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Abstract: Classical tree similarity measuring approaches focus on the structural and 
geometrical characteristics of the trees. The degree of similarity between two trees is measured 
by the minimal cost of editing sequences that convert one tree into the other one from pure 
structural perspective. Differently, when the trees are created to represent concept structures in 
a knowledge context (known as concept trees), the tree nodes represent concepts, not merely 
abstract elements occupying specific positions. Therefore, measuring similarity of such trees 
requires a more comprehensive method which takes the position, significance of the concepts 
(represented by the tree nodes), and conceptual similarity among the concepts from different 
trees into consideration. This paper extends the classical tree similarity measuring method to 
introduce tree transformation operations which transform one concept tree to another one. We 
propose definitions for the costs of the operations based on the position, importance of each 
concept within a concept structure, and similarity between individual concepts from different 
concept structures in a knowledge context. The method for computing the transformation costs 
and measuring similarity between different trees is presented. We apply the proposed method to 
ontology comparison where different ontologies for the same domain are represented as trees 
and their similarity is required to be measured. We show that the proposed method can 
facilitate the initiation of ontology integration and ontology trust evaluation. 
 
Keywords: Tree, Similarity Measuring, Transformation Operation, Transformation Cost, 
Ontology Integration, Ontology Comparison 
Categories: M.1 

1 Introduction  

Ontologies have been recognized as a fundamental infrastructure for advanced 
approaches to knowledge management [Arroyo, 07]. An ontology specifies a 
conceptualization of a domain in terms of concepts and their relationships [Guarino, 
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97]. Ontology can create an agreed-upon vocabulary for sharing knowledge, 
exchanging information, and eliminating ambiguity. An ontology can be viewed as a 
concept structure which contains concepts identified within a domain and 
relationships associating the concepts. It plays a very important role in many areas 
such as Collaborative Design [Shen, 01].  

In practice, it is not common that a shared ontology is provided for a specific 
domain and widely accepted. Contrarily, usually different communities may build 
their own ontologies that are heterogeneous in terms of structure and semantics, even 
the ontologies commit to the same conceptualization of that domain. Such 
heterogeneity is also known as conceptualization mismatch [Visser 97], which is a 
difference in the way a domain is interpreted (conceptualized), resulting in different 
ontological concepts or different relationships between those concepts due to different 
interests. For instance, in the domain of collaborative design, various design tools and 
standards are employed and their ontologies are often heterogeneous, which may 
hinder integration of the designs.  

Ontology integration [Pinto, 99] is developed to address such heterogeneities. 
Ontology integration refers to building a larger and more complete ontology reusing 
available ontologies from ontology libraries which serves at a higher level than that of 
the source ontologies. It is a very complex process as a part of the ontology 
development lifecycle [Pinto, 04]. 

In some cases the ontologies need to be compared to support initialization of the 
ontology integration process and ontology trust evaluation, e.g., finding one ontology 
among a group of ontologies that is more similar to many of others and taking is as 
the foundation of the integration.  

An ontology can be viewed as a concept structure representing some domain 
knowledge [Sanin, 07], and one commonly used form is a tree structure. Much of the 
research on comparing trees uses editing cost from one tree to another to measure the 
similarity of two trees [Guegan, 06]. The classical methods focus on the structural and 
geometrical characteristics of the trees, mainly considering the number of nodes 
affected by the tree editing operations [Allali, 04 and Guda, 02]. However, in a 
knowledge context where the trees are used to represent the concept structures, in 
addition to the structural characteristics of the trees, more attention must be paid to 
the concepts represented by the internal tree nodes. Therefore, besides the number of 
edited nodes, the positions and conceptual similarities of the affected nodes also have 
to be considered. 

The similarity of two individual concepts can be relatively easily estimated by 
domain experts. As an example, based on common sense, concepts “People” and 
“Human” are often regarded as referring to the same meaning, i.e. their similarity 
degree is 1. On the other hand, concept “Faculty” is not always exactly referring to 
the same thing as “Professor” in the university domain. Roughly speaking, a 
similarity degree can be assigned to these two concepts, say, 0.9, meaning that under 
around 90% occasions they are describing the same group but not in other cases. 
Some researches have also proposed various methods of determining conceptual 
similarity between individual concepts in a knowledge context [Warin, 05 and Han, 
00].  

Determining the similarity of various structures containing many concepts is 
another complicated research topic. For instance, given the following three trees in 
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Figure 1 (which are modelling the concept structures about the university domain and 
are developed by different people) where relationships between concepts are identical 
(“part-of” in this example) and a list describing the similarities of individual concept 
pairs (e.g. sim(People, Human) = 1 and sim(Faculty, Professor) = 0.9) which can be 
provided by domain experts, how can we determine the extent that they are similar to 
each other and which two are more similar? 
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T2
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Registered Student Faculty

University
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Research Center

Human

Professor Student
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Figure 1: An example of multiple concept trees for the same domain. 

Our work extends the classical tree editing operations and introduces the tree 
transformation operations. We propose four types of transformation operations which 
can transform one concept tree into another, and provide definitions for the cost of 
each operation considering the number of affected nodes, the scale of the node set, the 
conceptual significance of affected nodes, and the conceptual similarity of the node 
pairs (each node representing one concept) in a knowledge context. The degree of tree 
similarity is measured according to the tree transformation cost. This method can be 
applied to ontology comparison to support ontology integration in cases where 
different ontologies for the same domain can be represented as trees. 

The rest of this paper is organized as follows. In section 2 we analyze previous 
work in related research, and then in section 3 we present basic definitions of our 
work. Section 4 and 5 discuss tree transformation operations and their costs in detail. 
Section 6 presents the cost computing algorithm. A case study on ontology 
comparison is discussed in section 7. Finally section 8 concludes the whole paper and 
proposes our future work. 

2 Related Work 

Tree is one of the most commonly used combinatorial structures in computer science. 
Research on comparing tree structures has a long history in many fields. It has been 
well studied in several diverse areas such as computational biology, structured text 
databases, image analysis, and compiler optimization [Bille, 03]. In these researches 
edit cost (or edit distance) from one tree to another one is employed to measure 
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similarity degree of two trees [Guegan, 06, Guda, 02, Jin 05, and Allali, 04]. However, 
these researches are mainly focused on finding matches based on the pure structure or 
geometry perspective without considering the conceptual semantics of the tree nodes 
in a knowledge context. 

Tree patter matching is another one of the often used methods. For example, 
some researches explored the algorithm of matching pattern discovery in XML query 
[Yao, 04 and Bruno, 02] whereas they did not focus on the cost of matching. Another 
domain of using tree pattern matching is compiling where matching cost is defined 
through tree-rewriting rules and instruction types [Aho, 89]. 

Maedche et al conducted in-depth research of the similarity between ontologies 
[Maedche, 02]. In their research context, an ontology has a tree structure that is 
modeling a concept taxonomy. A method was developed to measure the similarity 
between ontologies based on the notions of lexicon, reference functions, and semantic 
cotopy. This method is based on an assumption that the same terms are used in 
different ontologies for concepts but their relative positions may vary. However, in 
many real ontologies different terms will be adopted to construct the concept 
taxonomies, although some of them have similar semantics. In these cases computing 
taxonomic overlap is not fully applicable and lexical level comparison becomes 
almost inapplicable. Furthermore, this research did not take the structural 
characteristics of trees into consideration. 

Li et al conducted a similar research on measuring similarity of ontologies 
(represented as trees) based on tree structure mapping [Li, 06]. They proposed a 
mapping method that combines the similarity of the inner structure of concepts in 
different ontologies and the language similarity of concepts. The similarity of 
concepts is computed from some lexical databases like WordNet [Warin, 05]. 
However, such a generic semantic similarity calculating algorithm is not perfectly 
applicable in domain-based concept systems. Furthermore, Li’s work did not handle 
cases of crossing-layer mappings, which is common in tree mapping where similar 
terms may be placed in various layers within the trees. 

Summarizing, to the best of our knowledge, no research has been fully done to 
measure the similarity of trees based on both structure comparing and concept 
comparing and apply it to ontology comparison. 

3 Definition for Concept Tree 

Tree comparing has been studied in many researches. These researches are mainly 
focused on finding matches based on the pure structure or geometry perspective (e.g. 
[Guda, 02 and Jin, 05]) without considering the conceptual semantics of the tree 
nodes in a knowledge context. 

We extend the traditional definition of trees for the sake of describing concept 
structures. The formal definition is given below: 

 
Definition 1: Concept Tree. An (unordered and labelled) Concept Tree is a six-

tuple T = (V, E, LV, root(T), D, M) where V is a finite set of nodes, E is a set of edges 
satisfying that E⊂V×V which implies an irreflexive and antisymmetric relationship 
between nodes, LV is a set of lexicons (terms) for concepts used as node labels, 
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root(T)∈V is the root of the tree, D is the domain of discourse,  and M is an injective 
mapping from V to LV, M: V→LV ensuring that each node has a unique label. For 
convenience, we simply call each term in LV a concept with an agreement of their 
semantics. A mapping from a node v to a label l is simply written as a tuple (v, l) ∈ 
M. 

A concept tree is acyclic and directed. If (u, v)∈E, we call u a parent of v and v a 
child of u, denoted as u = parent(v) or v = child(u). The set of all children of node u is 
denoted as C(u). For two nodes u1, u2∈V, if (u1, u2) ∈ E* holds, then we call u1 an 
ancestor of u2 and u2 a descendant of u1. The set of all descendants of node u is named 
D(u). 

The following conditions are satisfied by any concept tree: 
(1) The root node does not have parent node. 
(2) Any node in V other than the root has one and only one parent node. 
(3) For each non-root node u in V, there exists (root(T), u)∈E*, where E* is 

transitive closure of E, meaning that no any node is isolated from others. 
(4) There is a unique directed path composed by a sequence of elements in E 

from the root to each of the other elements in V. 
 
Definition 2: Conceptual Similarity Measure. A conceptual similarity measure 

21 , VV LL
S is a set of mappings from two lexicon sets LV1, LV2 used in different concept 

trees to the set of real numbers R, 
21 , VV LL

S : LV1×LV2→R, in which each mapping 

denotes the conceptual similarity between two concepts represented by these two 
lexicons. R has a range of (0, 1]. 

21 , VV LL
S  is semantically reflexive and symmetric, i.e. 

for l1∈LV1 and l2∈ LV2 we have 
21 , VV LL

S (l1, l1) = 1 and 
21 , VV LL

S (l1, l2) = 
21 , VV LL

S (l2, l1). 

For convenience, we simply use w = s(l1, l2) to refer to the number value of 
conceptual similarity between two concepts from two trees T1 and T2. Intuitively, the 
larger w is, the closer the two concepts are and w = 1 means two concepts are actually 
identical (the terms used to denote the concepts are synonymous). 

Conceptual similarity between two concepts can be given by domain experts or 
calculated based on some linguistic analysis methods. For instance, Mitra et al use a 
linguistic matcher to assign a similarity score to a pair of similar concepts [Mitra, 02]. 
As an example, given the strings “Department of Defense” and “Defense Ministry”, 
the match function returns match(Defense, Defense) = 1.0 and match(Department, 
Ministry) = 0.4, then it calculates the similarity between the two strings as: 
s(“Department of Defense”, “Defense Ministry”) = (1 + 0.4)/2 = 0.7. 

For l1∈LV1 and l2∈ LV2, if there is no definition for l1 and l2 in the measure, we 
view l1 and l2 as totally different (disjoint) concepts. Such a concept pair will not be 
considered when two concept trees are being compared. 

4 Tree Transformation Operations and Transformation Cost 

Tree transformation operations can map one tree T into another one, T’, as are defined 
below. 
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4.1 Deleting node v (denoted as delete(v)) 

If v≠ root(T), then V’ = V – {v}, E’ = E – {(u, v) | u = parent(v)} – {(v, vc) | vc ∈ C(v)} 
+ {(u, vc) | u = parent(v) ∧ vc ∈ C(v)}, LV’ = LV – {M(v)}, and M’ = M – {(v, M(v))}. 

It must be noted that when deleting one node, besides eliminating that node from 
the tree we still need to make its children nodes new direct children nodes of its 
parent node, which is different from deleting a sub-tree. 

If v = root(T), the result of deleting is a forest {T[vc] | vc∈C(v)}. In a concept tree 
the root is usually a very general concept like “object”, therefore we assume that all 
trees have a common root concept and restrict that the root is never allowed to be 
deleted. 

The deleting operation is depicted in the following Figure 2: 
 

i

j v

k l

T

i

j k l

T’

 

 
Figure 2: Deleting a node. 

4.2 Inserting node v under node u (denoted as insertu(v)) 

We have V’ = V + {v}, E’ = E + {(u, v)} + {(v, uc) | uc∈C’(u)} – {(u, uc) | uc∈C’(u)}, 
LV’ = LV + {lv}, and M’ = M + {(v, lv)}, where lv is the lexicon assigned to the new 
node v, and C′(u) ⊆ C(u) meaning that some children nodes of u are changed to be 
children of the new node v. The elements contained in C’(u) is determined by the 
context when performing the editing operation. 

The inserting operation is depicted in Figure 3: 
 

 

 
Figure 3: Inserting a node. 
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4.3 Re-labelling node v (denoted as relabellv→lv’(v)) 

This is a particular operation in labelled tree. Re-labelling of v with label lv is to 
assign v a new label lv

’, keeping positions of all nodes unchanged. We have LV’ = LV – 
{lv} + {lv

’} and M’ = M – {(v, lv)} + {(v, lv
’ )}, where lv

’ is the new label assigned to v, 
as is depicted in the following Figure 4. 
 

 

 
Figure 4: Re-labelling a node. 

4.4 Moving node v to be under node u (denoted as moveu(v)) 

This is an extended operation in a knowledge context that is not defined in classical 
tree editing operation sets. From Figure 5 we see that in the case of pure structured 
trees (a) and (b) two operations delete(E) and insertB(E) can be performed to convert 
(a) to (b). However, when mapping a concept tree to another one we cannot simply 
delete a node and then insert it since the concept represented by the node’s label 
already exists in the tree. 
 

 
Figure 5: An example of moving operation. 

More specifically, in Figure 5 two trees (c) and (d) put the concept “Professor” in 
different positions and by moving node “Professor” to be under “Employee” we 
transform (c) to (d), instead of deleting “Professor” and then inserting it back (from  
(c) to (e) and then (e) to (d)). 
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The moving operation regulates that V’ = V, E’ = E + {(u, v)} + {(v, uc) | 
uc∈C’(u)} + {(parent(v), vc) | vc∈C(v)} – {(parent(v), v)} – {(v, vc) | vc∈C(v)} – {(u, 
uc) | uc∈C’(u)}, where C′(u) ⊆ C(u) meaning that some children of node u are 
changed to be children of the node v based on the operation context. 

4.5 Definition for Transformation Cost 

Definition 3: Transformation Cost. Each transformation operation Op on tree T is 
mapped to a real number which is defined as the transformation cost of the operation 
and denoted as γ(Op). The transformation cost reflects the extent of change it makes 
to the tree. 

If OP = {Op1, Op2, …, Opk} is an transformation sequence, then the 
transformation cost of the sequence is defined as ∑ =

=
= ||

1
)()( OPi

i iOpOP γγ . 

Definition 4: Tree Transformation Cost and Similarity Index. If OP is a 
transformation sequence mapping a tree T1 to another tree T2, then the tree 
transformation cost from T1 to T2 is defined as 

γ(T1→T2) = min{γ(OP) | OP is a transformation sequence mapping T1 to T2 }. 
 
Also, we define similarity index of two trees T1 and T2 as 
γ (T1, T2) = min{γ (T1→T2), γ (T2→T1)}. 
It is a measure representing the extent to which two trees are similar to each 

other. The higher the tree transformation cost and similarity index is, the less similar 
the two trees are and vice versa. 

5 Computing of Transformation Cost 

In a tree transforming process we need to count the total cost of all transformation 
operations. A tree transforming process that maps tree T1 = (V1, E1, LV1, root(T1), D, 
M1) into T2 = (V2, E2, LV2, root(T2), D, M2) based on 

21 , VV LL
S  contains the following 

tasks: 
(1) Compute the set of nodes to be deleted, D, in T1.  
D = {u | u∈V1 ∧ M1(u)∉LV2 ∧ ¬∃s(M1(u), l2)∈ 21 , VV LL

S (l2∈LV2)}. That is, the nodes 

which labels are appearing in T1 but T2 and have no conceptual similarity with any 
labels in T2 defined (the concepts represented by the nodes in T1 are totally not 
contained by T2). 

(2) Compute the set of nodes to be inserted into T1, I.  
I = {v | v∈V2 ∧ M2(v)∉LV1 ∧ ¬∃s(l1, M2(v))∈

21 , VV LL
S (l1∈LV1)}. That is, the nodes 

which labels are appearing in T2 but T1 and do not have conceptual similarity 
definition with any labels in T1 (the concepts represented by the nodes in T2 are totally 
not contained by T1). 

(3) Try every possible combination of the deletion and insertion operations and 
find the minimal cost. 

(4) Compute the set of nodes to be moved within T1 itself, M, and move them. 
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M = {u | u∈V1 ∧ (M1(u)∈LV2 ∧ M1(parent(u)) ≠ M2(parent(M2
-1(M1(u)))) ∧ 

¬∃s(M1(parent(u)), M2(parent(M2
-1(M1(u)))))∈ 

21 , VV LL
S ) ∨ (∃s(M1(u), l2)∈ 

21 , VV LL
S  

(l2∈LV2)) ∧ M1(parent(u))≠ M2(parent(M2
-1(l2))) ∧ ¬∃s(M1(parent(u)), M2(parent(M2

-

1(l2)))) ∈ 21 , VV LL
S )}. That is, the nodes that are appearing in both T1 and T2, or which 

labels have conceptual similarity with labels defined in T2, but which parents are 
neither the same nor similar. 

(5) After the deleting, inserting, and moving operations are performed on T1, T1 
now has the same structure with T2, but still has some nodes with different labels 
(implying different conceptual semantics). The final task is to compute the set of 
nodes to be re-labelled, R, and re-label them. R = {u | u∈V1 ∧ M1(u)∉LV2 ∧ ∃s(M1(u), 
l2)∈ 

21 , VV LL
S  (l2∈LV2)}. That is, the nodes that are appearing in both T1 and T2 with 

different labels, but the labels have conceptual similarity between them. 
Let OP be the editing sequence containing operations in the above tasks, the 

transforming cost is computed as follows (using pure operation names): 

 
The cost of each transformation operation (deleting, inserting, moving, and re-

labelling) is a key issue for the measuring. The cost is affected by the level that a node 
resides in the tree structure, the scale of the node set, the number of descendants of a 
node, and the similarity of two concepts (labels) attached to two nodes. For example, 
first, a node at a higher layer contains richer semantics than a lower node does, or, the 
concept it represents is more significant for the domain than a lower one does. 
Therefore, when a node u is at a higher layer, the effect to the concept tree of deleting 
u or inserting a new node under u is larger than that of deleting or inserting a node at a 
lower layer. Second, the more nodes a tree has, the less the effect will be when one 
node is deleted or inserted. That is, the larger the concept tree is, the less different it 
will be if it gets one new concept or loses one old concept. Third, a node with more 
descendants will cause greater change to the tree structure if it is deleted, or greater 
change is made if a node gets more descendants after it is inserted. Finally, the more 
similar the two concepts are, the less the cost will be to change one into the other one. 

Based on the research of [Bille, 03 and Kruskal, 99] and above observations, we 
define the cost for each transformation operation as follows: 

 Deleting cost. 

||
|)(|1)()())((

V
vDvdepthTheightvdelete ++−=γ , where v is a non-root node, 

height(T) is a function calculating the height of tree T, depth(v) calculates the depth of 
node v, and |D(v)| is the number of descendants of node v (including its direct children 
and indirect offspring). Intuitively, depth(root(T)) = 1, and depth(v) > 1 iff v is not the 
root. If v is a leaf node, D(v) = ∅ and |D(v)| = 0. When v is a leaf node at the lowest 
level (height(T) = depth(v)), deleting v will cause the minimal effect to the tree and 
γ(delete(v)) = 1/|V|. Note that here V refers to the original node set before the deletion. 

 Inserting cost. 

}))(())(())(())((min{)(21 ∑∑∑∑
∈∈∈∈

→ +++=
RiMiIiDi

TT irelabelimoveiinsertideleteOP γγγγγ

1774 Xue Y., Wang C., Ghenniwa H.H., Shen W.: A Tree Similarity Measuring ...



||
|)(|1)()())((

V
vDudepthTheightvinsertu

++−=γ , where |D(v)| is the number of 

descendants that v gets after it is inserted. Note that here V refers to the original node 
set before the insertion. When u is at the lowest layer, inserting a new node v under u 
will result in the minimal cost γ(insertu(v)) = 1/|V|. 

 Moving cost. 

||
2||))](())(([

2
1))((

V
Vvinsertvdeletevmove uu

−×+= γγγ , where |V|>2 (the tree has a 

root and at least two non-root nodes) and u ≠ parent(v). Note that here insertu(v) is 
performed on a tree without node v. In this definition we consider both deleting and 
inserting operations because the moving operation does generate effects similar to 
deleting and inserting, although not exactly the same. The factor 1/2 adjusts the cost 
of operations since the node is not truly deleted and inserted into the tree. Another 
factor (|V| - 2)/|V| adjusts the cost again to ensure that in an extreme case where v is 
the only node other than the root, its moving cost should be 0 (actually it cannot be 
moved) and when the number of nodes in the tree grows, the effect of the moving 
operation to the tree structure turns weaker. 

 Re-labelling cost. 
This cost is heavily dependent on the similarity of two labels (concepts). Re-

labelling cost is different from deleting cost, inserting cost, or moving cost since the 
re-labelling operation does not result in change of a tree structure. Kouylekov et al 
[Kouylekov, 05] proposed a definition for substitution of two similar words w1, w2 as 
γ(insert(w2))×(1 – sim(w1, w2)) where insert(w2) is the cost of inserting w2 and sim(w1, 
w2) is the similarity between w1 and w2. This definition does not take the deletion of 
the original word into consideration, therefore when two words have no conceptual 
similarity the cost of substitution becomes the cost of insertion, neglecting the implicit 
deleting operation. In our work we give a more comprehensive definition. 

Let the conceptual similarity measure between two labels lv1, lv2 which are 
attached to node v be s, 0≤s≤1, we define: 

)1())](())(([))(( )(21
svinsertvdeletevrelabel vparentll vv

−×+=→ γγγ  
We analyze two extreme cases: if s = 1, then re-labelling will only result in literal 

replacing without any loss of information, therefore the re-labelling cost is 0; if s = 0 
(i.e., the two concepts are totally different), the re-labelling operation is equivalent to 
deleting v and inserting v again, the transformation cost is γ(delete(v)) + 
γ(insertparent(v)(v)). In other cases, the cost will be between these two boundaries. 

6 Cost Computing Algorithm 

The cost computing algorithm is composed by a pre-processing phase and a 
transforming phase, as depicted below. The pre-processing phase finds the nodes that 
are to be deleted and inserted. In the transforming phase, an exhaustive method is 
used to try every possible transformation sequence to find the minimal cost. 

A. The pre-processing phase. 
Input: Tree T1 and T2; Concept similarity measure set 

21 , VV LL
S  
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Output: Sets of nodes to be deleted, D, and inserted, I 
Algorithm: 
1) D = ∅; 
2) for every node u in V1  
3) { 
4)   if(not exists any l in LV2 such that M1(u) = l) 
5)     if(not exists any s(M1(u), l) in 

21 , VV LL
S ) 

6)       add u into D; 
7) } 
8) I = ∅; 
9) for every node v in V2 
10) { 
11)   if(not exists any l in LV1 such that M2(v) = l) 
12)     if(not exists any s(l, M2(v)) in 

21 , VV LL
S ) 

13)       add v into I; 
14) } 
15) return D and I; 

 
B. The transforming cost computing phase. 
Input: Tree T1 and T2; D, I; Concept similarity measure set 

21 , VV LL
S  

Output: γ (T1→T2) 
Algorithm: 
1) find all permutations composed by elements in D∪I and store in P; 
2) transformCost = +∞; 
3) for each permutation p in P 
4) { 
5)   backup T1 and T2; 
6)   editCost = 0; 
7)   for each element u in p 
8)   { 
9)     perform deletion (if u∈D) or insertion (if u∈I) on u if applicable; 
10)     editCost = editCost + (γ(delete(u)) or γ(insert(v))); 
11)   } 
12)   for each u in V1 but not in p 
13)   { /* handle the nodes to be moved. */ 
14)     if(exists l in LV2 such that M1(u) = l or exists any s(M1(u), l) in 

21 , VV LL
S ) 

15)       if(M1 (parent(u)) ≠ M2 (parent(M2
-1(l))) and  

16)         not exists any s(M1 (parent(u)), M2 (parent(M2
-1(l))) in 

21 , VV LL
S ) 

17)         perform moving on u; 
18)         editCost = editCost + γ(move(u)); 
19)   } 
20)   for each u in V1 but not in p 
21)   { /* handle the nodes to be re-labelled. */ 
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22)     if(exists l in LV2 such that exists any s(M1(u), l) in 
21 , VV LL

S ) 

23)       perform re-labelling on u; 
24)       editCost = editCost + γ(relabel(u)); 
25)   } 
26)   transformCost = min(transformCost, editCost); 
27)   restore T1 and T2; 
28) } 
29) return transformCost; 

 
In this algorithm a backup operation and a restore operation are included, which 

are used to setup a common starting point each time a new operation sequence is tried. 
The same algorithm can be used to compute the cost of converting T2 into T1, 

therefore the similarity index of T1 and T2 can be determined. 
Following we give the time complexity analysis of the algorithm: Given two trees 

T1 = (V1, E1, L1
V1, root(T1), D, M1), T2 = (V2, E2, L2

V2, root(T2), D, M2), and a 
conceptual similarity measure 

21 , VV LL
S , let |V1| and |E1| be the number of nodes and 

edges in T1, |V2| and |E2| be the number of nodes and edges in T2, so the upper bound 
of |

21 , VV LL
S | is |V1|×|V2|. In the pre-processing phase, the times to search T1, T2 as well 

as 
21 , VV LL

S  are: 

|V1|×|V2|×|V2| + |V2|×|V1|×|V1| 
Without loss of generality, we assume that two trees have similar sizes. That is, 

|V1| ≈ |V2| ≈ n. Therefore, we have |E1| ≈ |E2| ≈ n-1. The time complexity of the pre-
processing phase is O(n3). 

In the cost computing phase, by average half of the nodes in T1 may be deleted 
and half of the nodes in T2 need to be inserted, so the complexity of getting the 
permutations of D∪I is O(n(n + 1)/2) = O(n2). The average times of deleting and 
inserting nodes are n. When moving the nodes, by average n/4 nodes can be moved 
(half of the untouched nodes), and the time complexity of finding the position to 
move for each node is O(n/4 + n/4) = O(n/2) (considering both the node itself and its 
parent node). The time complexity of the relabeling operations is O(n/4). Therefore, 
the time complexity of the cost computing phase is O(n2)×O(n + n/2×n/2 + n/2) = 
O(n4).  

To sum up, the time complexity of the algorithm is O(n3) + O(n4) = O(n4). 
Usually in an ontology the number of concepts is limited and the comparison is often 
an one-time action, therefore the cost is acceptable although better tree comparison 
algorithms can be explored to reduce the cost. 

7 Application on Ontology Comparison 

In the situations where two trees should be compared not only based on their 
geometrical structures but also the concept structure implicated by their structures, 
our method can be applied to measure their similarity in a knowledge context. The 
integration of ontologies, as a type of knowledge integration [Alfirevic, 04], is among 
such situations.  
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In ontology integration, we consider the following two tasks that require ontology 
comparison to be crucial: 

(1) Before starting the integration, find from the original candidate ontologies one 
that is relatively more similar to most of others (meaning that it is possibly a better 
one) and take it as a foundation to initialize the integration.  

(2) Or, after the integration process is finished, compare the integrated result (the 
global ontology) obtained with the original candidate ontologies to find the best one 
among them that is the most similar to the integrated result, i.e., to evaluate the trust 
of the original candidate ontologies. 

Both the above two tasks require some way to measure the similarity of different 
ontologies (composed by concepts and relationships, therefore bearing structural 
characteristic), other than just the similarity of individual concepts. 

In many cases an ontology can be organized into a tree structure where each node 
represents one concept, semantics of the relationships between concepts are identical 
(e.g. “part-of” or “is-a”), and each concept is related to only one parent concept [Cho, 
06]. Our method is able to help evaluate the similarities between different ontologies. 

Figure 1 shows three simplified ontologies for the university domain. Given that a 
set of measures describing the similarities of individual concept pairs are defined: 

 s(People, Human) = 1; 
 s(Registered Student, Student) = 1, and 
 s(Faculty, Professor) = 0.9. 

One transformation sequence mapping T1 to T2 causes the following costs: 
(1) γ(delete(Student Residence)) = 2/7 = 0.29; 
(2) γ(insertUniversity(Organization)) = 4/6 = 0.67 (making Department a child node 

of Organization); 
(3) γ(insertOrganization(Library)) = 2/7 = 0.29; 
(4) γ(moveOrganization(Research Center)) = (1/2)((1/4) + (2/7))(6/8) = 0.20; 
(5) γ(relabelPeople→Human(People)) = 0; 
(6) γ(relabelRegistered Student→Student(Registered Student)) = 0; 
(7) γ(relabelFaculty→Professor(Faculty)) = 0.041. 
Finally, the entire tree transformation cost is 1.491. We have to point out that 

compared with the deleting, inserting, and moving costs, the re-labelling operation 
has a minimal effect on the tree, therefore, its cost is much smaller than the cost of the 
other three types of operations.  

Usually there are various ways to map one tree into another one with different 
costs. For instance, in the university case, if both “Department” and “Research 
Center” are made child nodes of “Organization” when inserting “Organization”, the 
inserting cost will be changed to 0.83, and there will be no moving cost. Consequently, 
the entire matching cost becomes 1.451. 

The following Table 1 summarizes the transformation cost and similarity index 
between the three trees: 
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Tree Pair Transformation  Cost Similarity 
Index 

γ(T1→T2) γ(T2→T1) γ (T1, T2) T1, T2 
1.227 1.034 1.034 

γ(T1→T3) γ(T3→T1) γ (T1, T3) T1, T3 
2.839 2.614 2.614 

γ(T2→T3) γ(T3→T2) γ (T2, T3) T2, T3 
2.128  2.039 2.039 

Table 1: Transformation cost and similarity index. 

Since T2 is closer to both T1 and T3, it is better to be employed as a foundation for 
the integration.  

On the other hand, if T2 is the result of the integration based on T1 and T3, T1 can 
be claimed more trustable since it is closer to the common ontology (T2) in terms of 
both structure and knowledge contained in its structure. 

8 Conclusion and Future Work 

In this work we extend the classical tree editing operation based similarity measuring 
method to make it more applicable to compare trees that are representing concept 
structures. We propose definitions for tree transformation operations and 
transformation costs based on structural characteristics of the concept trees under 
comparison and the similarity of individual concept pairs represented by the tree 
nodes. We apply this method to ontology comparison where different ontologies of 
one domain can be represented as trees and relationships between concepts are 
identical. By discovering the similarity between ontologies we are able to choose the 
best one from a set of candidate ontologies and take it as the foundation to initialize 
the ontology integratio. Also the trust of these ontologies can be evaluated. 

In our next step we will extend the tree structure to a graph which can model 
more complex concepts and relationships. New definitions for graph transformation 
operation and transformation cost are to be explored. Meanwhile, more types of 
relationships among concepts have to be considered, which requires further 
considerations on the semantics of the relationships. 
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