
A QoS Perspective on Exception Diagnosis in Service-
Oriented Computing

Nazaraf Shah
(Department of Computer Science, University of Essex, Colchester, UK

shahn@essex.ac.uk)

Rahat Iqbal
(Department of Computing and the Digital Environment, Coventry University, Coventry, UK

r.iqbal@coventry.ac.uk)

Kashif Iqbal

(School of Computer Sciences, Universiti Sains Malaysia (USM), Penang, Malaysia
kashif@cs.usm.my)

Anne James
(Department of Computing and the Digital Environment, Coventry University, Coventry, UK

a.james@coventry.ac.uk)

Abstract: Unlike object-oriented applications it is difficult to address exceptions in multi-agent
systems due to their highly dynamic and autonomous nature. Our previous work has examined
exception diagnosis in multi-agent systems based on a heuristic classification method. In this
paper, we extend our work by applying an exception diagnosis method to web services (WS) by
proposing a unified framework for dealing with exceptions occurring in multi-agent systems as
well as in web services. Importantly, we relate the impact of exceptions to Quality of Service
(QoS), as exceptions normally degrade the quality of service offered to a service consumer.
Our framework consists of a QoS monitoring agent that monitors all interactions taking place
between service consumers and service providers. The monitoring agent encodes the
knowledge of exceptions, their causes and applies the heuristic classification method for
reasoning in order to diagnose underlying causes of monitored exceptions. In this paper, we
categorize exceptions into three levels in multi-agent systems: Environment Level Exception;
Knowledge Level Exception and Social Level Exception. This paper also discusses different
classes of exceptions in web services based on the web service stack.

Keywords: Multi-Agent Systems, QoS, Exception Diagnoses, Heuristic Classfication
Categories: D.2.5, M.4

1 Introduction

Maintaining QoS in the presence of various kinds of exceptions in service oriented
systems is a challenging task as such systems are running in a dynamic and open
environment where different exceptions (e.g. network connection failure, protocol
mismatch, and CPU exceptions) inevitably occur. Such exceptions have implications
in achieving the desired level of QoS. In the worst case, these exceptions may result
in unavailability of the services, causing the service to renege on its Service Level

Journal of Universal Computer Science, vol. 15, no. 9 (2009), 1871-1885
submitted: 15/8/08, accepted: 25/4/09, appeared: 1/5/09 © J.UCS

Agreement. Therefore, it is important to effectively diagnose the causes of such
exceptions so as to initiate effective remedial actions at the right time to eliminate or
minimise the adverse effect of these exceptions.

Exceptions can be categorized and diagnosed at three levels in multi-agent
systems [Shah, 06]. These levels are: Environment Level Exception; Knowledge
Level Exception and Social Level Exception. Environment exceptions normally occur
within the internal environment of an agent and its associated software components.
Knowledge Level Exceptions are those that result from a wrong selection of action
due to the agent’s outdated environmental knowledge, or to a misunderstanding of a
domain concept. Social Level Exceptions are related to the malfunctioning of an
interaction channel, agent dependencies or an organisational relationship.

Exceptions in web services are classified based on a web service stack model
[Ort, 09]. They include: Wire Stack Exceptions; Description Stack Exceptions; and
Discovery Stack Exceptions. Wire Stack Exceptions are concerned with transport
protocols and related technologies. Description Stack Exceptions are concerned with
orchestration, composition, service level agreements, business process and the
interface description. Discovery Stack Exceptions include exceptions related to
technologies for service publication and discovery.

This paper focuses on an exception diagnosis mechanism for a service-oriented
architecture. The service-oriented architecture can be realised using multi-agent
systems or web services. However, the technologies and mechanisms used to realize
these systems are different for web services and agent-oriented services [WS, 09]
[Franklin, 96] but they are similar in terms of interoperability, scalability and
flexibility.

The main purpose of classifying exceptions, in service-oriented computing, into
three classes is to limit the scope of diagnosis mechanism and provide it with a limited
search space for exception diagnosis. This helps the diagnosis mechanism to focus its
search on relevant classes of exceptions and thus effectively reduces its search space.
The exceptions in various classes are organised in a tree structure. The most abstract
exceptions are at the top of the hierarchy and the most specialised exceptions are
arranged at the bottom of the hierarchy of a tree structure. For further details, readers
are referred to [Shah, 09].

Our previous work has examined exception diagnosis in multi-agent systems
based on a heuristic classification method [Shah, 05]. In the heuristic classification
approach, programs employ an inference structure that systematically relates data to a
pre-enumerated set of solutions by abstraction, heuristic association and refinement
[Clancy, 85]. It can support diagnosis agents in detecting the root causes of observed
faults and in determining the level of such faults.

We have also shown that the issues of QoS from user perspective can be
investigated using user-centred design and evaluation approaches including
ethnography [Iqbal-a, 06]. Such approaches can help to conduct an effective and
rigorous analysis of working practices taking place in real world and real time
phenomena. Through user-centred design approaches, we extracted expert knowledge
in order to build systems supporting the critical operations of document management
systems [Iqbal-b, 06].

1872 Shah N., Iqbal R., Iqbal K., James A.: A QoS Perspective ...

In this paper, we extend our work by applying an exception diagnosis method to
web services by proposing a unified framework for dealing with exceptions in multi-
agent systems as well as in web services. Importantly, we relate the impact of
exceptions to Quality of Service (QoS) as exceptions normally degrade the quality of
service offered to a service consumer. Our framework consists of a QoS monitoring
agent that monitors all interactions taking place between service consumers and
service providers. The monitoring agent encodes the knowledge of exceptions, their
causes and applies the heuristic classification method of reasoning in order to
diagnose underlying causes of monitored exceptions.

The rest of the paper is organised as follows. Section 2 provides the discussion of
technological differences between web services and agent services and their
interaction styles. Section 3 discusses the proposed framework. Section 4 provides
discussion on commitments in relation to QoS maintenance. Section 5 provides the
classification of exceptions in agents. Section 6 provides the classification of web
services exceptions. Finally section 7 summarises the work and provides an outline for
future work.

2 Agent-Oriented Services and Web Services

Web Services (WS) are a technology designed to support interoperable machine to
machine interaction over a network [Web, 04]. WS are accessed by standard internet
technologies, such as SOAP, XML and HTTP. A web service can be registered
(advertised) and inquired about (searched) by using the technology of Universal
Description, Discovery and Integration (UDDI) [Clement, 04]. The WS Description
Language (WSDL) [Christensen, 01] provides a machine-processable interface in
which components that contribute to a composite web service can be executed
automatically.

Simple Object Access Protocol (SOAP) [Gudgin, 03] is a text-based (specifically
XML-based) communication protocol which can be conveyed by other underlying
transmission protocols such as HTTP and SMTP. A SOAP message helps the
different executing components of a web service to interoperate when these
components are distributed on a network. SOAP is based on the request-response
communication style and uses tags to inform a counterpart when faults occur. For
example, the tag <faultcode> is used to classify the faults such as VersionMismatch,
DataEncodingUnknown. The tag <faultstring>, in addition, is intended to provide a
human readable explanation of the fault. This characteristic is not sufficient when we
expect the composite web service to be carried out without human interference. Such a
notation makes it difficult for various service components to address the effect of
faults on QoS.

Agent-oriented services and web services both realize the vision of Service
Oriented Computing (SOC). Agent-oriented services use the agent communication
language (ACL) [FIPA, 00], interaction protocols [FIPA, 09] and semantic language
in order to manage the issues of interoperability and heterogeneity. Various
methodologies have been suggested for developing agent systems [Gomez-Sanz , 04],
[Rosaci, 07].

1873Shah N., Iqbal R., Iqbal K., James A.: A QoS Perspective ...

Web services are invoked using basic request-response operations. Composition
of existing WS is provided by using the Business Process Execution Language
(BPEL) [Das, 07]. The BPEL provides the specifications and standards for defining
business processes. It supports basic exception handling by monitoring fault messages
and deadlines at each step of the process. The exceptions that are not covered by fault
messages cannot be handled adequately by the mechanisms used by the simple
request-response model of WS or by BPEL. The BPEL uses a fault handling model
that supports nested transactions. Such a fault management model is not suitable for
managing QoS.

Software faults in WS may arise at different layering levels, such as protocol
level, binding level or SOAP faults. Every layer has its own fault diagnosing and
handling mechanism and can handle certain exceptions, or it reports the exception to a
higher level in the hierarchy. These exceptions are diagnosed and handled by
traditional methods which rely on the underlying communication and programming
models. Such methods continue to be developed and can be drawn up by a higher
lever process such as that described in this paper [Fetzer, 07], [Tabakow 07].

On the other hand invocations of agent-oriented services are governed by standard
interaction protocols. Web services Coordination (WS-Coordination) defines an
extensible framework for coordination of component services using a coordinator and
a set of coordination protocols [Web, 05]. The standard coordination protocols and
mechanisms available for agent-oriented services add complex rich coordination
capabilities to these services, whereas coordination mechanisms in WS do not provide
such complex and rich coordination capabilities. For this reason we propose the use of
agents in order to manage QoS in service oriented applications.

WS fault handling mainly focuses on reporting exceptions in a generic way (for
example the SOAP fault) rather then diagnosing underlying causes of these exceptions
and enacting resolution strategies in order to maintain the required level of QoS.
These approaches rely on exception handling support provided by the underlying
programming models. A few research efforts address the issue of exception handling
in composite web services [Chafle, 05] [Greiner, 04]. These approaches rely on the
BPEL engine to propagate faults to service consumers if not handled by locally
available handlers [Web 05] or rules for handling quality of service [Greiner, 04].
These faults, if not handled adequately, will have a severe effect on QoS.

It is essential to have a fault diagnosis and handling and performance monitoring
services mechanism in agent-oriented services and web services that provides a
uniform QoS related monitoring and handling capability to all services and at the same
time provides an element of trust between these services and the QoS monitoring
agents. Web services and agent-oriented services are based on open standards for
interoperability, such as representation, coordination and interaction. An effective
QoS related fault diagnosis mechanism is required to take into account the issues of
interoperability and openness. Our proposed fault diagnosis mechanism attempts to
address the issues raised above.

1874 Shah N., Iqbal R., Iqbal K., James A.: A QoS Perspective ...

3 Proposed Framework

Our proposed approach provides a unified framework for monitoring QoS in service-
oriented applications and helps to achieve the desired level of QoS by diagnosing the
cases of degradation. In order to offload the burden on services of implementing the
complex QoS monitoring and diagnosis capabilities, the proposed approach is realized
using QoS monitoring agents. Each service in a service-oriented application is
assigned a QoS monitoring agent and communication between service consumer and
service provider is carried out via QoS agents. This results in a system composed of
QoS monitoring agents and services as shown in Figure 1. Figure 1 shows only one
QoS monitoring agent, thus showing centralized configuration of the systems. In a
distributed configuration each service has its own associated QoS monitoring agent;
such a configuration deals effectively with the scalability and fault tolerant
characteristics of distributed systems. It is assumed that the service provider and the
service consumer agents are FIPA [20] compliant. The QoS monitoring agent is
equipped with the knowledge of various exceptions that have an effect on QoS, their
symptoms and their underlying causes. The QoS monitoring agent has both an agent
and a web service based interface that enable it to interact both with agent services
and web services. All interactions between services take place via a QoS monitoring
agent in order to detect any abnormality in QoS. The QoS agreement between service
consumers and services are considered as commitments between service providers and
service consumers. These commitments are translated in into rules and the rules are
then used by the QoS monitoring agent for monitoring QoS.

Figure 1: System Structure

1875Shah N., Iqbal R., Iqbal K., James A.: A QoS Perspective ...

The QoS monitoring agent is based on two main components known as the
detection module and the diagnostic capability. The detection module is responsible
for monitoring the service’s interactions and actively seeking symptoms of
compromised QoS in interactions. The structure of the monitoring agent is shown in
Figure 2.

Figure 2: Monitoring and Exception Detection

Figure 2 shows that every message sent to the Detection Module is checked for
any potential abnormality. The outcome of this module is an ACL/SOAP message or
an abnormal event. The expected behaviour is based on the protocol currently being
used to govern an interaction and the current state of the commitment. When an
abnormality is detected by the detection module an exceptional event is constructed
and posted to the diagnostic capability. The diagnostic capability applies the Heuristic
Classification (HC) [Clancy, 85] approach to uncover the underlying cause of a given
symptom. It formulates a diagnostic set to test the conditions that confirm or
contradict the presence of underlying causes of the given symptom. The presence and
confirmation of such a condition is ascertained by using its plans. The diagnosis plans
are activated by posting exceptional events. The invocation of plans simulates the
backward chaining reasoning process.

Figure 3 shows the HC process involved when a QoS monitoring agent receives a
complaint from its associated service consumer. Four BeliefSets are used to simulate
the HC method for diagnosing all types of exception. The fifth BeliefSet is different,
used for complaint related exceptions and other exceptions detected by the Detection
Module. For example when an ACL/SOAP message containing a complaint is
received by a QoS monitoring agent, the complaint information is retrieved from the
ACL message and a complaint exceptional event is posted to the Diagnostic

1876 Shah N., Iqbal R., Iqbal K., James A.: A QoS Perspective ...

Capability. A chain of plans in the Diagnostic Capability is invoked in order to
diagnose the cause of the complaint. The reasoning process starts by retrieving goals
and their associated preconditions from the Goal BeliefSet and the Conditions
BeliefSet. All preconditions of a goal are initialized by asking questions of the
associated services. After all preconditions of a goal are initialized, the next step
involves the matching of preconditions and the goal with exception rules in the Rule
BeliefSet. If a rule is matched, an assertion is made in the Assertion BeliefSet,
otherwise no assertion will be made and the reasoning process will be repeated with
the next goal and its associated preconditions. This process continues until a diagnosis
agent reaches a conclusion or could not make a conclusion based on its own
knowledge and that of its associated agent.

Figure 3: Exception Diagnosis Process

1877Shah N., Iqbal R., Iqbal K., James A.: A QoS Perspective ...

4 Commitments and QoS Aspects

Commitments are formed explicitly by exchanging information regarding an
agreement being formed between agents and the conditions on this agreement. Such
commitments are known as social commitments. The commitments that a service
makes to itself are known as local commitments.

Every social commitment is formed based on a protocol/contract known to the
services involved in the commitment. The chosen protocol provides the guidance for
the creation, satisfaction and cancellation of a commitment. Service providers and
consumers are implicitly committed to the interaction protocols they are employing
when forming social commitments and explicitly committed to the performance of a
task once an agreement is mutually made by the agents. Social commitments are also
influenced by the social policies of an agent based service application and an agent’s
local policies. A social commitment between service providers “Agent A” and “Agent
B” and local commitments are depicted in Figure 4. Social commitment is shown by
an arrow emanating from “Agent A” to “Agent B”. Local commitments are shown by
agents’ internal selected intentions. Only social commitments are visible to QoS
monitoring agents, local commitments are know to individual agents only. The QoS
agents monitor social commitment only, the monitoring of individual commitments is
the responsibility their associated service. These social commitments have their
foundation on QoS related agreements. By using the notion of commitment in agents
and realizing the service level agreements in a set of rules, QoS monitoring can be
monitored effectively. Broken commitment can be handled by negating and
coordinating among various services.

Singh [Singh, 99] treats a commitment as a first class object and defines six
different operations on a commitment object known as: Create, Discharge, Cancel,
Release, Delegate, and Assign. We use the Create, Cancel, Discharge operations of a
commitment as defined in [Singh, 99] and two of our proposed operations known as
Activate and Violate.

1878 Shah N., Iqbal R., Iqbal K., James A.: A QoS Perspective ...

Figure 4: Showing Local and Social Commitment

These operations are performed on a commitment by an agent according to the
role of its associated agent.

• Create: Commitment is created and put in initial state.
• Activate: Commitment status is changed to activated when an agree or an accept-

proposal message is received from the commitment debtor.
• Cancel: In an open system the conditions for a cancel action must be explicitly

stated by the debtor agent, e.g. in the domain of a travel agent a flight ticket
cancellation action will refer to the minimum time required for the cancellation
action and the penalty involved in cancellation. The creditor must send a valid
cancellation message; any message that does not conform to the cancellation
conditions set by the debtor is an exception.

• Discharge: The debtor agent’s diagnosis agent performs the discharge action on
the commitment by sending the result of the action back to the creditor agent.

• Violate: The debtor agent’s diagnosis agent performs the discharge action on the
commitment by reporting failure to the creditor agent.

1879Shah N., Iqbal R., Iqbal K., James A.: A QoS Perspective ...

5 Classification of Multi-agent Exceptions

It is proposed that exceptions in service are characterised at three levels, known as:
environment level; knowledge level; and social level. Environment and knowledge
level exceptions propagate to the social level if not dealt within their corresponding
levels. Such propagation compounds the complexity of exception diagnosis. The
classification of an exception at different levels provides us with an effective tool to
analyse and understand exceptions by limiting their scope to their respective level.
The environment level exceptions are concerned with web services and agents
whereas knowledge level and social exceptions are concerned with agents only.

5.1 Environment Exceptions

Environment exceptions are those exceptions that occur within the internal
environment of an agent or web service and its associated software components. In
procedural and object oriented programming models, invalid inputs are considered as
environment exceptions. We do not consider such input exceptions as environment
exceptions; rather we treat them as social exceptions. The environmental exceptions
include, software design defects, garbage data returned from software components,
disk full exceptions, I/O exceptions, CPU exceptions or other program exceptions.

Environment exceptions are represented using alphanumeric strings in structured
programming environments and by the objects of exception classes in object-oriented
environments. Environment exceptions are detected, diagnosed, and resolved by using
exception handling techniques provided as a part of the language/environment system.
The complexity of diagnosing the causes of environment exceptions increases with the
increase in number of software components being used by an agent/web service for
supporting its functionality. When an agent’s/web service component fails to detect,
diagnose and deal with an environment exception, the exception then propagates to the
agent/web service level environment. The subsequent diagnosis of this exception is
made harder by the potential environmental differences. This is due to the fact that
different programming environments use different exception handling models and
their exception representations also differ greatly.

5.2 Knowledge Level Exceptions

The knowledge level (KL) is defined by Newell [Newell, 82] as a computer level that
sits above the symbol level. The KL is characterised by knowledge as the medium and
the principle of rationality as its law of behaviour. The principle of rationality
[Newell, 82] states that if an agent has knowledge that one of its actions will achieve
one of its goal, and then it will take that action. The KL enables us to view an agent in
terms of its actions and goals, together with the principle of rationality, without getting
bogged down with the agent’s internal structure. The selection of an action for
achieving a goal also depends on the agent’s current knowledge about its environment.
An agent may make the wrong action selection if its assumptions about its
environment are not valid.

The KL is an abstraction made by an observer. The diagnosis agent acts as an
observer associated with a problem solving agent. Being able to play the role of an

1880 Shah N., Iqbal R., Iqbal K., James A.: A QoS Perspective ...

observer, the diagnosis agent has the knowledge of goals and actions of its associated
agent. The KL exceptions are those exceptions that result from a wrong selection of
action due to the agent’s outdated environment knowledge, or to a misunderstanding
of a domain concept. The diagnosis agents detect and diagnose the exceptions that are
related to wrong action selection for the achievement of a goal. The domain related
concept exceptions are dealt with using the ontology of the domain concepts and the
actions allowed on those concepts.

Agents are knowledgeable entities and interactions between them are considered
in terms of knowledge exchange [Gaspari, 98]. The knowledge of an agent in a given
society can be divided into two types: what is known as self knowledge (action, goal);
and knowledge about its environment, including other agents. The knowledge about
their capabilities and how to interact with other agents is a level above the KL and is
known as social knowledge.

5.3 Social Level Exceptions

The focus of the KL is on a single asocial agent. When we consider a society of
agents, we need to consider social aspects involved in the effective management of the
society. The KL says nothing about the social aspects of a mulit-agent system (MAS).
A new level is needed to accommodate the social character of an agent society.
Jennings proposes such a new level above the KL, known as the “social level”
[Jennings, 00]. It is concerned with social level principles for MAS’s.

The components of the social level are agents, interaction channels, dependencies,
and organisational relationships. The behaviour law at the social level is the principal
of organisational rationality instead of the principal of individual rationality.

Exceptions related to the malfunctioning of an interaction channel, agent
dependencies or, organisational relationship, are classified as social exceptions. The
majority of social level exceptions are context dependent [Shah, 05]. The diagnosis
agent contains the knowledge of the way the social relationships are established,
maintained and discharged in a community of autonomous agents. Our proposed
mechanism assumes a peer-to-peer organisational relationship among problem solving
agents, which is conforming to FIPA standards for an open MAS.

A diagnosis agent starts the diagnosis process when an exception surfaces at the
social level and moves down to the knowledge and environment levels in order to
classify the exception and diagnose its underlying cause. If the exception belongs to
the social level, then the diagnosis agent will not investigate the knowledge level or
environment level. For example lost message or dropped commitment (in favour of a
better choice or due to malice) exceptions are social level exceptions and do not
involve the knowledge level or the environment level diagnoses. On other hand when
a protocol state skip exception surfaces at the social level, its underlying cause could
be that agent is deliberately trying to fool the other agent or it may be an
environmental level exception due to a bug in the agent code.

The exception diagnosis process employed by a diagnosis agent is depicted in
figure 5.

1881Shah N., Iqbal R., Iqbal K., James A.: A QoS Perspective ...

Unhandled Faults

En
vi

ro
nm

en
ta

l L
ev

el
Fa

ul
ts

Unhandled Faults

K
no

w
le

dg
e

Le
ve

l
Fa

ul
ts

S
oc

ia
l L

ev
el

Fa
ul

ts

Social Level
Diagnosis

Knowledge Level
Diagnosis

Environmental Level
Diagnosis

Social
Fault

Knowledge
Fault

Environmental
Fault

Figure 5: Levels of Exceptions

6 Exception Classification in Web Services

Although agent-oriented systems and web services share same types of low level
exceptions, their higher level exceptions differ due to difference in their computational
model and their associated attributes. The composition of web services into business
processes may introduce or lead to process related exceptions, which may not manifest
themselves as low level computational exceptions. Diagnosing the cause of such
exceptions involves the use of service level agreements and policy driven exception
management. We classify web services exceptions based on the web services stack
model and a class of exception that may result from composition of web services in a
business process.

6.1 Wire Stack Exceptions

The exceptions in the wire stack are a class of exceptions that comes from
technologies and protocols that are used to realise the wire stack. This stack is
basically concerned with the actual exchange of data, i.e. protocols and technologies

1882 Shah N., Iqbal R., Iqbal K., James A.: A QoS Perspective ...

associated with physical exchange of data. Exceptions related to SOAP, MIME,
HTTP, TCP etc belong to this class of exceptions.

6.2 Description Stack Exceptions

This class of exception is concerned with orchestration, composition, service level
agreement (SLA), business process, interface description and policy related
exceptions. For example hardware failure, communication failure, hardware and
software upgrade are mentioned as exceptions in SLA. Such exceptions are exceptions
to rules specified in SLA. Business process exceptions are high level exceptions of
varying origin. Such exceptions require a elaborated diagnosis mechanism in order to
discover underlying cause of the manifested exception

6.3 Discovery Stack Exceptions

The discovery stack is concerned with technologies for service publication and
discovery. These technologies conform to principle of interoperability. All exceptions
that may occur in inspection, publication and discovery sub-layers are known as
discovery stack exceptions. This class mainly includes WSDL faults and these faults
are identified by the name of fault and target name space of the corresponding port
type.

The main purpose of classification of web services exception into three classes is
to limit the scope of the diagnosis mechanism and limit its exception diagnosis search
space. The security, management and QoS apply to all components of the web service
as described above. Exceptions occurring for any of above components or violation
of security have effect on QoS of the system.

7 Conclusions

We have presented a QoS monitoring and diagnosis approach for agent-oriented
services and web services. The proposed approach monitors and diagnoses the
underlying causes of commitment violation heuristically and interactively without
violating the autonomy of the services involved. The proposed architecture is
FIPA/web services compliant and can be integrated with FIPA compliant agent-
oriented services and web services. The proposed approach is based on well known
and well accepted technologies, such as heuristic classification, coordination
protocols, state machines, the FIPA ACL and web services standards, which makes it
suitable for providing QoS monitoring of services to any FIPA compliant, agent-
oriented services system or web services system.

In this paper, we have categorized exceptions into three levels in multi-agent
systems: environment level exception; knowledge level exception and social level
exception. We have also discussed different classes of exceptions in web services
based on the web service stack. These include: wire stack exceptions; description
stack exceptions; and discovery stack exceptions. The main purpose of classifying
exceptions, in both multi-agent system and web services, into three classes is to limit

1883Shah N., Iqbal R., Iqbal K., James A.: A QoS Perspective ...

the scope of the diagnosis mechanism for a particular exception and thus limit its
exception diagnosis search space.

Our future work will include accumulating more knowledge related to exceptions
and extending the exception tree. Following that we intend to implement various
remedial strategies for dealing with different exceptions both in multi-agent system
and web services. We will also evaluate this work by applying the approach to the
supply chain management domain.

References

[Chafle, 05] Chafle, G., Chandra, S., Kankar, P., Mann, V.: Handling Faults in Decentralized
Orchestration of Composite Web Services, In Proc. ICSOC 2005, LNCS 3826, pp. 410-423,
2005

[Christensen, 01] Christensen, E., Curbera, F., Meredith, G., Weerawarana S.: Web Services
Description Language (WSDL) 1.1, W3C, 2001,
http://www.w3.org/TR/2001/NOTE-wsdl-20010315, 15th March 2001

[Clancy, 85] Clancy, W., J.: Heuristic Classification, Artificial Intelligence, 27, Elsevier, 289-
350, 1985

[Clement, 04] Clement, L., Hately, A., Riegen, C., Rogers, T., UDDI Version 3.0.2, OASIS,
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm. 2004

[Das, 07] Das, M., Yiu, A., Kund, K.,: A Close Look at BPEL 2.00, Sys-Con Media, 2007,
http://www.sys-con.com.node/434430

[Fetzer C 07] Fetzer, C., Felber, P., Improving Program Correctness with Atomic Exception
Handling, Journal of Universal Computer Science, 13, 8, 2007

[FIPA, 00] FIPA Communicative Act Library Specification, Available:
http://www.fipa.org/specs/fipa00037/SC00037J.pdf, 2000

[FIPA, 09] FIPA Interaction Protocols Specifications, Available:
http://www.fipa.org/repository/ips.php3. Accessed on May 2009

[Foundation, 09]Foundation for Intelligent Physical Agents, Available:
http://www.fipa.org/. Accessed on May 2009

[Franklin, 96] Franklin, S., Graesser, A. :Is it an Agent, or Just a Program?: A Taxonomy for
Autonomous Agents, In Proc of the Workshop on Intelligent Agents III, Agent Theories,
Architectures, and Languages, 21-35, 1996

[Gaspari, 98] Gaspari, M.: Concurrency and Knowledge Level Communication in Agent
Languages, Artificial Intelligence, 105(1-2), Elsevier, 1-45. 1998

[Gomez-Sanz, 04] Gomez-Sanz, J., Pavon, J., Methodologies for Developing Multi-Agent
Systems, Journal of Universal Computer Science, 10, 4, 2004

[Greiner, 04] Greiner, U., Ram, E.: Quality-Oriented Handling of Exceptions in Web-Service
Based Cooperative Processes”, In Proc of EAI-Workshop 2004 - Enterprise Application
Integration, Oldenburg, Berlin, 11-18, 2004

[Gudgin, 03] Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J-J., Nielsen, H., F.: SOAP
Version 1.2 Part 1: Messaging Framework, W3C, 2003: http://www.w3.org/TR/2003/REC-

1884 Shah N., Iqbal R., Iqbal K., James A.: A QoS Perspective ...

soap12-part1-20030624/

[Iqbal-a, 06] Iqbal, R., Shah, N.H., James, A., Younas, M., Chao, K-M.: A User Perspective of
QoS for Ubiquitous Collaborating Systems”, In Proc of 10th Intl Conf. on Computer Supported
Cooperative Work in Design Conference (CSCWD 2006),IEEE Computer Society Press, 2006

[Iqbal-b, 06] Iqbal R., Shah N, James A., Younas M., Chao K-M “Developing Ubiquitous
Collaborating Multi-Agent Systems Based on QoS Requirements”, Computer Supported
Cooperative Work, Springer-Verlag, Lecture Notes in Computer Science, 2006

[Jennings, 00] Jennings, N., R.: On Agent-Based Software Engineering”, Artificial Intelligence,
Elsevier 1179, 277-297, 2000

[Newell, 82] Newell, A.: The Knowledge Level, Artificial Intelligence, 19, 87-127 Elsevier,
1982

[Ort, 09] Ort, E.: Service-Oriented Architecture and Web Services - Concept, Technologies,
and Tools. Available:
http://java.sun.com/developer/technicalArticles/WebServices/soa2/soa2.pdf. Accessed on May
2009

[Rosaci 05] Rosaci, D, Exploiting Agent Ontologies in B2C Virtual Marketplaces, Journal of
Universal Computer Science, 11, 6, 2005

[Shah, 06] Shah, N., Lo, C-C., Huang, C-L, Chao, K-M., Godwin, N.: Exception Diagnosis for
Agent-Oriented Services, Systems, Man and Cybernetics, 3017- 3022, 2006

[Shah, 09] Shah, N., Iqbal, R., James, A., Iqbal, K.: Exception representation and management
in open multi- agent systems, Journal of Information Sciences, 2009.

[Shah, 05] Shah, N., Chao, K-M., Godwin, N., James, A.: Exception Diagnosis in Multi-Agent
Systems, In Proc of IEEE/WIC/ACM International Conference on Intelligent Agent
Technology, 483-486, 2005

[Singh, 99] Singh M., P.: An Ontology for Commitments in Multiagent Systems: Toward a
Unification of Normative Concepts, Artificial Intelligence and Law, volume 7, 97-113, 1999.

[Tabakow 07] Tabakow, I., Using Place Invariants and Test Point Placement to Isolate Faults
in Discrete Event Systems, Journal of Universal Computer Science, 13, 2, 2007

[Web, 04] Web Services Architecture, 2004, Available via: http://www.w3.org/TR/ws-arch/

[Web, 05] Web Services Cordination (WS-Coordination), 2005, Available:
ftp://www6.software.ibm.com/software/developer/library/WS-Coordination.pdf

[WS, 09] WS-I Organization, Available via: http://www.ws-i.org/. Accessed on May 09

1885Shah N., Iqbal R., Iqbal K., James A.: A QoS Perspective ...

