importance 
in scenario matching. In the air transport pattern, the importance of the client level c 
was only 77% of the importance of the communication distance d, but the difference 
of the two weight values was just 0.05. Such a subtle difference is difficult for an 
expert to clearly specify. In the rail transport pattern, the weight of SpecialLevel s was 
0.23947, apparently higher than the TimeLeft t weight 0.16371, which implies that 
‘transport difficulties’ had a larger influence on railway transport decision than 
TimeLeft. 

The weights in Table 6 are raw data from training. Before use for updating 
knowledge, these values needed post-processing, including necessary round-off, 
weight normalization and other adjustments. Finally, the parameters of the process 
patterns could be updated according to the training result. 

5 Conclusions and future work 

Dynamic workflow generation is a crucial problem in grid workflow. AI planning 
approaches have been deployed in some research projects, but a lack of explicit 
knowledge is still the main disadvantage of this method.  

In this paper, the process pattern is proposed as a knowledge representation 
structure for business process knowledge. Based on the process pattern, we proposed a 
planning approach to automatically generate workflow by utilizing application-level 
knowledge. This approach provides a lightweight, efficient and cost-effective way to 
introduce knowledge into workflow generation. Working with an appropriate 
knowledge base, this approach can streamline the workflow optimization process and 
significantly improve system scalability.  

Knowledge plays an increasingly important role in workflow generation and has a 
growing influence on system performance. The correctness and efficiency of pattern 
knowledge have become crucial. To that end, this paper has proposed a hybrid 
approach for pattern knowledge building and optimization. Experts construct a 
primary model using their domain knowledge. For a complex pattern scenario, they 
can estimate parameters, even using fuzzy partitions in context evaluation. Then 
classifier training on tagged history data can adjust the pattern scenario settings. 
Finally, we can update the pattern knowledge according to the training result.  
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This approach both reduces the difficulties of manual knowledge modelling and 
ensures the correctness and efficiency of the pattern knowledge. Compared with 
traditional BP neural networks, classifier training has the advantages of lower initial 
errors, rapid convergence, better training outcome and knowledge update. 

We have deployed this approach in a prototype system. Our future work will 
include semantic-rich multi-modalities of process description, pattern conflict 
detection and resolution, more robust semantic reasoning for matching and some 
further implementation work. The pattern-oriented approach itself will also be refined 
and improved. 
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