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Abstract: To gain insight into the relationship between physical theories and com-
putation, we examine the link between measurement devices and computers in the
framework of TTE. Starting from a formal definition of a measurement procedure,
different approaches to associate a representation with a measurement procedure are
studied, and an equivalence class of representations suitable for representing the results
of a measurement is defined for each measurement procedure.
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1 Introduction

1.1 Computable Analysis and Physics

The search for a theory of computation capable of dealing with real numbers
was driven, among other reasons, by the wish to study computational properties
of physical systems. Due to the continuous nature of many physical models,
computable analysis promises to be adequate for formalizing their computational
aspects. However, a concise model of interaction between physical systems and
computational devices has not been established yet. While recently some general
steps for interpreting physical systems as computational devices, focusing on
classical computability theory, were suggested in [Beggs and Tucker (2007)], a
more detailed view seems to be necessary in the next step. A survey on the
research in these directions can be found in [Beggs and Tucker (2004)]; a short
introduction is given in [Yao (2003)].

The role of measurements has been neglected in a considerable part of the lit-
erature, and even when measurements are defined explicitly as in
[Geroch and Hartle (1986)], the definition remains unprecise. The focus of the
present work is a formalisation of measurements as an interface between physical
reality and a computational device, rather than interpreting the outcome of a
measurement as result of a computation. As noted e.g. in [Bosserhoff (2008)],
measurements inevitably introduce stochastic concepts into a formal model.

An important distinction to be taken is between measurements in classical
physics and measurements in quantum physics. The role of measurements in
quantum physics is still subject of open philosophical debates, and in general
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of a different nature than the role of measurement in classical physics. Thus,
in the present paper considerations will be limited to classical physics. For a
mathematical presentation of classical mechanics we refer to [Arnold (1989)], a
standard textbook is [Feyman et al. (1963)].

1.2 Stochastic Concepts in Computable Analysis

A straight-forward way to introduce stochastic concepts into computable analy-
sis consists in creating representations for stochastic objects such as probability
distributions. This approach was taken in e.g. [Weihrauch (1999)], and in a more
general fashion in [Schröder and Simpson (2006)], [Schröder (2007)]. While rep-
resentations of probability measures promise to be very useful for modeling the
behaviour of quantum systems, they do not match the perspective on uncertainty
in measurements widespread in classical physics, as the uncertainty is attributed
to the measurement process rather than to the measured entity itself.

Another approach is presented by [Bosserhoff (2008)]; it consists in defining
a notion of almost everywhere computable functions, as well as some related
notions. The aspect of the measurement itself, however, is left out.

1.3 The Model

A measurement device is considered to be an interface between some kind of
physical entity and a computer, which in particular is assumed to be digital.
Real measurement devices usually put out finite decimal fractions, however, by
choosing units appropriately, only natural numbers need to be permitted. For
easier modeling, restrictions of output size, yielding a finite output range, are
omitted, and every natural number is permitted as output.

To account for measuring errors1, the output of the device is not completely
determined by the state of the physical entity. Instead, the state of the physi-
cal entity only determines a probability density on the natural numbers, to be
interpreted as the respective probabilities of a number occurring as output.

To be a valid source of insight about physical reality, an experiment is re-
quired to be reproducible2. Thus, in the limit of infinite repetitions, an infinite
sequence of natural numbers arises. The probability density on the set of natu-
ral numbers determined by the state of the physical object induces naturally a
probability measure on the set of sequences of natural numbers.
1 If measurement errors were avoidable, the physical entity could be completely deter-

mined by the result of a single measurement. This, however, is a natural number, so
the space of possible values would be countable. In our model, values with uncount-
able range can never be measured without errors.

2 An interesting discussion of this postulate can be found in [Feyman et al. (1963),
Part 1, Chapter 6, Section 1].
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Figure 1: Modeling Measurements

The infinite sequences of natural numbers produced according to these prob-
ability measures now serve as input for a computer, modeled as a Type-2-Turing
machine as defined in [Weihrauch (2000)]. Both δ-names (for a representation δ)
and the results of a random process as described above are infinite sequences of
natural numbers, however, the respective interpretation of these sequences are
very distinct. Several approaches towards a link between these interpretations
are presented here.

2 Preliminaries

2.1 General

The set of natural numbers is denoted by N, 0 is not considered to be a natural
number. N∗ denotes the set of finite sequence of natural numbers, Nω denotes
the set of infinite sequences of natural numbers. Q is the set of rational numbers
and R is the set of real numbers.

For a finite sequence s ∈ N∗, |s| denotes the length of s. For w ∈ Nω the n-th
number of w is referred to as wn, the same holds for s ∈ N∗, as long as n ≤ |s|.
w≤n ∈ N∗ is the sequence consisting of the first n numbers in w for w ∈ Nω,
s≤n is to be interpreted analogously. For a finite or infinite sequence w, ck,n(w)
denotes the number of occurrences of the number k in w≤n.

For S ⊆ N∗, SNω denotes the set {w ∈ Nω | ∃s ∈ S ∃n ∈ N w≤n = s}, sNω

means the same as {s}Nω. For w ∈ Nω, let Rw = {n ∈ N | ∃i ∈ N wi = n}.
〈〉 denotes a certain bijective computable function from Nn to N, so that

the inverse function is again computable. The value of n will be clear from
the context. νQ : N → Q is a fixed total numbering of Q, so that all usual
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operations on Q are computable, νZ is a fixed total numbering of Z, again, all
usual operations are assumed to be computable.

2.2 Topology

Though the relation to topology might not be obvious, topological concepts
are needed for the following considerations. A topology T on a set X is a set
of subsets of X containing ∅ and X , which is closed under finite intersections
and arbitrary unions. The elements of a topology are called open sets, their
complements are called closed sets. A topology T is T0, if for all x, y ∈ X , x 
= y,
a U ∈ T with either x ∈ U , y /∈ U or x /∈ U , y ∈ U exists.

A topological space is a pair (X, T ) consisting of a set X and a topology T
on X . A function f : X → Y is continuous with respect to topologies TX on
X and TY on Y , if for all O ∈ TY , f−1(O) ∈ TX holds. A partial function is
continuous, if its restriction to its domain is continuous. A sequence (yn)n∈N of
elements of X converges to x ∈ X in the space (X, T ), if for every U ∈ T with
x ∈ U there is a n0 ∈ N so that for n ≥ n0, yn ∈ U follows.

Following [Schröder (2002)], a set B of subsets of X is called a pseudobase of
a topological space (X, T ), if for every open set U ∈ T , every x ∈ U and every
sequence (yn)n∈N converging to x, there is a B ∈ B and a n0 ∈ N satisfying
x ∈ B and yn ∈ B for n ≥ n0. A pseudosubbase of (X, T ) is a set B of subsets
of X , so that the set of finite intersections of elements of B is a pseudobase of
(X, T ).

On Nω, a standard topology S is given by S = {WNω | W ⊆ N∗}∪{Nω}. On
N and Q the discrete topologies 2N and 2Q are used, on R we assume the usual
Euclidean topology. For a comprehensive presentation of topology, we refer the
reader to [Dugundji (1970)].

2.3 Computable Analysis

A notion of computability for partial functions on Nω is constructed by Type-2-
Turing machines; each computable function is also continuous. For definitions we
refer to [Weihrauch (2000)]. A representation is a surjective partial function from
Nω to the represented set X . Using these, a relativised concept of computability
for functions f : X → Y can be derived as following: f is called (δ, ρ)-computable
for a representation δ of X and a representation ρ of Y , if there is a computable
partial function F satisfying ρ ◦ F (w) = f ◦ δ(w) for all w ∈ dom(δ).

A representation ρ is (computably) reducible to δ, ρ � δ (ρ �c δ), if there
exists a continuous (computable) partial function f on Nω with ρ(w) = δ(f(w))
for all w ∈ dom(ρ). ρ and δ are (computably) equivalent, ρ ≡ δ (ρ ≡c δ), if δ � ρ

and ρ � δ (δ �c ρ and ρ �c δ) hold.
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If the represented set X is equipped with a topology T , a representation
δ of X is continuous, if it is continuous as a partial function. For a T0-space
(X, T ) with a countable pseudosubbase {Bn | n ∈ N}, a standard representation
δ is introduced, generalising a notion from [Schröder (2002)]3, defined through
δ(w) = x if x ∈ Bwn for all n ∈ N and for each U ∈ T with x ∈ U , there is
an i ∈ N so that

⋂
j<i

Bwj ⊆ U holds. A representation ρ of X is admissible with

respect to a topology T on X , if ρ is equivalent to a standard representation δ of
(X, T ). Especially, only those topological spaces possess admissible representa-
tions, that are T0 and have a countable pseudobase. Admissible representations
employ a range of useful properties, for details we refer to [Weihrauch (2000)] or
[Schröder (2002)].

2.4 Probability Theory

A σ-algebra A on a set X is a set of subsets closed under countable intersections,
countable unions, and the formation of complements, and includes the set X . The
set of subsets of N forms the standard σ-algebra on N. The standard σ-algebra
σNω on Nω is generated by the standard topology on Nω.

A probability density on N is a function p : N → I, satisfying
∞∑

n=1
p(n) = 1.

The set of probability densities on N is denoted by P. Each probability density p

on N uniquely determines a probability measure p̄ on N through p̄(A) =
∑

n∈A

p(n).

A probability measure on Nω is a function P : A → R, where A is the

standard σ-algebra on Nω, satisfying P (Nω) = 1 and P (
∞⋃

n=1
An) =

∞∑
n=1

P (An) for

all sequences of pairwise disjunct sets An in A. Each probability density p on N
uniquely defines a probability measure p̂ on Nω as extension of p̂(a1a2...anNω) =

n∏
n=1

p(an).

A probability measure P on Nω can be extended to an outer measure
μP : 2Nω → R by defining μ(A) = inf

M∈A,A⊆M
P (M). We will identify a prob-

ability measure with the induced outer measure, allowing us to disregard issues
of measurability.

We refer the reader to [Shiryaev (1996)] for further elaboration.

3 In [Schröder (2002)], standard representations where defined only for pseudobases;
the standard representation for a pseudosubbase defined here is equivalent to the
standard representation for the pseudobase obtained by forming all finite intersec-
tions.
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3 Measurement procedures and representations

3.1 Measurement procedures

To formalise the model set up in [Subsection 1.3], the notion of a measurement
procedure shall be introduced:

Definition 1. A measurement procedure4 (for a set X) is an injective function
M : X → P. If M(x) = p, then M̂(x) is defined as M̂(x) = p̂.

To use data resulting from experiments as input for calculations on Type-2-
Turing machines, representations have to be found that correspond suitably to
the measurement procedures at hand. While the rest of this section will be
dealing with ways to associate representations to measurement procedures, first
a certain property of measurement procedures shall be introduced.

Definition 2. A measurement procedure M is degenerate, if

{n ∈ N | M(x)(n) > 0} = {n ∈ N | M(y)(n) > 0} ⇔ x = y

holds for all x, y ∈ X .

While degenerate measurement procedures will be shown to employ some in-
teresting theoretical properties, they do not contain natural examples of mea-
surement procedures. Thus, the property of non-degenerateness seems to be
desirable.

3.2 Almost surely associated representations

Definition 3. A representation ρ of X is almost surely associated with a mea-
surement procedure M, if M̂(x)(ρ−1({x})) = 1 holds5 for all x ∈ X .

If ρ is almost surely associated with a measurement procedure M, then the prob-
ability of retrieving a ρ-name for the actual state of the measured physical entity
when repeating the measurement infinitely often is 1. Considering the stochastic
nature of measurements, a stronger link between measurement procedures and
representations cannot expected to be feasible.

Definition 4. For a measurement procedure M for X , define a representation
α of X by α(w) = x, if lim

n→∞
ck,n(w)

n = M(x)(k) holds for each k ∈ N.

4 In an earlier version of this paper, [Pauly (2008)], the notion of stochastic representa-
tions was used instead. Measurement procedures and stochastic representations are
the inverse functions of each other, so the necessary changes in the following results
and notions are rather small.

5 This means that every measurable set containing ρ−1({x}) must have measure 1.
If there is a T1 topology τ on X, so that ρ is continuous with respect to τ , then
ρ−1({x}) is closed and hence measurable itself.
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Theorem 5. The representation α is well-defined and almost surely associated
with M.

Proof. For x, y ∈ X with x 
= y, also M(x) 
= M(y) holds, since M is required
to be injective. Thus, there exists a k ∈ N with M(x)(k) 
= M(y)(k). So for
x 
= y, ∀k ∈ N lim

n→∞
ck,n(w)

n = M(x)(k) and ∀k ∈ N lim
n→∞

ck,n(w)
n = M(y)(k) are

mutually exclusive for each w ∈ Nω. It follows that α is well-defined as a partial
function.

Since ck,n can be considered as a random variable expressible as a sum of n

independent identically distributed random variables with mean M(x)(k), the
Strong Law of Large Numbers yields the convergence of ck,n(w)

n to M(x)(k)
almost surely. Rephrased, for a fixed k ∈ N,

M̂(x)({w ∈ Nω | lim
n→∞

ck,n(w)
n

= M(x)(k)}) = 1

was obtained. Since a union of countably many null sets is a null set, the inter-
section of countably many sets with probability 1 yields a set with probability
1, so

M̂(x)({w ∈ Nω | (∀k ∈ N) lim
n→∞

ck,n(w)
n

= M(x)(k)}) = 1

follows. As the preimage α−1({x}) has measure 1 for each x, it is non-empty.
Thus, α is a representation, and indeed almost surely associated with M.

While a direct consequence of Theorem 5 is that for each measurement proce-
dure M there is a representation ρ, so that ρ is almost surely associated with M,
the reverse statement does not hold in general6. However, through restricting the
scope of consideration to standard representations as introduced in [Subsection
2.3], a positive result can be obtained.

Theorem 6. For a standard representation δS of a space X there is a measure-
ment procedure M, so that δS is almost surely associated with M.

Proof. It follows directly from the definition of a standard representation that
δS(w), as well as the membership of w in dom(δS) only depends on Rw. This al-
lows to define Rx := Rw(x), where w(x) is a choice function satisfying
w(x) ∈ δ−1

S (x). Let Nx =
∑

n∈Rx

2−n. Now for n ∈ Rx one sets px(n) = 2−n

Nx
,

and for n /∈ Rx one sets px(n) = 0.
It is easy to see that px is a probability density on N, and as Rx determines

x, for different x 
= y there has to be an m ∈ (Rx \ Ry) or an n ∈ (Ry \ Rx). In

6 It is trivial to prove that for each representation ρ of a set X there is a computa-
tionally equivalent representation δ of X, so that δ is not almost surely associated
with any measurement procedure. Define δ(01w) = ρ(w), and let δ be undefined
elsewhere. Then p̂(Nω \ dom(δ)) > 0 for every p ∈ P.
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the former case, py(m) = 0 
= px(m), the latter is analogously. This shows that
a measurement procedure M can be defined by M(x) = px.

For a fixed x ∈ X , let n be given with n /∈ Rx. For a1, .., ak ∈ N, one gets

M̂(x)(a1..aknNω) = px(n) ∗
k∏

i=1

px(ai) = 0, since px(n) = 0. So in

{w ∈ Nω | n ∈ Rw} =
⋃
k∈N

⋃
(a1,..,ak)∈Nk

a1..aknNω

the right side is a union of countably many null sets, proving the left side to be a
null set, too. The argument proves that M̂(x)({w ∈ Nω | Rw 
⊆ Rx}) = 0 holds.

Now, let n ∈ Rx, so px(n) > 0. For k ∈ N, consider the set

W k
x,n := {w ∈ Nω | ∀i ≤ k w(i) 
= n}

One gets M̂(x)(W k
x,n) = [1 − px(n)]k. Since

Wx,n := {w ∈ Nω | ∀i ∈ N wi 
= n} ⊆ W k
x,n

directly M̂(x)(Wx,n) ≤ [1 − px(n)]k follows for all k ∈ N. Since px(n) > 0, this
means M̂(x)(Wx,n) = 0.

Finally, notice Nω \ δ−1
S (x) ⊆ {w ∈ Nω | Rw 
⊆ Rx} ∪ (

⋃
n∈Rx

Wx,n). The right

side is a union of countably many null sets w.r.t. M̂(x), so the left side is also a
null set, yielding M̂(x)(δ−1

S (x)) = 1, which completes the proof.

The measurement procedure constructed in the proof of Theorem 6 is de-
generate. A following result shows that this is not an artefact of the proof, but
rather a necessary condition for a measurement procedure to have an almost
surely associated standard representation. On the other hand, for a degenerate
measurement procedure it is always possible to construct a standard represen-
tation almost surely associated with it.

Theorem 7. For each degenerate measurement procedure M for X there is a
T0 topology T with a countable subbase on X, so that the corresponding standard
representation δS is almost surely associated with M.

Proof. Define Bn = {x ∈ X | M(x)(n) > 0}, and let T be the topology induced
by the sets Bn serving as subbase. It follows directly that the Bn form also a
pseudosubbase.

For abbreviation, let Rx = {n ∈ N | M(x)(n) > 0}. Since M is degenerate,
x 
= y implies Rx 
= Ry. Thus, there is either an n ∈ Rx \Ry or an m ∈ Ry \Rx.
So either Bn is an open set with x ∈ Bn, y /∈ Bn or Bm is an open set with
x /∈ Bm, y ∈ Bm, so T is a T0 topology.
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Now consider the standard representation δS to the subbase Bn. Since
{w ∈ Nω | Rw = Rx} ⊆ δ−1

S ({x}), it suffices to prove

M̂({w ∈ Nω | Rw = Rx}) = 1

to show that δS is almost surely associated with M. The remaining part of
the proof is completely analogously to the corresponding part in the proof of
Theorem 6.

Non-degenerate measurement procedures, however, are supposed to include
the natural examples from physics, while admissibility is a desirable property for
representations. The next result shows that these properties cannot be linked via
almost sure association.

Theorem 8. Let M be a non-degenerate measurement procedure for a set X

with |X | > 1, and let ρ be a representation of X, so that ρ is almost surely
associated to M. Further, let τ be a T0-topology on X. Then ρ is not continuous
w.r.t. τ .

Proof. As M is non-degenerate, there are two different elements x 
= y of X

with {n ∈ N | M(x)(n) > 0} = {n ∈ N | M(y)(n) > 0}; these shall be fixed for
the following considerations. Since τ is T0, there is an open O ∈ τ with either
x ∈ O, y /∈ O or x /∈ O, y ∈ O, w.l.o.g. the former shall be assumed.

Now assume ρ to be continuous, so U := ρ−1(O) is open in dom(ρ) and
satisfies ρ−1({x}) ⊆ U and ρ−1({y}) ⊆ Nω \ U . U has the form U = WNω with
W ⊆ N∗. Next, we assume ρ to be almost surely associated to M. This implies
M̂(x)(U) = 1 and M̂(y)(U) = 0.

Since W is countable and all occurring sets are measurable, one gets:
∑
a∈W

M̂(x)(aNω) ≥ 1 and ∀a ∈ W M̂(y)(aNω) = 0

So there is at least one a ∈ W with M̂(x)(aNω) > 0 and M̂(y)(aNω) = 0.
Choose such an a, which shall have the form a := a1...ak. From the definition

of M̂(x), this leads to
k∏

i=1

M(x)(ai) > 0 and
k∏

i=1

M(y)(ai) = 0. The second

equation proves the existence of an ai with M(y)(ai) = 0. However, x and y were
chosen in a fashion that M(y)(ai) = 0 implies M(x)(ai) = 0. This contradicts
k∏

i=1

M(x)(ai) > 0, so the assumption of ρ being continuous w.r.t. τ is refuted.

Corollary 9. Let M be a non-degenerate measurement procedure for a set X

with |X | > 1, and let ρ be a representation of X, so that ρ is almost surely
associated with M. Then ρ is not admissible w.r.t. any topology τ on X.
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Proof. We recall that ρ being admissible w.r.t. τ implies ρ to be continuous w.r.t.
τ and τ to be a T0-topology, as proven in [Schröder (2002), Theorem 13]. The
corollary now follows from Theorem 8.

Combining Theorems 5, 6 and 8, we see that every non-degenerate measure-
ment procedure has an almost surely associated representation, however, not
an admissible one. Similarly, every admissible representation has a measurement
procedure an equivalent representation is almost surely associated with, however,
not a non-degenerate one.

Faced with the problem to model the results of a measurement by a rep-
resentation, one cannot achieve complete accuracy and desirable properties of
the representation simultaneously. It was already shown that complete accuracy
can be ensured, if the resulting representation is accepted not to be admissible.
Whether an admissible representation could be associated with a non-degenerate
measurement procedure in a less strict way, will be the focus of the next section.

3.3 Associated Representations

Definition 10. A representation ρ is called associated with probability ε with
a measurement procedure M, if M̂(x)(ρ−1({x})) ≥ ε holds for all x ∈ X and
M̂(x)(ρ−1({y})) = 0 holds for all x, y ∈ X , x 
= y.

Association with probability ε generalises almost sure association because asso-
ciation with probability 1 coincides with almost sure association. However, for
obtaining the following results, 0 < ε < 1 shall always be assumed.

Note that association with probability ε allows an infinitely repeated mea-
surement to yield no valid ρ-name at all with probability 1 − ε, while a wrong
ρ-name has zero probability.

The goal of this section is to prove that for every measurement procedure M
for X and every ε < 1 there is an admissible7 representation associated with M
with probability ε. Therefore, for each M and each ε, two equivalent represen-
tations are defined. One will be shown to be associated with M with probability
ε, the other one is an admissible representation w.r.t. a certain topology on X .

Definition 11. For a measurement procedure M for a set X and an ε, define
the representation αε of X through αε(w) = x, if lim

k→∞
ci,k(w)

k = M(x)(i) and
ci,n(w)

n < M(x)(i) + fn hold for all i, n ∈ N, n > 1. The number fn is defined
through fn = 1

4
√

4n(1−ε)
.

7 As there is no fixed topology on X, the announced result just states that a suitable
topology can be constructed. Actually, as will be argued later, a natural topology
on a set of values for a physical entity is derived from the properties of the possible
measurements, as points are assumed to be nearer, if they are more likely to be
confused by the measurement.
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Theorem 12. The representation αε from Definition 11 is associated with M
with probability ε.

Proof. From Definitions 4, 11 follows directly α−1
ε ({x}) ⊆ α−1({x}). So from

M̂(y)(α−1({x})) = 0 for x 
= y, as shown in the proof of Theorem 5, also
M̂(y)(α−1

ε ({x})) = 0 follows.
Now assume that for a given sequence w, ci,n(w)

n < M(x)(i) + fn holds for

all i ∈ N and all n < n0. Then ci,n0(w)

n0
< M(x)(i) + fn0 follows for i 
= w(n0).

This results from ci,n0(w) = ci,n0−1(w) for i 
= w(n0) and the fact that fn is
decreasing more slowly than 1

n . So α−1
ε ({x}) can be written as:

α−1
ε ({x}) = α−1({x}) ∩ {w ∈ Nω | ∀n > 1

cw(n),n(w)
n

< M(x)(w(n)) + fn}

Using [Shiryaev (1996), equation 39, page 69], for a given n ∈ N, one gets:

M̂(x)({w ∈ Nω |
cw(n),n(w)

n
> M(x)(w(n)) + fn}) ≤ e−2nf2

n

By summing up over countably many probabilities,

P := M̂(x)(Nω \ α−1
ε ({x})) ≤

∞∑
n=1

e−2nf2
n

follows. Cauchy’s integral criterion leads to P ≤
∞∫
0

e−2nf2
ndn. This integral can

be evaluated to 1 − ε, what completes the proof.

To obtain an admissible representation on X , we start with an admissible
representation on P, which will be lifted according to the following theorem,
which is a special case of [Zhong and Weihrauch (2003), Lemma 2.10].

Theorem 13. Let f : X → Y be an injective function, and δ be a representation
for Y that is admissible w.r.t. a topology S on Y . Let T := {f−1(U) | U ∈ S}
be the initial topology regarding f . Then f−1 ◦ δ is a representation of X that is
admissible w.r.t. T .

Representations for probability measures on represented metrisable spaces
have been investigated in a general fashion in [Schröder (2007)], yielding an
equivalence class of representations bearing several interesting characterizations
including admissibility w.r.t. the weak topology on the space of probability mea-
sures. The following standard representation of P can also be considered as re-
striction of the standard representation of sequences of real numbers to P.

Definition 14. The standard representation θ of P is defined through θ(w) = p,
if lim

n→∞ νQ(w(〈i, n〉)) = p(i) is satisfied for all i ∈ N, and νQ(w(〈i, n〉)) ≤ p(i)
holds for all n, i ∈ N.
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In the following, we will prove αε to be computationally equivalent to M−1◦θ

for 0 < ε < 1. Since M−1◦θ does not depend on ε, this implies that the superficial
arbitrariness in the choice of ε is not problematic. M−1 ◦ θ will be abbreviated
with δ.

Theorem 15. For a measurement procedure M and an ε, αε �c δ.

Proof. Let λn be a computable sequence of rational numbers satisfying fn ≤ λn

and lim
n→∞ λn = 0. Then define the function G : Nω → Nω through:

G(w)(〈i, n〉) = ν−1
Q (

ci,n(w)
n

− λn)

Clearly, G is computable. Now, αε(w) = δ ◦ G(w) for all w ∈ dom(αε) follows
from the relevant definitions.

Theorem 16. For a measurement procedure M and an ε, δ �c αε.

Proof. We define the partial function H :⊆ Nω → Nω through the following
informal description of a Type-2 machine M which works on a δ-name w. In
the nth step with current output σ, M computes the numbers ki,n, 1 ≤ i ≤ n

according to ki,n = max{k ∈ N | ∃m ≤ n, k
n ≤ νQ(w(〈i, m〉))}. Then M prints

the smallest i ≤ n with ki,n > ci,|σ|(σ), if such an n exists, or otherwise the
smallest i with ci,|σ|(σ) = 0. After that, M proceeds to the next step.

Assume ci,n(H(w)) > 1 for any n, i. Then there is an m ≤ n, so that
the last i in H(w)≤n was printed by M in the mth step. Therefore, we have
ci,n(H(w)) = ci,m(H(w)) ≤ ki,m, so also:

ci,n(H(w))
n

≤ ki,m

n
≤ νQ(w(〈i, n〉)) ≤ M(δ(w))(i)

Consequently, the first condition in Definition 11 is fulfilled. In the case
ci,n(H(w)) ≤ 1, it is trivially fulfilled.

It remains to prove lim
n→∞

ci,n(H(w))
n = M(δ(w))(i) for all i ∈ N. Since we know

the limit is an upper bound for the sequence, we just have to prove that for every
r < M(δ(w))(i) there is an nr, so that r ≤ ci,n(H(w))

n holds for all n ≥ nr. From
lim

n→∞ νQ(w(〈i, n〉)) = M(δ(w))(i) we obtain an n0 with r < νQ(w(〈i, n0〉)). Thus,

there also must be an n1 with r <
ki,n1
n1

.
Define gn = |{i ≤ n | ci,n(H(w)) > ki,n}|. If there is an i ≤ n + 1

with ki,(n+1) > ci,(n+1)(H(w)), then gn+1 ≤ gn holds. Furthermore, we have
ki,m

m ≤ ci,n(H(w))+gm

n for all m ∈ N, i ≤ m, m ≤ n. Especially, r <
ci,n(H(w))+gn1

n

for all n ≥ n1. Since gn1 does not depend on n and therefore lim
n→∞

gn1
n = 0, there

must be an n2 with r ≤ ci,n(H(w))
n for all n ≥ n2, which completes the proof.
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3.4 Common measurement procedures in physics

In most parts of classical physics, measurement errors of real-valued physical
entities are usually assumed to follow a normal distribution. The reasons for
this model are illustrated in [Parratt (1961), Chapter 4]. [Patel and Read (1996)]
provide a historic excursion on the normal distribution. A central argument for
the use of the normal distribution is the Central Limit Theorem
[van Kampen (1992), Chapter 1.7], stating roughly that measurement errors
induced by an infinite number of insignificantly small errors follow a normal
distribution.

Taking into account the inherent discrete nature of digital measurement de-
vices, and assuming a uniform variance σ2, a measurement procedure can be
obtained from the normal distribution:

Definition 17. The measurement procedure N for the set R is defined through:

N (x)(n) =

νZ(n)+ 1
2∫

νZ(n)− 1
2

1
σ
√

2π
exp(−1

2
(
y − x

σ
)2)dy

Theorem 18. N is a measurement procedure.

Proof. It is clear that each N (x)(n) is a non-negative real number. As

∑
n∈N

N (x)(n) =

+∞∫

−∞

1
σ
√

2π
exp(−1

2
(
y − x

σ
)2)dy = 1

holds, directly N (x) ∈ P follows for all x ∈ R. It remains to show that
N is injective. Assume x < y and N (x) = N (y). For z ≥ y,
exp(− 1

2 ( z−x
σ )2) < exp(− 1

2 ( z−y
σ )2) holds. Consider an n with νZ(n) − 1

2 ≥ z.
From N (x)(n) = N (y)(n) follows:

νZ(n)+ 1
2∫

νZ(n)− 1
2

exp(−1
2
(
z − y

σ
)2) − exp(−1

2
(
z − x

σ
)2)dz = 0

The integrand is non-negative, as explained above, so it has to be 0 everywhere.
This contradicts exp(− 1

2 ( z−x
σ )2) < exp(− 1

2 ( z−y
σ )2), so N has to be injective.

It was already established that the equivalence class of representations con-
taining δ and αε is a good candidate for representing the results of such kind of
measurements. However, there is already a standard representation of the real
numbers8, which is admissible w.r.t. the Euclidean topology on R. The following
8 A discussion of various representations of R are their respective relations can be

found in [Weihrauch (1992)].
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theorem establishes computational equivalence between these representations,
provided the variance σ2 is computable. For non-computable σ2, continuous
equivalence follows.

Theorem 19. Let δ be the representation obtained as δ := N−1 ◦ θ, where σ2 is
computable, and let ρ be the standard representation of R. Then δ ≡c ρ follows.

Proof. The function x �→ N (x)(n) is (ρ, ρ)-computable9 for each n, so the func-
tion x �→ N (x) is (ρ, [ρ]ω) and thus (ρ, θ) computable. This implies that x �→ x

is (ρ, δ)-computable, establishing ρ �c δ.
For the other direction, consider the function R defined through:

R(x) =

∞∫
1
2

1
σ
√

2π
exp(−1

2
(
y − x

σ
)2)dy

Assuming that {n | νZ(n) ≥ 1} is decidable, R is (δ, ρ<)-computable, the same
holds for x �→ 1 − R(x), so R is even (δ, ρ)-computable. By the same reasoning
as above R is (ρ, ρ)-computable. Since R is strictly increasing, according to
[Weihrauch (2000), Theorem 6.3.11], R−1 is also (ρ, ρ)-computable. Thus x �→ x

is (δ, ρ)-computable, establishing δ �c ρ.

While Theorem 19 directly yields an independent argument for the use of
the standard representation when dealing with real numbers, it can also be
interpreted as stating that the Euclidean topology is indeed the most suitable
topology on the real numbers regarding measurements.

More generally, assume a probability measure on R derived from a differ-
entiable probability density f . Through linear translation, a measurement pro-

cedure M is given by M(x)(n) =
νZ(n)+ 1

2∫
νZ(n)− 1

2

f(y − x)dy. The representations αε

for M are equivalent to the standard representation of R, the proofs are anal-
ogously to the respective proofs for the normal distribution. Examples for such
measures include the Cauchy (or Lorentz) distribution, the logistic distribution,
the Fisher-Tippett distribution and the Laplace distribution.

4 Reductions between measurement procedures

4.1 Definitions

To be able to compare measurement procedures regarding the amount of infor-
mation they supply, a notion of reducibility between measurement procedures
9 To prove this, a computable version of [Lang (1968), Chapter X, Theorem 11] is

useful, which can easily be obtained from the results presented in [Weihrauch (2000),
Chapter 6].
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is desirable. Depending on the placement of the reduction in the model differ-
ent definitions seem to be natural, which will be introduced and compared in
the following. However, further results are needed to make a convincing case for
choosing one of them.

The first definition assumes that the reduction works directly and memo-
ryless on the output of our measurement device. The measurement procedure
M is simulated by N , in a way that each natural number n obtained from the
measurement according to N is simply replaced by f(n).

Definition 20. M ≤1 (≤c
1) N , if there is a (computable) function f : N → N

with M(x)(n) =
∑

k∈f−1({n})
N (x)(k) for all x ∈ X , n ∈ N.

A more general reduction would still modify the output of the measurement
device, but include a record of earlier measurements. This replaces the function
f : N → N by a continuous partial function F :⊆ Nω → Nω. The move to
partial functions is debatable, in fact, this allows the alleged simulation to fail
sometimes, however, only with probability 0. We agree with [Parker (2003)] and
[Bosserhoff (2008)] that if wrong results are accepted with probability zero, no
results should also be accepted with probability 0. Another argument in favour
of choosing partial functions in the following definition will be given by Theorem
27.

Definition 21. M ≤2 (≤c
2) N , if there is a continuous (computable) partial

function F :⊆ Nω → Nω with M̂(x)(A) = N̂ (x)(F−1(A)) for all x ∈ X , A ⊆ Nω.

Instead of caring about simulating the complete measurement, for the next
definitions its information content will be expressed in terms of the associated
representations. The set of representations almost surely associated with a mea-
surement procedure (or associated with a measurement procedure with proba-
bility ε) uniquely determines the measurement procedure. As both sets contain
the representation α from Definition 4, it suffices to realise that this represen-
tation can only be associated to a single measurement procedure. We suggest
a reduction that is uniform in the associated representations to account for the
arbitrariness in the choice of associated representations.

Definition 22. M ≤3 (≤c
3) N , if there is a continuous (computable) partial

function F :⊆ Nω → Nω, so that for each 0 < ε < 1, for each representation ρ

of X that is associated with M with probability ε, there is a representation δ

of X with δ(w) = ρ(F (w)) for all w ∈ dom(δ), which is associated with N with
probability ε.

Definition 23. M ≤4 (≤c
4) N , if there is a continuous (computable) partial

function F :⊆ Nω → Nω, so that for each representation ρ of x that is almost
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surely associated with M, there is a representation δ of X with δ(w) = ρ(F (w))
for all w ∈ dom(δ), which is almost surely associated with N .

The reductions from Definitions 22 and 23 can be expressed in terms of
measure theory as well, this will be demonstrated in the next subsection.

4.2 Implications between the reducibility relations

It is clear that for i ∈ {1, 2, 3, 4}, M ≤c
i N always implies M ≤i N , as each

computable (partial) function is continuous w.r.t. the relevant topologies.

Theorem 24. M ≤1 N does not imply M ≤c
1 N .

Proof. Consider X = {x}, and N (x)(n) = 2−n. Let A be any subset of N, and
M(x)(1) =

∑
n∈A

2−1, M(x)(2) = 1−M(x)(1). Then there is exactly one function

f : N → N with M(x)(n) =
∑

k∈f−1({n})
N (x)(k), which is given by f(n) = 1 for

n ∈ A and f(n) = 2 for n ∈ N \A. For a non-decidable A, F is non-computable,
so M ≤1 N holds, while M ≤c

1 N is false.

Theorem 25. M ≤1 (≤c
1) N implies M ≤2 (≤c

2) N .

Proof. Let F be the (computable) function used in Definition 20. Define
F̂ : Nω → Nω through (F̂ (w))n = F (wn). Clearly, F̂ is continuous, and if F

is computable, so is F̂ . As F̂ satisfies the condition from Definition 21, the claim
follows.

Theorem 26. M ≤c
2 N does not imply M ≤1 N .

Proof. Consider the set X = {x}, the function F : Nω → Nω defined through
(F (w))n = 〈w2n−1, w2n〉, and measurement procedures N , M given by:

N (x)(1) = N (x)(2) =
1
2

M(x)(〈1, 1〉) = M(x)(〈1, 2〉) = M(x)(〈2, 1〉) = M(x)(〈2, 2〉) =
1
4

Then M̂(x)(A) = N̂ (x)(F−1(A)) holds, but there is no f : N → N with
M(x)(n) =

∑
k∈f−1({n})

N (x)(k).

Although the Definitions of ≤2 and ≤3 might appear quite different on the
first glance, the following theorem establishes that the two reducibilities are
equivalent. This provides another link between measurement procedures and
their associated representations.

Theorem 27. M ≤2 (≤c
2) N is equivalent to M ≤3 (≤c

3) N .
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Proof. The first implication from ≤2 to ≤3 can easily be proven. Let F be the
function used in Definition 21. Then

M̂(x)(ρ−1({x}) = N̂ (x)(F−1(ρ−1({x}))) = N̂ (x)((ρ ◦ F )−1({x}))

so ρ ◦ F is the representation δ needed for Definition 22. That ρ ◦ F actually is
a representation follows from N̂ (x)((ρ ◦ F )−1({x})) > 0 for all x ∈ X .

Now assume that F is a partial function witnessing M ≤3 (≤c
3) N . We have to

show M̂(x)(A) = N̂ (x)(F−1(A)) for all x ∈ X , A ⊆ Nω. Since
M̂(x)(A) = M̂(x)(A ∩ α−1({x})), where α is the representation introduced
in Definition 4 for M, we can restrict considerations to the case A ⊆ α−1({x})
for given x ∈ X . We further assume ε := M̂(x)(A) > 0 for now.

In the next step, we define a representation ρ of X by ρ(w) = α(w) for all
w ∈ α−1(X \ {x})∪A. ρ shall be undefined elsewhere. Then ρ is associated with
M with probability ε. Thus ρ ◦F extends a representation δ which is associated
with N with probability ε, yielding N̂ (x)(F−1(A)) ≥ ε = M̂(x)(A). Since this
holds for all A ⊆ Nω, even the equality must hold. The null sets disregarded
earlier are taken care of by considering their complements.

It is possible to weaken Definition 21 to obtain a definition equivalent to
Definition 23, and thereby establishing an implication between ≤2 (or ≤3) and
≤4.

Theorem 28. M ≤4 (≤c
4) N is true, if and only if there is a continuous

(computable) partial function F :⊆ Nω → Nω, so that M̂(x)(A) = 1 implies
N̂ (x)(F−1(A)) = 1 for any x ∈ X, A ⊆ Nω.

Proof. If the second condition holds, then for any representation ρ that is almost
surely associated to M, ρ ◦ F already is almost surely associated to N , thus
fulfilling Definition 23.

For the other direction, let F witness M ≤4 (≤c
4) N . Given A and x

with M̂(x)(A) = 1, we define a representation ρ of X by ρ(w) = α(w) for
w ∈ α−1(X \ {x}), where α is the representation from Definition 4 applied to
M, and ρ(w) = x for w ∈ A. Then ρ is almost surely associated with M , so
ρ ◦F extends a representation δ which is almost surely associated with N . This
implies N̂ (x)(F−1(A)) = 1.
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Theorem 29. M ≤c
4 N does not imply M ≤3 N .

Proof. We consider a singleton set X = {x}, and the measurement procedures N
and M defined by M(x)(1) = M(x)(2) = 1

2 , N (x)(1) = 2
3 and N (x)(2) = 1

3 . To
establish M ≤c

4 N , we use a method introduced by von Neumann to simulate
a perfect source of random bits by a distorted source of random bits. More
precise, we consider a machine that reads two input symbols in each step, and
writes 1 if it read 12, and 2 if it read 21. All other input is ignored. The partial
function F computed by this machine satisfies N̂ (x)(F−1(A)) = 1 for all A with
M̂(x)(A) = 1.

Now consider any continuous partial function G, and observe

N̂ (x)(G−1(1Nω)) =
n − 1
3m

with n, m ∈ N, so N̂ (x)(G−1(1Nω)) 
= M̂(x)(1Nω) = 1
2 follows. This proves

M �3 N .

4.3 Reductions and null sets

It seems useful to investigate the structure of the set of representations almost
surely associated with a certain measurement procedure, both for its own sake,
and to gain further insight into the reduction ≤4. The set of representations as-
sociated with a measurement procedure with probability ε is equally important,
among other reasons to study ≤3.

Theorem 30. Let ρ be a representation of X almost surely associated with the
measurement procedure M, and δ be another representation of X. Let Dx denote
the set (ρ−1({x})\δ−1({x}))∪(δ−1({x})\ρ−1({x})) for x ∈ X. Then δ is almost
surely associated with M, if and only if M̂(x)(Dx) = 0 for all x ∈ X.

Theorem 31. Let ρ be a representation of X with the measurement procedure
M with probability ε, and δ be another representation of X. Let Dx denote the
set (ρ−1({x}) \ δ−1({x})) ∪ (δ−1({x}) \ ρ−1({x})) for x ∈ X. If M̂(x)(Dx) = 0
for all x ∈ X, then δ is associated with M with probability ε.

A direct consequence of Theorem 30 will be useful:

Theorem 32. Let ρ be a representation of X almost surely associated with the
measurement procedure M, and ρ be a restriction of the representation δ, then
δ is almost surely associated with M.

As the values of a representation ρ on a null set are not relevant for association
with a measurement procedure, it seems straightforward to include this in the
definitions of the relevant reductions. Following [Bosserhoff (2008)], we call a
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function f μ-almost everywhere continuous (computable), if there is a μ-null
set N , so that f|dom(f)\N is continuous (computable). A function is M-almost
everywhere continuous (computable), if it is M̂(x)-almost everywhere continuous
(computable) for each x ∈ X .

Theorem 33. M ≤3 (≤c
3) N , if and only if there is a N -almost everywhere

continuous (computable) function F :⊆ Nω → Nω, so that for each ε > 0 and
each representation ρ of x that is associated with M with probability ε, there
is a representation δ of X with δ(w) = ρ(F (w)) for all w ∈ dom(δ), which is
associated with N with probability ε.

Theorem 34. M ≤4 (≤c
4) N , if and only if there is a N -almost everywhere

continuous (computable) function F :⊆ Nω → Nω, so that for each representation
ρ of x that is almost surely associated with M, there is a representation δ of X

with δ(w) = ρ(F (w)) for all w ∈ dom(δ), which is almost surely associated with
N .

5 Conclusions and Open Questions

In this section, we will try to illuminate the relevance of the definitions and re-
sults presented so far, and point out possible starting points for further inquiry.
We have provided a framework for studying computability aspects of physical
theories. In the first step, a physical theory has to be effectivized by stating the
measurement procedure as introduced in Definition 1 used to conduct measure-
ments. The measurement procedure as defined here can be inferred from the
distribution of measurement errors assumed for the physical theory.

To obtain a representation of the set of possible measurement results from
the used measurement procedure, three different approaches are presented here.
All three have in common that the sequence of repeated measurement results is
regarded as a name for the state the measured entity is in. If the measurement
procedure is degenerate (Definition 2), Theorem 7 provides a topology on the
space of measurement results, so the corresponding standard representation can
be used with zero probability of errors.

If the measurement procedure at hand is non-degenerate, either the represen-
tation α from Definition 4 can be used, which has the advantage that α-names
can be produced by repeated measurement with zero probability of errors, but is
not continuous w.r.t. any T0 topology on the set of possible measurement results;
or the representation αε for any 0 < ε < 1 presented in Definition 11, which is
admissible w.r.t. a certain topology, but comes with an error probability of up to
1−ε. While the dilemma presented here is unavoidable, we do not know whether
there is another general family of representations with similar properties as the
αε, but admissible w.r.t. another topology.
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For a number of common possible distributions of measurement errors the
analysis outlined above was conducted in Subsection 3.4, showing that the stan-
dard representation ρ of the real numbers is suitable to represent measurement
results in most cases, however, with an arbitrarily small positive probability of
errors occurring.

A field of questions mainly left open by this paper is how to compare the
information content of different measurement procedures. A couple of possible
definitions, and their relations to each other, are given in Section 4; but further
results are needed to settle the issue.
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