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Abstract: We investigate under what conditions a co-recursively enumerable set S in
a computable metric space (X, d, α) is recursive. The topological properties of S play
an important role in view of this task. We first study some properties of computable
metric spaces such as the effective covering property. Then we examine co-r.e. sets
with disconnected complement, and finally we focus on study of chainable and circu-
larly chainable continua which are co-r.e. as subsets of X. We prove that, under some
assumptions on X, each co-r.e. circularly chainable continuum which is not chainable
must be recursive. This means, for example, that each co-r.e. set in Rn or in the Hilbert
cube which has topological type of the Warsaw circle or the dyadic solenoid must be
recursive. We also prove that for each chainable continuum S which is decomposable
and each ε > 0 there exists a recursive subcontinuum of S which is ε−close to S.
Key Words: computable metric space, recursive set, co-r.e. set, chainable continuum,
circularly chainable continuum, the effective covering property
Category: F.0, G.0

1 Introduction

It is known that there exists a computable function f : R → R which has zero-
points, but none of them is recursive [Specker 1959]. However, it is also known
that if a computable function f : Rn → R, n ≥ 1 has an isolated zero-point,
then that point must be recursive.

From this we conclude the following: if f : R → R is a computable function
such that R\ f−1({0}) has finitely many components, at least two, then f has a
recursive zero-point. Since S ⊆ Rn is of the form f−1({0}) for some computable
function if and only if it is co-recursively enumerable, which means that X \ S

can be effectively covered by open balls, we have the following question: what
can be said in general in view of recursive points of an co-r.e. set S in Rn whose
complement is disconnected?

As we shall see, a co-r.e. set S must contain a recursive zero-point if its
complement has finitely many components, at least two. It turns out that, under
some additional assumptions, we have even more general result: S is recursive,
which means that the distance function dS : Rn → R, dS(x) = d(x, S), x ∈ Rn,

is computable.
Each recursive set is co-recursively enumerable, while on the other hand there

exist co-recursively enumerable sets which contain no recursive points, hence
which are “far away from being recursive”.
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Having on mind that the implication

S co-recursively enumerable ⇒ S recursive (1)

does not hold in general, we prove that under some topological assumptions
(1) holds, not just in Euclidean space, but more generally in some computable
metric spaces. Here we will need some additional assumptions on a computable
metric space such as the effective covering property.

As a consequence we will get that (1) holds for S ⊆ Rn homeomorphic to
a sphere of dimension n − 1. This is just a special case of the result proved by
Miller in [Miller 2002]: If S ⊆ Rn is homeomorphic to a sphere of any dimension,
then (1) holds. Miller also proved that if f : D → Rn is a continuous injection,
where D ⊆ Rm is a closed ball, such that f(D) and f(∂D) are co-recursively
enumerable sets in Rn, then f(D) is a recursive set. In general, if f(D) is co-
recursively enumerable, then f(D) need not be recursive, but the set of recursive
points of f(D) must be dense in f(D). This is proved in [Miller 2002].

In particular, (1) holds if S is homeomorphic to a circle or if S is an arc
with recursive endpoints. In this paper we study chainable (arc-like) continua
and circularly chainable (circle-like) continua as co-r.e. subsets of a computable
metric space (X, d, α) which has the effective covering property and compact
closed balls, for example Euclidean space or the Hilbert cube. There are two
main results which we prove: if S is a circularly chainable continuum which is
not chainable, then (1) holds (Theorem 35); if S is a chainable continuum which
is decomposable, then for each ε > 0 there exists a subcontinuum of S which is
recursive and which is ε−close to S with respect to Hausdorff metric (Theorem
42). We also prove that each co-r.e. continuum chainable from a to b, where a

and b are recursive points, is recursive (Theorem 36).

2 Basic techniques

Let k, n ∈ N, k, n ≥ 1. By a partially recursive function f : S → Nn, S ⊆ Nk,

we mean a function whose component functions f1, . . . , fn : S → N are partially
recursive. Of course, such a function will be called recursive if S = Nk. In the
following proposition we state some elementary facts.

Proposition1. (i) Let T ⊆ Nk+n be a recursively enumerable set. Then the set
S = {x ∈ Nk | ∃y ∈ Nn (x, y) ∈ T } is recursively enumerable. If S1 ⊆ Nk and
S2 ⊆ Nn are r.e. sets such that for each x ∈ S1 there exists y ∈ S2 such that
(x, y) ∈ T, then there exists a partially recursive function f : S1 → Nn such that
f(S1) ⊆ S2 and (x, f(x)) ∈ T, ∀x ∈ S1.

(ii) If S ⊆ Nn is an r.e. set and f : Nk → Nn is a recursive function, then
the set {x ∈ Nk | f(x) ∈ S} (i.e. f−1(S)) is r.e.
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One of the basic notions that we use in this paper is the notion of a recursive
function f : Nk → R, which generalizes the notion of a recursive sequence in
R : f is recursive if there exists a recursive rational approximation of f, i.e. a
recursive function F : Nk+1 → Q (which means F (y) = (−1)c(y) a(y)

b(y) , where
a, b, c : Nk+1 → N are recursive functions, b(y) 	= 0) such that |f(x)−F (x, i)| <

2−i, ∀x ∈ Nk, ∀i ∈ N.

In the following proposition we state some elementary facts about recursive
functions Nk → R.

Proposition2. (i) If f, g : Nk → R are recursive, then f + g, f − g : Nk → R
are recursive.

(ii) If f : Nk → R and F : Nk+1 → R are functions such that F is recursive
and |f(x) − F (x, i)| < 2−i, ∀x ∈ Nk, ∀i ∈ N, then f is recursive.

(iii) If f : Nk+1 → R and ϕ : Nk → N are recursive functions, then
the functions g, h : Nk → R defined by g(x) = max0≤i≤ϕ(x) f(i, x), h(x) =
min0≤i≤ϕ(x) f(i, x), x ∈ Nk, are recursive.

(iv) If f, g : Nk → R is a recursive function, then the set {x ∈ Nk | f(x) >

g(x)} is r.e.

We say that a function Φ : Nk → P(Nn) is recursive if the function Φ :
Nk+n → N defined by

Φ(x, y) = χΦ(x)(y),

x ∈ Nk, y ∈ Nn is recursive. Here P(Nn) denotes the set of all subsets of
Nn, and χS : Nn → N denotes the characteristic function of S ⊆ Nn. A
function Φ : Nk → P(Nn) is said to be recursively bounded if there exists a
recursive function ϕ : Nk → N such that Φ(x) ⊆ {0, . . . , ϕ(x)}n, ∀x ∈ Nk, where
{0, . . . , ϕ(x)}n equals the set of all (y1, . . . , yn) ∈ Nn such that {y1, . . . , yn} ⊆
{0, . . . , ϕ(x)}.

We say that a function Φ : Nk → P(Nn) is r.r.b. if Φ is recursive and
recursively bounded. The proof of the following proposition is straightforward.

Proposition3. (i) If f : Nk → Nn is a recursive function, then the function
Φ : Nk → P(Nn), Φ(x) = {f(x)}, x ∈ Nk, is r.r.b.

(ii) If f : Nl → Nk is a recursive and Φ : Nk → P(Nn) is r.r.b., then
Φ ◦ f : Nl → P(Nn) is r.r.b.

(iii) If Φ, Ψ : Nk → P(Nn) are r.r.b. functions, then x �→ Φ(x) ∪ Ψ(x),
x �→ Φ(x) ∩ Ψ(x), x �→ Φ(x) \ Ψ(x), x ∈ Nk are r.r.b. functions.

(iv) If Φ : Nk → P(Nn) is an r.r.b. function, then the set {x ∈ Nk | Φ(x) =
∅} is recursive.

(v) If Φ, Ψ : Nk → P(Nn) are r.r.b. functions, then the sets {x ∈ Nk |
Φ(x) = Ψ(x)}, {x ∈ Nk | Φ(x) ⊆ Ψ(x)} are recursive.

It is not hard to prove the following proposition.
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Proposition4. Let Φ : Nk → P(Nn) and Ψ : Nn+k → P(Nm) be r.r.b. func-
tions. Let Λ : Nk → P(Nm) be defined by

Λ(x) =
⋃

z∈Φ(x)

Ψ(z, x),

x ∈ Nk. Then Λ is an r.r.b. function.

Example 1. If α, β : Nk → N are recursive functions, then the function Nk →
P(Nk+1), x �→ {(i, x) | i ∈ N, α(x) ≤ i ≤ β(x)}, x ∈ Nk is obviously r.r.b.
It follows from Proposition 3(i) and Proposition 4 that if f : Nk+1 → Nn is a
recursive function, then the function Nk → P(Nn), x �→ {f(i, x) | α(x) ≤ i ≤
β(x)} is r.r.b.

Example 2. Let g : N → Nn be a recursive function. It follows from Example
1 that the function Φ : N → P(Nn), Φ(i) = {g(0), . . . , g(i)}, i ∈ N, is r.r.b.
We conclude the following: if T ⊆ Nn is r.e., then there exists an r.r.b. function
Φ : N → P(Nn) such that Φ(i) ⊆ Φ(i + 1), ∀i ∈ N and T = ∪i∈NΦ(i).

Using Example 2 and Proposition 3 it is easy to prove the following lemma.

Lemma5. Let Φ : Nk → P(Nn) be r.r.b. and let T ⊆ Nn be r.e. Then the set
S = {x ∈ Nk | Φ(x) ⊆ T } is r.e.

3 Computable metric spaces

Let (X, d) be a metric space. For x ∈ X and r > 0 we denote by B(x, r) the
open ball of radius r centered at x and by B̂(x, r) the corresponding closed ball,
i.e. B(x, r) = {y ∈ X | d(x, y) < r}, B̂(x, r) = {y ∈ X | d(x, y) ≤ r}. If A and B

are nonempty subsets of X, then d(A, B) denotes the number inf{d(a, b) | a ∈
A, b ∈ B}. By A we denote the closure of A ⊆ X. For all x ∈ X and r > 0 we
have B(x, r) ⊆ B̂(x, r), but equality B(x, r) = B̂(x, r) does not hold necessarily.

Let H be the set of all nonempty compact subsets of (X, d). The function ρ :
H×H → R given by ρ(A, B) = max{sup{d(a, B) | a ∈ A}, sup{d(b, A) | b ∈ B}
is a metric on H and it is known under the name Hausdorff metric. It is easy to
prove the following proposition.

Proposition6. Let A, B ∈ H and ε > 0. The following statements are equiva-
lent:

(i) ρ(A, B) < ε;
(ii) for each a ∈ A there exists b ∈ B such that d(a, b) < ε and for each b ∈ B

there exists a ∈ A such that d(b, a) < ε;
(iii) |d(x, A) − d(x, B)| < ε, for each x ∈ X.
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A computable metric space is a tuple (X, d, α), where (X, d) is a metric space
and α : N → X is a sequence dense in (X, d) such that the function N2 → R,

(i, j) �→ d(αi, αj) is recursive.
Let q : N → Q be some fixed recursive function whose image is Q ∩ 〈0,∞〉.

Let τ1, τ2 : N → N be some fixed recursive functions such that {(τ1(i), τ2(i)) |
i ∈ N} = N2. We are going to use the following notation: 〈i〉1 instead of τ1(i)
and 〈i〉2 instead of τ2(i).

For i ∈ N we define

Ii = B(α〈i〉1 , q〈i〉2), Îi = B̂(α〈i〉1 , q〈i〉2).

Note that Ii ⊆ Îi and that Ii need not be equal to Îi.

Let σ : N2 → N and η : N → N be some fixed recursive functions with the
following property: {(σ(j, 0), . . . , σ(j, η(j))) | j ∈ N} is the set of all finite se-
quences in N, i.e. the set {(a0, . . . , an) | n ∈ N, a0, . . . , an ∈ N}. Such functions,
for instance, can be defined using the Cantor pairing function. We are going to
use the following notation: (j)i instead of σ(j, i) and j instead of η(j). Hence

{((j)0, . . . , (j)j) | j ∈ N}

is the set of all finite sequences in N.

For j ∈ N the set {(j)i | 0 ≤ i ≤ j} will be denoted by [j]. By Example 1
the function N → P(N), j �→ [j] is r.r.b. For j ∈ N we define

Jj =
⋃

i∈[j]

Ii, Ĵj =
⋃

i∈[j]

Îi.

The sets Jj represent finite unions of “rational balls” and the sets Ĵj finite unions
of “closed rational balls.”

Let a, b ∈ N. We say that a and b represent formally disjoint balls if
d(α〈a〉1 , α〈b〉1) > q〈a〉2 + q〈b〉2 . Clearly, if a and b represent formally disjoint balls,
then Ia ∩ Ib = ∅.

Let i, j ∈ N. We say that i and j represent formally disjoint unions of
balls if a and b represents formally disjoint balls for all a ∈ [i], b ∈ [j]. If i and
j have this property, then clearly Ji ∩ Jj = ∅.
Lemma7. If A and B are compact disjoint subsets of (X, d, α), then there exists
n, m ∈ N such that A ⊆ Jn, B ⊆ Jm and such that n and m represent formally
disjoint unions of balls.

Proof. Let λ = d(A, B). Then λ > 0. Let I = {i ∈ N | q〈i〉2 < λ
4 }. Then {Ii | i ∈

I} is a family of open sets which covers both A and B and therefore there exist
i0, . . . , iv, j0, . . . , jw ∈ I such that the family {Ii0 , . . . , Iiv} covers A, each of its
members intersects A, the family {Ij0 , . . . , Ijw} covers B and each of its members
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intersects B. Let a ∈ {i0, . . . , iv}, b ∈ {j0, . . . , jw}. There exist x ∈ A ∩ Ia,

y ∈ B ∩ Ib. We have λ ≤ d(x, y) ≤ d(x, α〈a〉1) + d(α〈a〉1 , α〈b〉1) + d(α〈b〉1 , y) <

q〈a〉2+d(α〈a〉1 , α〈b〉1)+q〈b〉2 < λ
4 +d(α〈a〉1 , α〈b〉1)+

λ
4 , hence λ < λ

2 +d(α〈a〉1 , α〈b〉1)
which implies d(α〈a〉1 , α〈b〉1) > λ

2 > q〈a〉2 + q〈b〉2 . This means that a and b

represent formally disjoint balls. Let n, m ∈ N be such that [n] = {i0, . . . , iv},
[m] = {j0, . . . , jw}. Then n and m are the desired numbers. ��

Proposition8. Let Δ = {(j, j′) ∈ N2 | j and j′ represent formally disjoint
unions of balls}. Then Δ is a recursively enumerable set.

Proof. Let S = {(a, b) ∈ N2 | a and b represent formally disjoint balls}. It is
easy to conclude from Proposition 2 that S is r.e. Now Δ = {(j, j′) | (a, b) ∈
S, ∀a ∈ [j], ∀b ∈ [j′]}, hence

Δ = {(j, j′) | ((j)i, (j′)i′) ∈ S, ∀i, i′ such that 0 ≤ i ≤ j, 0 ≤ i′ ≤ j′}. (2)

We define Φ : N2 → P(N2), Ψ : N4 → P(N2) by Φ(j, j′) = {(i, i′) | 0 ≤ i ≤
j, 0 ≤ i′ ≤ j′}, Ψ(i, i′, j, j′) = {((j)i, (j′)i′)}. It is clear that Φ and Ψ are r.r.b.
functions. Let Λ : N2 → P(N2) be defined by Λ(l, l′) = ∪(i,i′)∈Φ(l,l′)Ψ(i, i′, l, l′).
Then Λ is r.r.b. by Proposition 4. We have Λ(l, l′) = {((j)i, (j′)i′ ) | 0 ≤ i ≤
j, 0 ≤ i′ ≤ j′} and it follows from (2) that Δ = {(l, l′) | Λ(l, l′) ⊆ S}. By
Lemma 5 Δ is recursively enumerable. ��

The following lemmas are immediate consequences of Proposition 1(i), Propo-
sition 2(iv) and the fact that (Ia∩Ib 	= ∅ ⇔ ∃k ∈ N αk ∈ Ia, αk ∈ Ib), ∀a, b ∈ N.

Lemma9. The set {(k, c) ∈ N2 | αk ∈ Ic} is r.e.

Lemma10. The set S = {(a, b) | Ia ∩ Ib = ∅} is r.e.

Let (X, d) be a metric space and x0, . . . , xk ∈ X, r0, . . . , rk ∈ 〈0,∞〉. The
formal diameter associated to the finite sequence (x0, r0), . . . , (xk, rk) is the
number D ∈ R defined by

D = max
0≤v,w≤k

d(pv, pw) + 2 max
0≤v≤k

rv.

Lemma11. Let (X, d) be a metric space.
(i) If D is the formal diameter associated to the finite sequence (x0, r0), . . . ,

(xk, rk), then diam(B̂(x0, r0) ∪ . . . ∪ B̂(xk, rk)) ≤ D.

(ii) Let K and U be subsets of (X, d) such that K is nonempty and compact, U

is open and K ⊆ U. Let A be a dense subset of (X, d). Then for each ε > 0 there
exist k ∈ N and x0, . . . xk ∈ A, r0, . . . , rk ∈ Q such that K ⊆ ∪0≤i≤kB(xi, ri),
∪0≤i≤kB̂(xi, ri) ⊆ U and D < diam(K) + ε, where D is the formal diameter
associated to (x0, r0), . . . , (xk, rk).
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Proof. (i) This follows from the fact that diam(B̂(a, t)∪B̂(b, s)) ≤ d(a, b)+ t+s,

for all a, b ∈ X, t, s ∈ 〈0,∞〉.
(ii) Let λ = d(K, X \ U) (if U = X we put λ = 1). Compactness of K

implies λ > 0. Let r ∈ Q be such that 0 < r < min{ ε
4 , λ

2 }. The family of open
sets {B(x, r) | x ∈ A} covers X and since K is compact there exist k ∈ N and
x0, . . . xk ∈ A such that K ⊆ ∪0≤i≤kB(xi, r). We may assume that B(xi, r)∩K 	=
∅, ∀i ∈ {0, . . . , k}. This implies that d(y, K) ≤ 2r (hence d(y, K) < λ) if i ∈
{0, . . . , m} and y ∈ B̂(xi, r). We conclude from this that ∪0≤i≤kB̂(xi, ri) ⊆ U.

Let i, j ∈ {0, . . . , k}. Then there exist a, b ∈ K such that d(xi, a) < r,

d(xj , b) < r. It follows d(xi, xj) < d(a, b) + 2r and therefore d(xi, xj) + 2r <

diam(K)+4r < diam(K)+ε. Hence the formal diameter associated to (x0, r), . . . ,
(xk, r) is less than diam(K) + ε. ��

Let fdiam : N → R be the function defined in the following way. For j ∈ N
the number fdiam(j) is the formal diameter associated to the finite sequence
(α〈(j)0〉1 , q〈(j)0〉2), . . . , (α〈(j)

j
〉1 , q〈(j)j

〉2). As a direct consequence of Lemma 11

and the definition of sets Jj and Ĵj we have the following proposition.

Proposition12. Let (X, d, α) be a computable metric space.
(i) For all j ∈ N, diam(Ĵj) ≤ fdiam(j).
(ii) Let K and U be subsets of (X, d) such that K is nonempty and compact,

U is open and K ⊆ U. Let ε > 0. Then there exists j ∈ N such that K ⊆ Jj ,

Ĵj ⊆ U and fdiam(j) < diam(K) + ε.

Proposition13. The function fdiam : N → R is recursive.

Proof. It follows from the definition of fdiam that

fdiam(j) = max
0≤v≤j

(
max

0≤w≤j
d

(
α〈(j)v〉1 , α〈(j)w〉1

))
+ 2 max

0≤v≤j
q〈(j)v〉2 ,

∀j ∈ N. Now Proposition 2 implies that fdiam is a recursive function. ��

Let (X, d, α) be a computable metric space. We say that x ∈ X is a recursive
point in (X, d, α) if there exists a recursive function f : N → N such that
d(x, αf(k)) < 2−k, ∀k ∈ N.

A closed subset S of (X, d) is said to be recursively enumerable in (X, d, α)
if {i ∈ N | S ∩ Ii 	= ∅} is an r.e. subset of N.

A closed subset S is said to be co-recursively enumerable in (X, d, α) if
S = ∅ or there exists a recursive function f : N → N such that X\S = ∪i∈NIf(i).

(It is easy to see that these definitions do not depend on functions τ1, τ2, q which
are necessary in the definition of Ii). If S is a closed subset of (X, d) such that
the set {i ∈ N | S ∩ Îi = ∅} is r.e., then S is clearly co-recursively enumerable.
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(Under some additional assumptions on (X, d, α) the converse is also true, see
Lemma 17 or Corollary 3.14 in [Brattka and Presser 2003].)

We say that S is a recursive set in (X, d, α) if S is both recursively enumer-
able and co-recursively enumerable.

Let S be a nonempty closed subset of (X, d, α) such that the function N → R,

i �→ d(αi, S) is recursive. Then S must be recursive. Namely, for i ∈ N we have
S ∩ Ii 	= ∅ ⇔ d(α〈i〉1 , S) < q〈i〉2 and S ∩ Îi = ∅ ⇔ d(α〈i〉1 , S) > q〈i〉2 which,
together with Proposition 2(iv), implies that S is recursively enumerable and
co-recursively enumerable, hence S is recursive.

Lemma14. Let S be a compact subset of (X, d, α) with the property that there
exists an r.r.b. function Φ : N → P(N) such that S ⊆ ∪j∈Φ(k)Jj and S ∩Jj 	= ∅,
diam(Jj) < 2−k, ∀j ∈ Φ(k), ∀k ∈ N. Then S is recursive.

Proof. Assume S 	= ∅. It is obvious from the definition of Jj that there exists
a recursive function f : N → N such that αf(j) ∈ Jj , ∀j ∈ N. Let k ∈ N.

We have the following conclusion: for each s ∈ S there exists j ∈ N such that
d(s, αf(j)) < 2−k and for each j ∈ Φ(k) there exists s ∈ S such that d(s, αf(j)) <

2−k. It follows from Proposition 6 that

|d(αi, S) − d(αi, {αf(j) | j ∈ Φ(k)})| < 2−k,

∀i ∈ N. Therefore, by Proposition 2(ii), it is enough to prove that the function
g : N2 → R, g(i, k) = d(αi, {αf(j) | j ∈ Φ(k)}) is recursive. By Proposi-
tion 3 there exists a recursive function ϕ : N → N such that Φ(k) = [ϕ(k)],
∀k ∈ N. Hence ϕ(k) = {(ϕ(k))0, . . . , (ϕ(k))

ϕ(k)
} and this implies that g(i, k) =

min
0≤j≤ϕ(k)

d(αi, αf((ϕ(k))j)). The fact that g is recursive follows now from
Proposition 2(iii). ��

3.1 Effective covering property

A computable metric space (X, d, α) has the effective covering property if
the set {(w, j) ∈ N2 | Îw ⊆ Jj} is r.e. [Brattka and Presser 2003]. It is not
hard to see that this definition does not depend on the choice of the functions
q, τ1, τ2, σ, η which are necessary in the definitions of sets Iw and Jj .

Proposition15. Let (X, d, α) be a computable metric space which has the ef-
fective covering property. Then the set S = {(i, j) ∈ N2 | Ĵi ⊆ Jj} is r.e.

Proof. If i, j ∈ N, then Ĵi ⊆ Jj ⇔ Îw ⊆ Jj , ∀w ∈ [i]. Let Φ : N2 → P(N2) be
given by Φ(i, j) = {(w, j) | w ∈ [i]}. Then Φ is r.r.b. since i �→ [i], i ∈ N is r.r.b.
We have (i, j) ∈ S ⇔ Φ(i, j) ⊆ {(n, m) | În ⊆ Jm}. By Lemma 5 S is r.e. ��

We say that a metric space (X, d) has compact closed balls if B̂(x, r) is
a compact set for all x ∈ X, r > 0.

1213Iljazovic Z.: Chainable and Circularly Chainable Co-r.e. Sets ...



Proposition16. Let (X, d, α) be a computable metric space which has the ef-
fective covering property and compact closed balls. Then the set S = {(j, j′) ∈
N2 | Ĵj ∩ Ĵj′ = ∅} is recursively enumerable.

Proof. Let j, j′ ∈ N. Since Ĵj and Ĵj′ are compact sets, we have Ĵj ∩ Ĵj′ = ∅ if
and only if there exist l, l′ ∈ N such that Ĵj ⊆ Jl, Ĵj′ ⊆ Jl′ and such that l and
l′ represent formally disjoint unions of balls (Lemma 7). By Proposition 8 and
Proposition 15 S is r.e. ��

Lemma17. Let (X, d, α) be a computable metric space which has the effective
covering property and compact closed balls. Let S be a co-r.e. set in (X, d, α).
Then the set {j ∈ N | Ĵj ⊆ X \ S} is r.e.

Proof. Suppose S 	= ∅. Using Proposition 4 and Proposition 3(v), we conclude
from the definition of a co-r.e. set that there exists a recursive function ϕ : N →
N such that X \ S =

⋃
i∈N Jϕ(i) and Jϕ(i) ⊆ Jϕ(i+1), ∀i ∈ N. Let j ∈ N. Then,

since Ĵj is compact, Ĵj ⊆ X \ S ⇔ ∃i ∈ N such that Ĵj ⊆ Jϕ(i). Now the claim
of the lemma follows from Proposition 15 and Proposition 1. ��

Let (X, d) be a metric space. Let x0, y0 ∈ X, r0, s0 ∈ 〈0,∞〉. We say that
(y0, s0) is formally contained in (x0, r0) if d(x0, y0) + s0 < r0. If (y0, s0) is
formally contained in (x0, r0), then clearly B(y0, s0) ⊆ B(x0, r0).

Let (X, d, α) be a computable metric space. Let A be the set of all (i, i′) ∈ N2

such that (α〈i〉1 , q〈i〉2) is formally contained in (α〈i′〉1 , q〈i′〉2). It follows from
Proposition 2(iv) that A is r.e. Let

B = {(i, j) ∈ N2 | (i, i′) ∈ A for some i′ ∈ [j]}. (3)

For i, j ∈ N we have (i, j) ∈ B ⇔ ∃k ∈ N such that 0 ≤ k ≤ j, (i, (j)k) ∈ A.

Therefore B is r.e. Note that

(i, j) ∈ B ⇒ Ii ⊆ Jj , (4)

∀i, j ∈ N.

Lemma18. Let (X, d) be a metric space which has compact closed balls. Let U

be an open set and x ∈ X, r > 0 such that B̂(x, r) ⊆ U. Then there exists r′ > r

such that B̂(x, r′) ⊆ U.

Proof. Suppose that such an r′ does not exist. Then for each n ∈ N there exists
xn ∈ B̂(x, r + 2−n) such that xn /∈ U. Since xn ∈ B̂(x, r + 1), ∀n ∈ N and
B̂(x, r + 1) is a compact set, there exists a subsequence (xni ) of (xn) which
converges to a ∈ X. Then d(x, xni ) → d(x, a) and since d(x, xni ) ≤ r + 2−ni ,

∀i ∈ N, we have d(x, a) ≤ r. It follows a ∈ U and therefore xni ∈ U for some
i ∈ N. A contradiction. ��
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Lemma19. Let (X, d) be a metric space, a0, . . . , an ∈ X, r0, . . . , rn ∈ 〈0,∞〉.
Let K be a compact set in (X, d) such that K ⊆ B(a0, r0)∪ . . .∪B(an, rn). Then
there exists λ > 0 such that for each x ∈ K the pair (x, λ) if formally contained
in (ai, ri) for some i ∈ {0, . . . , n}.
Proof. Suppose that such λ does not exist. Then for each n ∈ N there exists xn ∈
K such that (xn, 2−n) is not formally contained in any (ai, ri), i ∈ {0, . . . , n}. Let
(xnk

) be a subsequence of (xn) which converges to x̃ ∈ K. We have x̃ ∈ B(ai, ri)
for some i ∈ {0, . . . , n}. Let k ∈ N. We have

d(ai, xnk
) + 2−nk ≤ d(ai, x̃) + d(x̃, xnk

) + 2−nk .

Since d(ai, x̃) < ri and limk(d(x̃, xnk
) + 2−nk) = 0, there exists k ∈ N such that

d(ai, x̃)+d(x̃, xnk
)+2−nk < ri. This implies d(ai, xnk

)+2−nk < ri which means
that (xnk

, 2−nk) is formally contained in (ai, ri). A contradiction. ��
Lemma20. Let (X, d, α) be a computable metric space which has compact closed
balls and such that there exists an r.r.b. function Φ : N2 → P(N) with the
following property:

Îi ⊆
⋃

j∈Φ(i,k)

Ij and q〈j〉2 ≤ 2−k, ∀j ∈ Φ(i, k), ∀i, k ∈ N. (5)

Then there exists an r.r.b. function Ψ : N2 → P(N) which also satisfies property
(5) and such that the following holds: if U is an open set in (X, d) and i ∈ N
such that Îi ⊆ U, then there exists k0 ∈ N such that

⋃
j∈Ψ(i,k) Ij ⊆ U, ∀k ≥ k0.

Proof. Let Λ : N2 → R be defined by

Λ(i, j) = d(α〈i〉1 , α〈j〉1) − q〈i〉2 − q〈j〉2 ,

i, j ∈ N. Note that Λ(i, j) > 0 implies Îi∩Ij = ∅. Since Λ is a recursive function,
there exists a recursive function C : N3 → N such that for all i, j, k ∈ N

C(i, j, k) = 0 ⇒ Λ(i, j) > 0,

C(i, j, k) = 1 ⇒ Λ(i, j) < 2−k.

The existence of this function follows easily from the fact that {(i, j, k) | Λ(i, j) >

0} and {(i, j, k) | Λ(i, j) < 2−k} are r.e. sets whose union is N3. Let Ψ : N2 →
P(N) be defined by

j ∈ Ψ(i, k) ⇔ j ∈ Φ(k) and C(i, j, k) = 1.

Clearly Ψ is r.r.b. Let i, k ∈ N. Then Ψ(i, k) ⊆ Φ(i, k) and Λ(i, j) > 0, ∀j ∈
Φ(i, k) \ Ψ(i, k). Hence Îi ∩ Ij = ∅, ∀j ∈ Φ(i, k) \ Ψ(i, k). It follows

Îi ⊆
⋃

j∈Ψ(i,k)

Ij .
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For each j ∈ Ψ(i, k) we have Λ(i, j) < 2−k and therefore d(α〈i〉1 , α〈j〉1) < q〈i〉2 +
q〈j〉2 + 2−k ≤ q〈i〉2 + 2 · 2−k which implies that for each x ∈ Ij

d(α〈i〉1 , x) ≤ d(α〈i〉1 , α〈j〉1)+ d(α〈j〉1 , x) < (q〈i〉2 +2 · 2−k)+2−k = q〈i〉2 +3 · 2−k.

We conclude that
⋃

j∈Ψ(i,k) Ij ⊆ B(α〈i〉1 , q〈i〉2 + 3 · 2−k), ∀i, k ∈ N. The claim of
the lemma now follows from Lemma 18. ��
Theorem 21. Let (X, d, α) be a computable metric space which has compact
closed balls and such that there exists an r.r.b function Φ : N2 → P(N) with
property (5). Then (X, d, α) has the effective covering property.

Proof. Let Ψ be the function of Lemma 20. Suppose i, v ∈ N and Îi ⊆ Jv. It fol-
lows immediately from Lemma 18 that there exist an open set U and a compact
set K such that Îi ⊆ U ⊆ K ⊆ Jv. Let k0 ∈ N be such that

⋃
j∈Ψ(i,k) Ij ⊆ U,

∀k ≥ k0. By Lemma 19 there exists λ > 0 such that for each x ∈ K the pair
(x, λ) is formally contained in (α〈w〉1 , q〈w〉2) for some w ∈ [v]. Let k ∈ N be such
that k ≥ k0, 2−k < λ. Then we have ∪j∈Ψ(i,k)Ij ⊆ U and therefore α〈j〉1 ∈ K,

∀j ∈ Ψ(i, k). For j ∈ Ψ(i, k) this fact, together with q〈j〉2 ≤ 2−k < λ, implies that
(α〈j〉1 , q〈j〉2) is formally contained in (α〈w〉1 , q〈w〉2) for some w ∈ [v]. It follows
(j, v) ∈ B, where B is the set given by (3). Conclusion: if i, v ∈ N are such that
Îi ⊆ Jv, then there exists k ∈ N such that (j, v) ∈ B, ∀j ∈ Ψ(i, k).

Conversely, let i, v, k ∈ N be such that (j, v) ∈ B, ∀j ∈ Ψ(i, k). By (4)
Ij ⊆ Jv, ∀j ∈ Ψ(i, k). Hence ∪j∈Ψ(i,k)Ij ⊆ Jv and since Îi ⊆ ∪j∈Ψ(i,k)Ij , we have
Îi ⊆ Jv.

We have proved the following:

Îi ⊆ Jv ⇔ ∃k ∈ N such that (j, v) ∈ B, ∀j ∈ Ψ(i, k). (6)

Let Λ : N3 → P(N2) be defined by Λ(i, k, v) = {(j, v) | j ∈ Ψ(i, k)}. It is easy
to conclude from Proposition 4 that Λ is an r.r.b. function. Now (6) implies
Îi ⊆ Jv ⇔ ∃k ∈ N such that Λ(i, k, v) ⊆ B. It follows from Lemma 5 that
{(i, v) | Îi ⊆ Jv} is an r.e. set. Hence (X, d, α) has the effective covering property.

��
Let (X, d, α) be a computable metric space. A sequence (xi) in X is said

to be recursive if there exists a recursive function f : N2 → N such that
d(xi, αf(i,k)) < 2−k, for each i, k ∈ N.

Corollary 22. Let (X, d, α) be a computable metric space, a ∈ X a recursive
point, (xi) a recursive sequence in X and F : N2 → N a recursive function such
that

B(a, M) ⊆
⋃

0≤j≤F (M,k)

B(xj , 2−k),

∀M, k ∈ N. Then (X, d, α) has the effective covering property.
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Proof. Since a is recursive, there exist a recursive function f : N → N such
that Îi ⊆ B(a, f(i)), ∀i ∈ N and since (xi) is recursive, there exists a recursive
function g : N2 → N such that B(xj , 2−(k+1)) ⊆ B(αg(j,k), 2−k), ∀j, k ∈ N.

Then Îi ⊆ ⋃
0≤j≤F (f(i),k+1) B(αg(j,k), 2−k), ∀i, k ∈ N. It follows easily from

this that there exists an r.r.b. function Φ : N2 → P(N) with property (5). By
Theorem 21 (X, d, α) has the effective covering property. ��
Example 3. Let d be Euclidean metric on R. It is easy to find a recursive function
r : N → Q and a recursive function F : N2 → N such that [−M, M ] ⊆
∪0≤i≤F (M,k)B(ri, 2−k), ∀M, k ∈ N. Therefore, if α : N → Q is a recursive
surjection, (R, d, α) is a computable metric space with the effective covering
property. Similarly, if n ≥ 1, d Euclidean metric on Rn and α : N → Qn

a recursive surjection, then (Rn, d, α) is a computable metric space with the
effective covering property.

Let I∞ be the set of all sequences (xi) of real numbers such that xi ∈ [0, 1],
∀i ∈ N. We have the metric d on I∞ defined by d((xi), (yi)) =

∑∞
i=0

1
2i |xi − yi|.

It is known that this metric induces topology which coincides with the product
topology on I∞. The space I∞ is called the Hilbert cube. As the product of
compact spaces, the Hilbert cube is compact.

Let r : N → Q be some recursive function such that r(N) = [0, 1] ∩ Q.

Let α : N → I∞ be defined by α(i) = (r(i)0 , . . . , r(i)
i
, 0, 0, . . .), i ∈ N. Then

(I∞, d, α) is a computable metric space.
It follows from Example 3 that there exists a recursive function f : N → N

such that [0, 1] ⊆ ∪0≤i≤f(k)B(ri, 2−k), ∀k ∈ N. Let F : N2 → N be a recursive
function such that for all l, k ∈ N the set {(i0, . . . , ik) ∈ Nk+1 | i0 ≤ l, . . . , ik ≤ l}
is contained in the set {((i)0, . . . , (i)k) | 0 ≤ i ≤ F (l, k), i = k}.

Let k ∈ N and (xi) ∈ I∞. For each i ∈ {0, . . . , k} let ji be such that ji ≤ f(k)
and |xi − rji | < 2−k. Note that (rj0 , . . . , rjk

, 0, 0, . . .) = α(n), where n ∈ N, n ≤
F (f(k), k). The distance between (x0, . . . , xk, 0, 0, . . .) and (rj0 , . . . , rjk

, 0, 0, . . .)
is less than 2 · 2−k and, on the other hand , the distance between (xi) and
(x0, . . . , xk, 0, 0, . . .) is less than 2−k. Therefore d(α(n), (xi)) < 3 · 2−k. We have
proved the following:

I∞ ⊆
⋃

0≤n≤F (f(k),k)

B(αn, 3 · 2−k),

∀k ∈ N. By Corollary 22 (I∞, d, α) has the effective covering property.

4 Co-r.e. sets with disconnected complement

In this section we examine co-r.e. sets whose complements are disconnected. In
Theorem 26 we give some conditions under which such a set contains a recursive
point and some conditions under which such a set is recursive.
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Let (X, d, α) be a computable metric space, U ⊆ X and a, b ∈ X. Let
i0, . . . , im ∈ N. We say that the finite sequence i0, . . . , im connects a and b in
U if a ∈ Ii0 , b ∈ Iim , Iik

∩ Iik+1 	= ∅, ∀k ∈ {0, . . . , m− 1} and Îi0 ∪ . . .∪ Îim ⊆ U.

Lemma23. Let (X, d, α) be a computable metric space and let U be an open
and connected set in (X, d). Let ε > 0. Then for each a, b ∈ U there exists
a finite sequence i0, . . . , im in N which connects a and b in U and such that
q〈i0〉2 , . . . , q〈im〉2 < ε.

Proof. Let ∼ be the relation on U defined by x ∼ y ⇔ there exists a fi-
nite sequence i0, . . . , im in N which connects a and b in U and such that
q〈i0〉2 , . . . , q〈im〉2 < ε. Then ∼ is clearly an equivalence relation on U and for
each x ∈ U the set Vx = {y ∈ U | x ∼ y} is open. Since {Vx | x ∈ U} is a
partition of U and U is connected, we have Vx = U, ∀x ∈ U and the claim of the
lemma follows. ��

If (X, d, α) is a computable metric space and U an open set in (X, d), let

ΔU = {(a, b) ∈ N2 | αa and αb lie in the same component of U}.

Proposition24. Let (X, d, α) be a computable metric space which has compact
and connected closed balls and the effective covering property. Let S be a co-r.e.
set in this space. Then ΔX\S is an r.e. set.

Proof. Let

Δ̃ = {(a, b, j) ∈ N3 | (j)0, . . . , (j)j connects αa and αb in X \ S}.

We claim that for all a, b ∈ N the following equivalence holds:

(a, b) ∈ ΔX\S ⇔ ∃j (a, b, j) ∈ Δ̃. (7)

Let a, b ∈ N and suppose αa and αb lie in the same component U of X \ S. If
x ∈ U, then B̂(x, r) ⊆ X \ S for some r > 0 and since B̂(x, r) is connected we
have B̂(x, r) ⊆ U. It follows that U is an open set. By Lemma 23 there exists
a finite sequence i0, . . . , im which connects αa and αb in U. We conclude that
there exists j ∈ N such that (a, b, j) ∈ Δ̃.

Conversely, suppose (a, b, j) ∈ Δ̃, a, b, j ∈ N. It follows that there exists a
finite sequence B0, . . . , Bm of closed balls such that αa ∈ B0, αb ∈ Bm, Bi ∩
Bi+1 	= ∅, ∀i ∈ {0, . . . , m− 1} and B0 ∪ . . . ∪Bm ⊆ X \ S. In general, the union
of two connected sets which have nonempty intersection is connected. Therefore
B0 ∪ . . . ∪ Bm is a connected set and since it lies in X \ S, it must lie in some
component U of X \ S. It follows αa, αb ∈ U. Hence (7) holds.

In order to prove that ΔX\S is r.e., it is now sufficient to prove that Δ̃ is
r.e. Let Ω = {(i1, i2) ∈ N2 | Ii1 ∩ Ii2 	= ∅}. Then Ω is r.e. by Lemma 10. Let
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Φ : N → P(N2) be defined by Φ(j) = {(i, i+1) | 0 ≤ i < j} and Ψ : N3 → P(N2)
by Ψ(i1, i2, j) = {((j)i1 , (j)i2 )}. These are clearly r.r.b. functions. If we apply
Proposition 4 to Φ and Ψ we get that the function Λ : N → P(N2),

Λ(j) = {((j)i, (j)i+1) | 0 ≤ i < j}

is r.r.b. We have

Δ̃ = {(a, b, j) | αa ∈ I(j)0 , αb ∈ I(j)
j
, Λ(j) ⊆ Ω, Ĵj ⊆ X \ S}.

The fact that Δ̃ is r.e. follows now from Lemma 9, Lemma 5 and Lemma 17. ��

If (X, d, α) is a computable metric space and U an open set in (X, d), let

Γ U = {(a, b) ∈ N2 | αa and αb lie in different components of U}.

Lemma25. Let T ⊆ N2k and S ⊆ Nk be recursively enumerable sets such that
for each x ∈ S there exists y ∈ S such that (x, y) ∈ T. Then for each s ∈ S

there exists a recursive function f : N → Nk such that f(N) ⊆ S, f(0) = s and
(f(i), f(i + 1)) ∈ T, ∀i ∈ N.

Proof. By Proposition 1(i) there exists a partially recursive function h : S → Nk

such that h(S) ⊆ S and (x, h(x)) ∈ T, ∀x ∈ S. Let s ∈ S. Let f : N → Nk be
defined by f(0) = s, f(i + 1) = h(f(i)) (primitive recursion). Then f : N → Nk

is the desired function. ��

Theorem 26. Let (X, d, α) be a computable metric space which has compact and
connected closed balls and the effective covering property. Let S be a co-r.e. set
in (X, d, α) such that there exists an r.e. subset A of N with the property that for
each component C of X \ S there exists unique a ∈ A such that αa ∈ C. (Such
a set A exists, for example, if X \ S has finitely many components.) Then

(i) Γ X\S is r.e.;
(ii) if x0 ∈ X, r0 > 0 are such that B(x0, r0) intersects two different compo-

nents of X \ S, then B(x0, r0) ∩ S contains a recursive point;
(iii) if each point x ∈ S lies in the boundary of at least two different compo-

nents of X \ S, then S is a recursive set in (X, d, α).

Proof. (i) If A = ∅, then X \ S = ∅ and Γ X\S = ∅. Suppose A 	= ∅. Let
f : N → N be a recursive function such that A = f(N). Let a, b ∈ N. Then

(a, b) ∈ Γ X\S ⇔ ∃i, j ∈ N f(i) 	= f(j), (a, f(i)) ∈ ΔX\S , (b, f(j)) ∈ ΔX\S .

Statement (i) now follows from Proposition 24.
Claim 1 Let x ∈ X and r > 0. Then B(x, r) is a connected set and if there

exist a, b ∈ N are such that αa, αb ∈ B(x, r), (a, b) ∈ Γ X\S , then B(x, r)∩S 	= ∅.
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We have B(x, r) = ∪0<s<rB̂(x, s) and therefore B(x, r), as the union of
connected sets with nonempty intersection, is connected. If αa, αb ∈ B(x, r),
(a, b) ∈ Γ X\S for some a, b ∈ N, then B(x, r) intersects two different components
of X \ S and since it is connected, it cannot be contained in X \ S, hence
B(x, r) ∩ S 	= ∅.

Claim 2 Let x ∈ X, r > 0 and a, b ∈ B(x, r) such that a and b lie in
different components of X \ S. Suppose the interior of the set B(x, r) ∩ S is
empty, i.e. Int(B(x, r) ∩ S) = ∅. Then for each ε > 0 there exists i ∈ N such
that Îi ⊆ B(x, r), q〈i〉2 < ε and Ii intersects two different components of X \ S.

By Lemma 23 there exists a finite sequence i0, . . . , im which connects a and
b in B(x, r) and q〈i0〉2 , . . . , q〈im〉2 < ε. Let C be the component of X \ S which
contains a and let ip be the first number in the sequence i0, . . . , im such that Iip

intersects some component of X \S different from C. If p = 0, then Ii0 intersects
two different components of X \S. If p > 0, then Iip−1 must lie in C∪S. However,
since Iip−1 ∩Iip is open and nonempty and Int(B(x, r)∩S) = ∅, Iip−1 ∩Iip cannot
be contained in S, hence it must intersect C. This implies Iip ∩C 	= ∅, hence Iip

intersects two different components of X \ S. This completes the proof of Claim
2.

(ii) If Int(B(x0, r0) ∩ S) 	= ∅, then there exists a ∈ N such that αa ∈
B(x0, r0)∩S and this is the desired recursive point. Suppose Int(B(x0, r0)∩S) =
∅. By Claim 2 there exists P ∈ N such that ÎP ⊆ B(x0, y0) and IP intersects
two different components of X \ S. Let Ω be the set of all i ∈ N such that Ii

intersects two different components of X \ S, Îi ⊆ IP and q〈i〉2 < 1. Then

i ∈ Ω ⇔ (∃a, b ∈ N αa, αb ∈ Ii, (a, b) ∈ Γ X\S) and Îi ⊆ IP , q〈i〉2 < 1.

It follows from (i) that Ω is r.e. (note that {(i, j) | Îi ⊆ Ij} is r.e. which follows
from the obvious fact that there exists a recursive function f : N → N such that
Ij = Jf(j), ∀j ∈ N). Let

Ω̃ = {(i, i′) ∈ N2 | Îi′ ⊆ Ii, q〈i′〉2 <
1
2
q〈i〉2}.

Then Ω̃ is r.e. By Claim 2 for each i ∈ Ω there exists i′ ∈ Ω such that (i, i′) ∈
Ω̃. By Lemma 25 there exists a recursive sequence (ik)k∈N such that ik ∈ Ω,

(ik, ik+1) ∈ Ω̃, ∀k ∈ N. By Claim 1

Iik
∩ S 	= ∅, ∀k ∈ N. (8)

We have Îik+1 ⊆ Iik
, q〈ik+1〉2 < 1

2q〈ik〉2 , ∀k ∈ N. It follows Iik
⊆ Iik

, q〈ik〉2 < 2−k,

∀k ∈ N. We conclude that
⋂

k∈N Iik
= {x̃}, where x̃ ∈ X. Since d(x̃, α〈ik〉1) <

q〈ik〉2 < 2−k, ∀k ∈ N, x̃ is a recursive point and (8) implies x̃ ∈ S, hence x̃ ∈ S.

(iii) Let i ∈ N. If Ii ∩ S 	= ∅, then there exist a, b ∈ N such that αa, αb ∈ Ii,

(a, b) ∈ Γ X\S . Now, by Claim 1, we have

Ii ∩ S 	= ∅ ⇔ ∃a, b ∈ N, αa, αb ∈ Ii, (a, b) ∈ Γ X\S .
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This implies that S is a recursively enumerable set in (X, d, α). Therefore S is
recursive. ��
Corollary 27. Let S be a co-r.e. set in Euclidean space or in the Hilbert cube
such that the complement of S has finitely many components, at least two. Then
S contains a recursive point. If each point of S lies in the boundary of at least
two different components of the complement of S, then S is recursive.

Example 4. Let S ⊆ R be a nonempty co-r.e. set which does not contain any
recursive number. We may suppose S ⊆ 〈0, 1〉. Since S cannot contain an interval
or an isolated point, R\S has infinitely many components. Let n ≥ 2 and T =
{(t, 0, . . . , 0) ∈ Rn | t ∈ S}, T ′ = {(x1, x2, . . . , xn) | x1 ∈ S, x2, . . . , xn ∈ R}.
Then T and T ′ are co-r.e. sets, Rn \T is connected, Rn \T ′ has infinitely many
components and neither T nor T ′ contains a recursive point. On the other hand,
let T ′′ = T ∪ {x ∈ Rn | ‖x‖ = 1}. It is not hard to check that T ′′, as the
union of two co-r.e. sets, is a co-r.e. set. We have that Rn \T ′′ has precisely two
components and it is easy to conclude that T ′′ is not recursive.

Let S be a co-r.e. subset of Rn which is, as a subspace of Rn, a topological
circle, i.e. a space homeomorphic to the unit circle S1 = {x ∈ R2 | ‖x‖ = 1}. In
the case n = 2 the Jordan curve theorem implies that R2 \ S has precisely two
components of which S is the common boundary and therefore, by Theorem 26,
S is recursive. The property that the complement of S is disconnected is crucial
in the proof of Theorem 26: it allows us to “approach” S from different sides
and in that way we can effectively “locate” S. This is a situation similar to the
one in which we have two recursive sequences of real numbers (xi) and (yi) and
a number α as their common limit such that xi ≤ α ≤ yi, ∀i ∈ N. Then α

must be a recursive number (in contrast to the fact that the limit of a recursive
sequence need not be a recursive number). However, if n > 2, then Rn \ S is
connected and therefore the technique used in the proof of Theorem 26 cannot
be applied in this case. Nevertheless, there are some topological properties of the
complement Rn \S (which are in connection to certain homology groups) which
make it possible to prove that S is recursive even when S is homeomorphic to
sphere of any dimension [Miller 2002].

In the next section we will see that there is a class of spaces, more general
than the class of topological circles, such that any co-r.e. set which belongs to
that class must be recursive, not just in Rn, but in any computable metric space
which has the effective covering property and compact closed balls.

5 Co-r.e. chainable and circularly chainable continua

Let X be a metric space and C = (C0, . . . , Cm) a finite sequence of subsets of
X. By

⋃ C we denote the union C0 ∪ . . . ∪ Cm and we say that C covers S,
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S ⊆ X, if S ⊆ ⋃ C. If Ci is nonempty for each i ∈ {0, . . . , m}, then we define
mesh(C) = max0≤i≤m diam(Ci). We say that C is a finite sequence of ε−bounded
sets, where ε ∈ R, if mesh(C) < ε.

A finite sequence C0, . . . , Cm of nonempty open subsets of X is said to be a
chain in X if Ci ∩ Cj 	= ∅ ⇔ |i − j| ≤ 1, ∀i, j ∈ {0, . . . , m} [Nadler 1992]. We
say that Ci is a link of the chain C0, . . . , Cm, i ∈ {0, . . . , m}.

That a chain C0, . . . , Cm in X covers S, S ⊆ X, means that it covers S as a
finite sequence of sets, and that is an ε−chain, ε ∈ R, means that it is a finite
sequence of ε−bounded sets.

We say that X is a chainable continuum if X is a continuum (compact
and connected metric space) such that for each ε > 0 there exists an ε-chain
C0, . . . , Cm in X which covers X. Note that the sets C0, . . . , Cm in this definition
need not be connected.

A finite sequence C0, . . . , Cm of nonempty open subsets of X is said to be
a circular chain in X if Ci ∩ Cj 	= ∅ ⇔ (|i − j| ≤ 1 or {i, j} = {0, m}). A
continuum X is said to be circularly chainable if for each ε > 0 there exists
a ε-circular chain in X which covers X [cf. Burgess 1959].

We say that a finite sequence C0, . . . , Cm of nonempty subsets of X is a
quasi-chain if Ci ∩ Cj = ∅ for all i, j ∈ {0, . . . , m} such that |i − j| > 1.

Similarly, we say that a finite sequence C0, . . . , Cm of nonempty subsets of X

is a circular quasi-chain if Ci ∩ Cj = ∅ for all i, j ∈ {0, . . . , m} such that
|i − j| > 1, {i, j} 	= {0, m}. If C = (C0, . . . , Cm) is a (circular) quasi-chain and
each of the sets C0, . . . , Cm is open, then we say that C is an open (circular)
quasi-chain. Note the following: if C = (C0, . . . , Cm) is an open quasi-chain,
then C is not a chain if and only if there exists i ∈ {0, . . . , m − 1} such that
Ci ∩ Ci+1 = ∅.

Lemma28. (i) Let (X, d) be a metric space, S compact subset of (X, d) and
C0, . . . , Cm a finite sequence of open sets which covers S. Then there exist a
finite sequence of open sets A0, . . . , Am which covers S and such that Ai ⊆ Ci,

∀i ∈ {0, . . . , m}.
(ii) Let (X, d, α) be a computable metric space, S compact subset of (X, d),

r ∈ R and C0, . . . , Cm a finite sequence of r−bounded open sets which covers S.

Then there exist j0, . . . , jm ∈ N such that the finite sequence of sets Jj0 , . . . , Jjm

covers S, Ĵji ⊆ Ci and fdiam(ji) < r, ∀i ∈ {0, . . . , m}.

Proof. We prove (ii), (i) is similar. Let i ∈ {0, . . . , m}. Let

K = S \ (C0 ∪ . . . ∪ Ci−1 ∪ Ci+1 ∪ . . . ∪ Cm).

Suppose K 	= ∅. Clearly K is closed and since it is a subset of S it must be
compact. We have K ⊆ Ci. This implies diam(K) < r. Now we conclude from
Proposition 12 that there exists j ∈ N such that K ⊆ Jj , Ĵj ⊆ Ci and fdiam(j) <
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r. It follows that C0, . . . , Ci−1, Jj , Ci+1, . . . , Cm covers S, Ĵj ⊆ Ci and fdiam(j) <

r. The same conclusion we get in the case K = ∅ : it is enough to take j ∈ N
such that Ĵj ⊆ Ci and fdiam(j) < r (note that Ci 	= ∅ by the definition of a
finite sequence of r−bounded sets).

This means that there exists j0 ∈ N such that Jj0 , C1, . . . , Cm covers S, Ĵj0 ⊆
C0 and fdiam(j0) < r. Now we start with the finite sequence Jj0 , C1, . . . , Cm and
get j1 ∈ N such that Jj0 , Jj1 , C2, . . . , Cm covers S, Ĵj1 ⊆ C1 and fdiam(j1) < r.

In finitely many steps we get the desired numbers. ��

Lemma29. Let (X, d) be a metric space and let S be a subset of X which is,
as a subspace of (X, d), a (circularly) chainable continuum. Then for each ε > 0
there exists an open ε−(circular) quasi-chain C0, . . . , Cm in (X, d) which covers
S.

Proof. Suppose S is chainable and let ε > 0. Let D0, . . . , Dm be an ε
3−chain in

S which covers S. By Lemma 28(i) there exist a finite sequence A0, . . . , Am of
compact subsets of S which covers S and such that Ai ⊆ Di, i ∈ {0, . . . , m}. Let

r = min{d(Ai, Aj) | |i − j| > 1, i, j ∈ {0, . . . , m}}.

Then r > 0 since Ai ∩ Aj ⊆ Di ∩ Dj = ∅ for |i − j| > 1. For i ∈ {0, . . . , m} let

Ci =
{
x ∈ X | d(x, Ai) < min

{r

2
,
ε

3

}}
.

Then Ci is an open set, Ai ⊆ Ci and Ci ∩ Cj = ∅ for all i, j ∈ {0, . . . , m} such
that |i − j| > 1. Since diam(Ai) < ε

3 , we have diam(Ci) < ε, ∀i ∈ {0, . . . , m}.
Therefore C0, . . . , Cm is an open ε−quasi-chain in X which covers S. In the same
way we get that there exists an open ε− circular quasi-chain in X which covers
S if S is circularly chainable. ��

Lemma30. Let C0, .., Cm be an open quasi-chain in (X, d) which covers S,

where S is a connected subset of (X, d). Let v = min{i | Ci ∩ S 	= ∅}, w =
max{i | Ci ∩S 	= ∅}. Then Cv, . . . , Cw is a chain which covers S and Ci ∩S 	= ∅,
∀i ∈ {v, . . . , w}.

Proof. If Ci ∩ S = ∅ for some i such that v < i < w, then C0, . . . , Ci−1 and
Ci+1, . . . , Cm are disjoint open sets which cover S and each of them intersects S.

This is impossible since S is connected. Therefore Ci∩S 	= ∅ for all i ∈ {v, . . . , w}.
If i is such that v ≤ i < w, then Ci ∩ Ci+1 	= ∅ (otherwise Cv ∪ . . . ∪ Ci and
Ci+1 ∪ . . .∪Cw are disjoint open sets which cover S and each of them intersects
S). Therefore Cv, . . . , Cw is a chain. ��

For l ∈ N let Hl be the finite sequence of sets J(l)0 , . . . , J(l)
l

and let Ĥl be

the finite sequence of sets Ĵ(l)0 , . . . , Ĵ(l)
l
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Let the function fmesh : N → R be defined by

fmesh(l) = max
0≤j≤l

fdiam((l)j),

l ∈ N. It is immediate from Proposition 13 and Proposition 2 that fmesh is a
recursive function.

Let C = (C0, . . . , Cm) and D = (D0, . . . , Dn) be finite sequences of subsets
of X. We say that D directly refines C if n = m and Di ⊆ Ci for each
i ∈ {0, . . . , m}.
Lemma31. Let (X, d, α) be a computable metric space, S compact subset of
(X, d), r ∈ R and C an open r−(circular) quasi-chain in (X, d) which covers
S. Then there exist l ∈ N such that Hl covers S, Ĥl directly refines C and
fmesh(l) < r.

Proof. This is immediate from Lemma 28(ii) and the fact that for all j0, . . . , jm ∈
N there exists l ∈ N such that ((l)0, . . . , (l)l) = (j0, . . . , jm). ��
Proposition32. Let (X, d, α) be a computable metric space which has the ef-
fective covering property and compact closed balls. The sets Ω = {l ∈ N | Ĥl is
a circular quasi-chain} and Ω′ = {l ∈ N | Ĥl is a quasi-chain} are recursively
enumerable.

Proof. Let Φ : N → P(N2) be defined by Φ(l) = {(i, j) ∈ N2 | i + 1 < j < l

or 1 < i + 1 < j ≤ l}. Clearly, Φ is r.r.b. Let Ψ : N3 → P(N2) be defined by
Ψ(i, j, l) = {((l)i, (l)j)}. By Proposition 3(i) Ψ is r.r.b. Let Λ : N → P(N2) be
defined by

Λ(l) = {((l)i, (l)j) | i + 1 < j < l or 1 < i + 1 < j ≤ l}.
Since Λ(l) = ∪(i,j)∈Φ(l)Ψ(i, j, l), Λ is r.r.b. (Proposition 4). Let S be the set of
Proposition 16. Then Ω = {l ∈ N | Λ(l) ⊆ S}. By Lemma 5 Ω is r.e. We have
Ω′ = Ω ∩ ({l ∈ N | Ĵ(l)0 ∩ Ĵ(l)

l
= ∅} ∪ {l ∈ N | l ≤ 1}). Therefore Ω′ is r.e. ��

Lemma33. Let (X, d, α) be a computable metric space. There exists a recursive
function ζ : N → N such that Jζ(l) =

⋃Hl, ∀l ∈ N.

Proof. Let Φ : N → P(N) be defined by Φ(l) = ∪0≤i≤l[(l)i]. It follows from
Proposition 4 that Φ is r.r.b. For each l ∈ N the set Φ(l) is nonempty and
therefore there exists j ∈ N such that Φ(l) = [j]. By Proposition 3(v) there
exists a recursive function ζ : N → N such that Φ(l) = [ζ(l)]. We have

Jζ(l) =
⋃

j∈[ζ(l)]

Ij =
⋃

j∈Φ(l)

Ij =
⋃

0≤i≤l

⎛
⎝ ⋃

j∈[(l)i]

Ij

⎞
⎠ =

⋃
0≤i≤l

J(l)i

and it is immediate from the definition of Hl that Jζ(l) is its union. ��
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Let (X, d, α) be a computable metric space which has the effective covering
property and compact closed balls and let S be a co-recursively enumerable set
in (X, d, α) which is compact. Let i0 ∈ N be such that S ⊆ Ii0 and let f : N → N
be a recursive function such that X \S =

⋃
n∈N Jf(n), Jf(n) ⊆ Jf(n+1), ∀n ∈ N.

Let j ∈ N. Then S ⊆ Jj if and only if there exists n ∈ N such that Îi0 ⊆ Jj ∪Jn.

It is not hard to conclude from this that the set {j ∈ N | S ⊆ Jj} is r.e. (see
also Corollary 4.14 in [Brattka and Presser 2003]).

Proposition34. Let (X, d, α) be a computable metric space which has the ef-
fective covering property and compact closed balls. Let S be a co-recursively enu-
merable set in (X, d, α) which is compact. Then the set Ω = {l ∈ N | Hl covers
S} is r.e.

Proof. Let ζ : N → N be the function of Lemma 33. Then Hl covers S if
and only if S ⊆ Jζ(l), ∀l ∈ N. Therefore Ω = {l ∈ N | ζ(l) ∈ Ω′} where
Ω′ = {j ∈ N | S ⊆ Jj}. It follows from Proposition 1(ii) that Ω is r.e. ��

Let (X, d, α) and S be as in Proposition 34. It is not hard to conclude from
Proposition 34 that the set {i ∈ N | S ⊆ Ii} is r.e. Now, if S is a one-point set,
then S ∩ Ii 	= ∅ ⇔ S ⊆ Ii, ∀i ∈ N, which implies that S is an r.e. set. Hence
each one point co-r.e. set in (X, d, α) is recursive.

5.1 Circularly chainable continua which are not chainable

Theorem 35. Let (X, d, α) be a computable metric space which has the effective
covering property and compact closed balls. Let S be a subset of X which, as a
subspace of (X, d), is circularly chainable, but not chainable continuum. Then S

is recursive if it is co-recursively enumerable.

Proof. Suppose S is co-r.e. Let k0 ∈ N be such that there exists no 2−k0− chain
in S which covers S. If C0, . . . , Cm is an open 2−k0−quasi-chain in X which
covers S, then C0∩S, . . . , Cm∩S is an open 2−k0−quasi-chain in S which covers
S and Lemma 30 implies that Ci∩S, . . . , Cj∩S is a 2−k0 chain in S which covers
S for some i, j ∈ {0, . . . , m}, i ≤ j, which is impossible. Hence there exists no
open 2−k0−quasi-chain in X which covers S.

Let A = {(k, l) ∈ N2 | Hl covers S, Ĥl is a circular quasi-chain, fmesh(l) <

2−(k+k0)}. By Proposition 34, Proposition 32 and Proposition 2(iv) the set A is
r.e.

Let k ∈ N. By Lemma 29 there exists an open circular 2−(k+k0)−quasi-chain
C = (C0, . . . , Cm) in X which covers S. By Lemma 31 there exists l ∈ N such
that Hl covers S, Ĥl refines C and fmesh(l) < 2−(k+k0). Since Ĥl refines C, Ĥl is
a quasi-chain and we conclude that (l, k) ∈ A. Hence for each k ∈ N there exists
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l ∈ N such that (k, l) ∈ A. By Proposition 1(i) there exists a recursive function
ϕ : N → N such that (k, ϕ(k)) ∈ A, ∀k ∈ N.

Let k ∈ N and let Hϕ(k) = (C0, . . . , Cm). Then C0, . . . , Cm is an open
quasi-chain in X which covers S. Since diam(Jj) ≤ fdiam(j), ∀j ∈ N and
fmesh(ϕ(k)) < 2−(k+k0), we conclude that diam(Ci) < 2−(k+k0), ∀i ∈ {0, . . . , m}.

Suppose that there exists i ∈ {0, . . . , m} such that Ci ∩ S = ∅. Then
Ci+1, . . . , Cm, C0, . . . , Ci−1 covers S. But Ci+1, . . . , Cm, C0, . . . , Ci−1 is a quasi-
chain (since C0, . . . , Cm is a circular quasi-chain). Hence we have an open 2−k0−
quasi-chain in X which covers S which is impossible. Therefore Ci ∩ S 	= ∅,
∀i ∈ {0, . . . , m}. We have {C0, . . . , Cm} = {Jj | j ∈ [ϕ(k)]} and by Lemma 14 S

is a recursive set. ��

A continuum K is said to be decomposable if it is the union of two proper
subcontinua. We say that K is indecomposable if it is not decomposable.
For example [0, 1] is a decomposable continuum since [0, 1] =

[
0, 1

2

] ∪ [
1
2 , 1

]
(or

[0, 1] =
[
0, 2

3

]∪ [
1
3 , 1

]
). On the other hand, it is much harder to prove that there

exists an indecomposable continuum (apart from a point), an example of such a
continuum can be found in [Nadler 1992] (Example 1.10).

We say that a continuum K is 2-indecomposable if it is decomposable
and if there exist no subcontinua M1, M2 and M3 of K whose union is K and
such that neither of M1, M2 and M3 is contained in the union of other two
[Burgess 1959].

There exist continua which are both chainable and circularly chainable. There
is a result proved in [Burgess 1959] which says that if K is a chainable con-
tinuum, then K is circularly chainable if and only if it is indecomposable or
2-indecomposable. For example, if K = [0, 1] or K = S1, then K is neither in-
decomposable nor 2-indecomposable. Therefore, since [0, 1] is chainable and S1

is circularly chainable, [0, 1] is not circularly chainable and S1 is not chainable.
If K and K ′ are homeomorphic metric spaces, then it is not hard to see

that K is a (circularly) chainable continuum if and only if K ′ is a (circularly)
chainable continuum.

In the following examples let X be an arbitrary computable metric space
which has the effective covering property and compact closed balls.

Example 5. (i) If S ⊆ X is homeomorphic to S1, then S is circularly chainable,
but not chainable. Therefore, by Theorem 35, S is recursive if it is co-r.e.

(ii) Let T be the subset of R2 defined by

T = {(0, s) | s ∈ [−1, 1]} ∪
{

(t, sin
(

1
t

)
| t ∈ 〈0, 1]

}
.

Let A be an arc whose endpoints are (0,−1) and (1, sin(1)) and which intersects
T only in these points. Then any space homeomorphic to T ∪ A is called the
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Warsaw circle. It is easy to conclude that T ∪ A is circularly chainable, but not
chainable since it is clearly decomposable and not 2-indecomposable. Therefore
each co-r.e. subset of X which is homeomorphic to T ∪A must be recursive, i.e.
each co-r.e. Warsaw circle in X is recursive.

Example 6. Let f : S1 → S1 be defined by f(z) = z2, where z2 = z · z is mul-
tiplication in C. Let A be set of all sequences (xi) in S1 and B = {(xi) ∈ A |
xi = f(xi+1), ∀i ∈ N}. We have the product topology on A (A = S1 ×S1 × . . .)
and B with the subspace topology. The space B is called the dyadic solenoid
[Nadler 1992, Christenson and Voxman 1977]. As a consequence of Theorem 35
we have that each co-r.e. set in X which is homeomorphic to the dyadic solenoid
must be recursive. Namely, by [Nadler 1992], the dyadic solenoid is a circularly
chainable continuum which is not chainable and, interestingly, this is an inde-
composable continuum.

Let (Si) be a sequence of closed sets in a computable metric space (X, d, α).
We say that (Si) is a co-recursively enumerable sequence if there exists an r.e.
set A ⊆ N2 such that for each i ∈ N the set X \ Si is the union of all Ij such
that (i, j) ∈ A. We say that (Si) is a recursively enumerable sequence if the set
{(i, j) | Si ∩ Ij 	= ∅} is r.e. A sequence (Si) is said to be recursive if it is r.e. and
co-r.e.

Suppose (X, d, α) is a computable metric space which has the effective cov-
ering property and compact closed balls. In view of Theorem 35 it makes sense
to ask the following question: if (Si) is a co-r.e. sequence of sets and each Si

a circularly chainable, but not chainable continuum, is then the sequence (Si)
recursive? The following example shows that this in general does not hold. We
will use here the fact that a sequence of nonempty closed sets in Rn is recursive
if and only if the sequence of distance functions dSi : Rn → R, dSi(x) = d(x, Si),
is computable and that (Si) is co-r.e. if and only if there exists a computable
sequence of functions fi : Rn → R such that Si = f−1

i ({0}) [Weihrauch 2000].

Example 7. Let (λi) be a recursive sequence of real numbers such that λi = 0
cannot be decided effectively for i ∈ N [Pour-El and Richards 1989, p. 23]. We
may assume that 0 ≤ λi ≤ 1

4 , ∀i ∈ N. For each i ∈ N let ai, bi, ci, di be points
in R2 defined by

ai = (λi, 1), bi = (λi, λi), ci = (1 − λi, λi), di = (1 − λi, 1).

Let A = (0, 1), B = (0, 0), C = (1, 0) and D = (1, 1). For i ∈ N let Ti and T ′
i be

subsets of R2 defined as unions of segments:

Ti = AB ∪ BC ∪ CD, T ′
i = Aai ∪ aibi ∪ bici ∪ cidi ∪ diD.

The sequence of sets (Ti ∪ T ′
i )i∈N is recursive which follows from the fact that

(PiQi) is a recursive sequence of sets for all recursive sequences (Pi), (Qi) in R2.
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Therefore there exists a computable sequence of functions (hi), hi : R2 → R
such that h−1

i ({0}) = Ti ∪ T ′
i , ∀i ∈ N. Let g : R2 → R be a nonnegative

computable function such that g−1({0}) = AD. For i ∈ N let fi : R2 → R
be defined by fi(x) = hi(x) · (g(x) + λi), x ∈ R2. Then (fi) is a computable
sequence of functions. Let Si = f−1

i ({0}), i ∈ N. Let i ∈ N. Then Si = Ti ∪T ′
i if

λi > 0, and Si = Ti ∪AD if λi = 0. It follows that Si is a topological circle. Let
E = (1

2 , 1). Then d(E, Si) = 1
2 − λi if λi > 0 and d(E, Si) = 0 if λi = 0, hence

d(E, Si) ≥ 1
4 if λi > 0, d(E, Si) = 0 if λi = 0. This and the fact that λi = 0

cannot be decided effectively for i ∈ N imply that the sequence (d(E, Si))i∈N

is not recursive. Conclusion: (Si) is a co-r.e. sequence of topological circles, but
(Si) is not recursive.

5.2 Chainable decomposable continua

A continuum K is said to be chainable from a to b, a, b ∈ X, if for each ε > 0
there exists an ε−chain C0, . . . , Cm in K which covers K and such that a ∈
C0, b ∈ Cm [Christenson and Voxman 1977]. For example [0, 1] is a continuum
chainable from 0 to 1. If f : K → K ′ is a homeomorphism and a, b ∈ K, then it
is not hard to see that K is chainable from a to b if and only if K ′ is chainable
from f(a) to f(b). Therefore, if A is an arc and a and b its endpoints, then A is
a continuum chainable from a to b.

Theorem 36. Let (X, d, α) be a computable metric space which has the effective
covering property and compact closed balls. Let S ⊆ X be a co-r.e. set which,
as a subspace, is a continuum chainable from a, b, where a and b are recursive
points in X. Then S is recursive.

Proof. It is easy to see that, since a is a recursive point, the set {i ∈ N | a ∈ Ii}
is r.e. Since a ∈ Jj ⇔ ∃i ∈ [j] a ∈ Ii, we have that {j ∈ N | a ∈ Jj} is r.e. and
also {j ∈ N | b ∈ Jj} is r.e.

Let k ∈ N. Then there exists an 2−k

3 −chain D0, . . . , Dm in S which covers
S such that a ∈ D0, b ∈ Dm. We may assume that a /∈ D1 ∪ . . . ∪ Dm, b /∈
D0 ∪ . . . ∪ Dm−1, otherwise we may start with an 2−k

6 −chain D0, . . . , Dm and
then take the 2−k

3 −chain D0 ∪ D1, D2, . . . , Dm−2, Dm−1 ∪ Dm (we may assume
m ≥ 3 if a 	= b; if a = b, then S = {a} and S is recursive). As in the proof of
Lemma 29 we get an 2−k−quasi chain in X which covers S such that a ∈ C0,

b ∈ Cm. Again, we may assume that a /∈ C1 ∪ . . . ∪ Cm, b /∈ C0 ∪ . . . , Cm−1. By
Lemma 31 there exist l ∈ N such that Hl covers S, Ĥl directly refines C and
fmesh(l) < 2−k. It follows that Ĥl is a quasi-chain and a ∈ J(l)0 , b ∈ J(l)

l
. As

in the proof of Theorem 35 we conclude that there exists a recursive function
ϕ : N → N such that Hϕ(k) covers S, Ĥϕ(k) is a quasi-chain, a ∈ J(ϕ(k))0 ,

b ∈ J(ϕ(k))
ϕ(k)

and fmesh(l) < 2−k, ∀k ∈ N. By Lemma 30 for each k ∈ N each
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link of the chain Hϕ(k) intersects S and therefore, by Lemma 14, S is a recursive
set. ��

Example 8. Let T be the space defined in Example 5. This space is known under
the name Topologist’s sine curve. Let a = (0,−1), b = (0, 1) and c = (1, sin(1)).
Then T is chainable from a to c and it is also chainable from b to c. Suppose
X is a computable metric space which has the effective covering property and
compact closed balls. Let f : T → X is an embedding such that f(T ) is a co-r.e.
set and such that f(c) is a recursive point and f(a) or f(b) is a recursive point.
Then, by Theorem 36, f(T ) is a recursive set.

In contrast to the fact that each co-r.e. set S ⊆ X homeomorphic to S1

must be recursive (under some assumptions on X), there are co-r.e. arcs in X

which are not recursive. In fact there exists a co-r.e. segment in R which is
not recursive [Miller 2002]. Hence the implication S co-r.e. ⇒ S recursive fails
to be true even for very simple chainable continua. Although co-r.e. chainable
decomposable continuum S need not be recursive in general, recursive points of
S must be dense in S (under some assumptions on X), furthermore we are going
to prove that for each ε > 0 we can “ε−approximate” S with a subcontinuum
which is recursive.

Let C = (C0, . . . , Cm) and D = (D0, . . . , Dn) be finite sequences of subsets of
X. We say that D refines C if for each i ∈ {0, . . . , n} there exists j ∈ {0, . . . , m}
such that Di ⊆ Cj . If D refines C and D0 ⊆ C0, Dn ⊆ Cm, then we say that D
strongly refines C.

Lemma37. Let (X, d, α) be a computable metric space which has the effective
covering property and compact closed balls. Let Ω = {(l, v, w, l′, v′, w′) ∈ N6 |
v ≤ w ≤ l, v′ ≤ w′ ≤ l′ and (Ĵ(l′)v′ , . . . , Ĵ(l′)w′ ) strongly refines (J(l)v

, . . . , J(l)w
)}.

Then Ω is a recursively enumerable set.

Proof. Let S = {(k, l, v, w) ∈ N4 | ∃j such that v ≤ j ≤ w and Ĵk ⊆
J(l)j

}. By Proposition 15 and Proposition 1(i) S is r.e. Let Φ : N6 → P(N4),
Φ(l, v, w, l′, v′, w′) = {((l′)i, l, v, w) | v′ ≤ i ≤ w′}. It follows from Proposition 4
that Φ is an r.r.b. function. Let

Ω1 = {(l, v, w, l′, v′, w′) | Φ(l, v, w, l′, v′, w′) ⊆ S},

Ω2 = {(l, v, w, l′, v′, w′) | v ≤ w ≤ l, v′ ≤ w′ ≤ l′},
Ω3 = {(l, v, w, l′, v′, w′) | Ĵ(l′)v′ ⊆ J(l)v

, Ĵ(l′)w′ ⊆ J(l)w
}.

By Lemma 5 Ω1 is r.e. It follows from Proposition 15 and Proposition 1(ii) that
Ω3 is the intersection of two r.e. sets, therefore Ω3 is r.e. Clearly Ω2 is recursive.
That Ω is recursively enumerable follows now from Ω = Ω1 ∩ Ω2 ∩ Ω3. ��
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Lemma38. Let T be a compact set in (X, d) and C0, . . . , Cm a finite sequence of
open sets which covers T. Then there exists ε0 > 0 with the following property:
if D0, . . . , Dn is a finite sequence of ε0−bounded sets such that Di ∩ T 	= ∅,
∀i ∈ {0, . . . , n}, then (D0, . . . , Dn) refines (C0, . . . , Cm).

Proof. Let r = d(T, X \ (C0 ∪ . . . ∪ Cm)). Then r > 0 since T is compact. Let
dT : X → R, dT (x) = d(x, T ), x ∈ X and T ′ = d−1

T ([0, r
2 ]). Then T ′ is a closed

subset of (X, d), and since T is bounded, T ′ is bounded. Since closed balls in
(X, d) are compact, T ′ as a closed and bounded set must be compact. It follows
from the definition of T ′ that {C0, . . . , Cm} is an open cover of T ′. Let λ > 0
be its Lebesgue number, hence S ⊆ T ′, diam(S) < λ implies S ⊆ Ci for some i.

Let ε0 = min{ r
2 , λ}.

Suppose that D0, . . . , Dn is a finite sequence of ε0−bounded sets such that
Di ∩ T 	= ∅, ∀i ∈ {0, . . . , n}. Let i ∈ {0, . . . , n}. Since Di ∩ T 	= ∅, we have
d(x, T ) < diam(Di), ∀x ∈ Di, which together with diam(Di) < ε0 ≤ r

2 implies
Di ⊆ T ′. Now diam(Di) < λ implies that Di ⊆ Cj for some j ∈ {0, . . . , m}. ��
Lemma39. Let D0, . . . , Dn be a chain which refines a chain C0, . . . , Cm and
let i0, j0 ∈ {0, . . .m} be such that i0 ≤ j0 and D0 ⊆ Ci0 , Dn ⊆ Cj0 . Then for
each i, j ∈ {i0, . . . , j0}, i ≤ j there exist i′, j′ ∈ {0, . . . , n} such that i′ ≤ j′ and
Di′ , . . . , Dj′ strongly refines Ci, . . . , Cj .

Proof. Let

v = max{k ∈ {0, . . . , n} | Dk ⊆ Cl for some l ∈ {0, . . . , i}}.
We claim that Dv ⊆ Ci. Suppose opposite. Then Dv ⊆ Cl, l < i. It follows v < n

and Dv+1 ⊆ Cl′ , l′ > i. However, this implies

∅ 	= Dv ∩ Dv+1 ⊆ Cl ∩ Cl′ = ∅,
a contradiction. Hence Dv ⊆ Ci. If v = n, then we are finished since Dv ⊆ Ci∩Cm

implies i = m or i = m−1. Therefore, assume v < n. We may also assume i < j.

Let
w = min{k ∈ {v + 1, . . . , n} | Dk ⊆ Cl for some l ∈ {j, . . . , m}.

Then w ≥ v + 1 and Dw ⊆ Cl for some l ≥ j. Inequality l > j easily yields to
contradiction, therefore Dw ⊆ Cj .

Finally, let k be such that v < k < w. Then it is clear from the definitions of
v and w that Dk ⊆ Cl, where l is such that i < l < j. ��
Lemma40. Let (X, d, α) be a computable metric space which has the effective
covering property and compact closed balls. Let A and B be subsets of X of the
form A = Ĵa, B = Ĵb, a, b ∈ N. Then the sets V = {(l, v) | A ∩ Ĵ(l)i

= ∅, for
all i such that v ≤ i ≤ l} and W = {(l, w) | B ∩ Ĵ(l)i

= ∅, for all i such that
0 ≤ i ≤ w} are recursively enumerable.
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Proof. Let Φ : N2 → P(N) be defined by Φ(l, v) = {(l)i | v ≤ i ≤ l}. Then Φ is
r.r.b. by Proposition 4. The set Ω = {i ∈ N | Ĵa ∩ Ĵi = ∅} is r.e. by Proposition
16. We have V = {(l, v) ∈ N2 | Φ(l, v) ⊆ Ω}, therefore V is r.e. by Lemma 5. It
follows in the same way that W is r.e. ��

Lemma41. Let (X, d) be a metric space which has compact closed balls. Let
Ck = (Ck

0 , . . . , Ck
mk

), k ∈ N be a sequence of chains such that Ck+1
0 , . . . , Ck+1

mk+1

strongly refines Ck
0 , . . . , Ck

mk
and mesh(Ck) < 2−k, ∀k ∈ N. Let

S =
⋂

k∈N

(
Ck+1

0 ∪ . . . ∪ Ck+1
mk+1

)
.

Then S is a continuum chainable from a to b, where a ∈
⋂

k∈N

Ck
0 , b ∈

⋂
k∈N

Ck
mk

.

Proof. Since (X, d) has compact closed balls, T ⊆ X is compact if and only if
it is closed and bounded. We conclude that S is compact and ∩k∈NCk

0 = {a},
∩k∈NCk

mk
= {b}, where a, b ∈ X. It follows a, b ∈ S, ∩k∈NCk

0 = {a}, ∩k∈NCk
mk

=
{b} and S ⊆ ⋃ Ck, ∀k ∈ N. It remains to prove that S is connected.

Suppose that S is not connected. Then there exist closed, nonempty and
disjoint subsets K1 and K2 of S whose union is S. It follows that K1 and K2

are compact. Let λ = d(K1, K2). Then λ > 0 and there exists k ∈ N such
that 2−k < λ

2 . We may assume a ∈ K1. Let i0 = min{i | Ck
i ∩ K2 	= ∅}.

Then i0 ≥ 1 since i0 = 0 implies C0 ∩ K2 	= ∅ which is in contradiction with
a ∈ K1 ∩ CK

0 , diam(Ck
0 ) < λ, d(K1, K2) = λ. Now Ck

i0−1 ∩ K2 = ∅. But we also
have Ck

i0−1∩K1 = ∅, namely Ck
i0−1 ∩K1 	= ∅, Ck

i0−1 ∩Ck
i0

	= ∅, Ck
i0
∩K2 	= ∅ and

mesh(Ck) < λ
2 is in contradiction with d(K1, K2) = λ. Therefore Ck

i0−1 ∩ S = ∅.
Using Lemma 39 we obtain inductively a sequence j1, j2, . . . such that Ck

i0−1 ⊇
Ck+1

j1
⊇ Ck+2

j2
⊇ . . . . Then

⋂
p≥1 Ck+p

jp
is a nonempty subset of S and it is also

subset of Ck
i0−1. This is a contradiction with Ck

i0−1 ∩ S = ∅. ��

Theorem 42. Let (X, d, α) be a computable metric space which has the effective
covering property and compact closed balls. Let S ⊆ X be a chainable continuum,
a, b ∈ S and K1, K2 subcontinua of S such that S = K1 ∪ K2, a ∈ K1 \ K2,

b ∈ K2 \ K1. Suppose S is a co-r.e. set in (X, d, α). Then for each ε > 0
there exist recursive points a′, b′ ∈ S such that d(a, a′) < ε, d(b, b′) < ε and a
subcontinuum K of S which is recursive and chainable from a′ to b′.

Proof. Let
r = min

{
d(a, K2), d(b, K1),

ε

3

}
.

Choose ã, b̃ ∈ N so that for the sets A = Ĵ
ã
, B = Ĵ̃

b
the following holds: a ∈ A,

b ∈ B, diam(A) < r
4 , diam(B) < r

4 .
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If C = (C0, . . . , Cm) is a finite sequence of sets which covers S, then we define
numbers vC , wC by

vC = max{i ∈ {0, . . .m} | Ci ∩ A 	= ∅}, wC = min{j ∈ {0, . . .m} | Cj ∩ B 	= ∅}.

Claim 1 If C = (C0, . . . , Cm) is a quasi-chain which covers S and vC+1 < wC ,

then CvC , . . . , CwC is a chain and each link of this chain intersects S.

Indeed, it follows from the definition of vC and wC that a ∈ C0 ∪ . . . ∪ CvC ,

b ∈ CwC ∪ . . . ∪ Cm, therefore Ci ∩ S 	= ∅, Cj ∩ S 	= ∅, for some i, j such that
i ≤ vC , wC ≤ j. Now Claim 1 follows from Lemma 30.

Claim 2 For each δ > 0 there exists a δ−chain C which covers S such that
vC + 1 < wC .

Let δ > 0. Let C = (C0, . . . , Cm) be a min{δ, r
4}−chain which covers S such

that Ci ∩ S 	= ∅, ∀i ∈ {0, . . . , m} (Lemma 29, Lemma 30). Suppose that there
exist i, j, k ∈ {0, . . . , m} such that i < j < k and

Ci ∩ A 	= ∅, Cj ∩ B 	= ∅, Ck ∩ A 	= ∅. (9)

It follows from Ci ∩ A 	= ∅ that d(a, x) < r, ∀x ∈ Ci. Therefore Ci ∩ K2 = ∅.
Similarly Cj ∩ K1 = ∅, C2 ∩ K2 = ∅. It follows Ci ∩ K1 	= ∅, Ck ∩ K1 	= ∅ and
consequently C0 ∪ . . . ∪ Cj−1 and Cj+1 ∪ . . . ∪ Cm are open disjoint sets which
cover K1 and each of these sets intersects K1. This contradicts the fact that K1

is connected. Hence there are no i < j < k such that (9) holds. Similarly there
are no i < j < k such that Ci ∩ B 	= ∅, Cj ∩ A 	= ∅, Ck ∩ B 	= ∅. Notice that
there are no i, j ∈ {0, . . . , m} such that |i − j| ≤ 1, Ci ∩ A 	= ∅, Cj ∩ B 	= ∅. We
have the following conclusion:

max{i | Ci ∩ A 	= ∅} + 1 < min{j | Cj ∩ B 	= ∅} (i.e. vC + 1 < wC)

or
max{i | Ci ∩ B 	= ∅} + 1 < min{j | Cj ∩ B 	= ∅}.

If the second inequality holds, we take the chain C′ = (Cm, . . . , C0) and then we
have vC′ + 1 < wC′ . This completes the proof of Claim 2.

Claim 3 Let C = (C0, . . . , Cm) be an open quasi-chain which covers S and
v, w numbers such that vC < v ≤ w < wC . Then for each r > 0 there exists an
open r−quasi-chain D = (D0, . . . , Dn) which covers S and v′, w′ ∈ {0, . . . , n}
such that vD < v′ ≤ w′ < wD and such that Dv′ , . . . , Dw′ strongly refines
Cv, . . . , Cw.

By Lemma 29, Lemma 30, Lemma 38 and Claim 2 there exists an open
r−chain D = (D0, . . . , Dn) which refines C, covers S and such that vD +1 < wD,

Dk ∩ S 	= ∅, k ∈ {0, . . . , n}. Let i, j ∈ {0, . . . , m} be such that DvD ⊆ Ci,

DwD ⊆ Cj . It follows from the definition of vC and wC that i ≤ vC , wC ≤ j.
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Therefore i < v ≤ w < j. Since DvD ∩ S 	= ∅ (Claim 1), Ci ∩ S 	= ∅. Similarly
Cj ∩ S 	= ∅. Let i0 = min{i | Ci ∩ S 	= ∅}, j0 = max{i | Ci ∩ S 	= ∅}. By Lemma
30 Ci0 , . . . , Cj0 is a chain and since Dk ∩ S 	= ∅, ∀k ∈ {0, . . . , n}, D refines this
chain. In particular DvD , . . . , DwD refines Ci0 , . . . , Cj0 and since i0 ≤ i < v ≤
w < j ≤ j0, by Lemma 39 there exist v′, w′ such that vD ≤ v′ ≤ w′ ≤ wD and
such that Dv′ , . . . , Dw′ strongly refines Cv, . . . , Cw. Notice that Dv′ ⊆ Cv and
vD < v imply Dv′ ∩A = ∅, therefore vD < v′. Similarly w′ < wD. This completes
the proof of Claim 3.

Claim 4 Let C = (C0, . . . , Cm) be an open quasi-chain which covers S and
v, w numbers such that vC < v ≤ w < wC . Then for each r > 0 there exists
l ∈ N and v′, w′ ∈ {0, . . . , l} such that Hl covers S, Ĥl is a quasi-chain, vĤl

<

v′ ≤ w′ < wĤl
, Ĵ(l)v′ , . . . , Ĵ(l)w′ strongly refines Cv, . . . , Cw and fmesh(l) < r.

There exist D = (D0, . . . , Dn) and v′, w′ ∈ {0, . . . , n} as in Claim 3. By
Lemma 31 there exists l ∈ N such that Hl covers S, Ĥl directly refines D and
fmesh(l) < r. The fact that Ĥl directly refines D clearly implies that vĤl

≤ vD,

wD ≤ wĤl
(hence vĤl

< v′ ≤ w′ < wĤl
), that Ĥl is a quasi-chain and that

Ĵ(l)v′ , . . . , Ĵ(l)w′ strongly refines Cv, . . . , Cw. Hence Claim 4 holds.

Let Δ = {(l, v, w) ∈ N3 | Hl covers S, Ĥl is a quasi-chain and vĤl
< v ≤

w < wĤl
}.

Claim 5 The set Δ is recursively enumerable.
Let V and W be the sets associated to A and B as in Lemma 40. Let l, v, w ∈

N. Then Hl covers S and vĤl
< v ≤ w < wĤl

if and only if Hl covers S, (l, v) ∈ V,

(l, w) ∈ W and v ≤ w. Claim 5 now follows from Proposition 34, Proposition 32
and Lemma 40.

Let Γ be the set of all (l, v, w, l′, v′, w′) ∈ N6 such that v ≤ w ≤ l, v′ ≤ w′ ≤
l′, Ĵ(l′)v′ , . . . , Ĵ(l′)w′ strongly refines J(l)v

, . . . , J(l)w
and fmesh(l′) < 1

2 fmesh(l). It
follows from Lemma 37 and Proposition 2(iv) that Γ is recursively enumerable.

Claim 6 For each (l, v, w) ∈ Δ there exists (l′, v′, w′) ∈ Δ such that
(l, v, w, l′, v′, w′) ∈ Γ.

Let (l, v, w) ∈ Δ. Obviously Hl directly refines Ĥl, therefore Hl is an open
quasi-chain and vHl

< v ≤ w < wHl
. Now we apply Claim 4 to Hl, v, w and get

l′, v′, w′ such that (l′, v′, w′) ∈ Δ, (l, v, w, l′, v′, w′) ∈ Γ.

It follows from Claim 2 and Claim 4 that there exists p ∈ N such that Hp

covers S, Ĥp is a quasi-chain, vĤp
+1 < wĤp

and fmesh(p) < min{ ε
3 , 1}. We have

(p, vĤp
+ 1, wĤp

− 1) ∈ Δ and by Claim 6 and Lemma 25 there exist recursive
sequences (lk), (vk) and (wk) in N such that

l0 = p, v0 = vĤp
+ 1, w0 = wĤp

− 1, (10)

(lk, vk, wk) ∈ Δ, ∀k ∈ N, (11)
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(lk, vk, wk, lk+1, vk+1, wk+1) ∈ Γ, ∀k ∈ N. (12)

For k ∈ N let Ck
0 , . . . , Ck

mk
denotes the finite sequence J(lk)vk

, . . . , J(lk)wk
. By

(11) and Claim 1, Ck
0 , . . . , Ck

mk
is a chain and each of its links intersects S,

∀k ∈ N. It follows easily from (12) that fmesh(lk) < 2−k, ∀k ∈ N. Since
diam(Jj) ≤ fdiam(j), ∀j ∈ N, we conclude from the definition of fmesh that
Ck

0 , . . . , Ck
mk

is a 2−k−chain. Since Jj ⊆ Ĵj , ∀j ∈ N, Ck+1
0 , . . . , Ck+1

mk+1 strongly
refines Ck

0 , . . . , Ck
mk

, ∀k ∈ N.

Let K =
⋂

k∈N

(
Ck+1

0 ∪ . . . ∪ Ck+1
mk+1

)
. By Lemma 41 K is a continuum

chainable from a′ to b′, where a′ ∈ ⋂
k∈N J(lk)0 , b′ ∈ ⋂

k∈N J(lk)
lk

. It follows
that a′ and b′ are recursive points in (X, d, α). Since for each k ∈ N the chain
Ck

0 , . . . , Ck
mk

covers K and each of its links intersects K (Lemma 30), Lemma
14 implies that K is a recursive set in (X, d, α). Since for each k ∈ N each link
of the chain Ck

0 , . . . , Ck
mk

intersects S, we have K ⊆ S, hence K ⊆ S.

Finally, let us prove that d(a, a′) < ε, d(b, b′) < ε. We have fmesh(l0) < ε
3 . It

follows from (10) and Claim 1 that CvHl0
∩Cv0 	= ∅ which together with CvHl0

∩
A 	= ∅, a ∈ A, a′ ∈ Cv0 and the fact that diam(A), diam(CvHl0

), diam(Cv0) < e
3

imply that d(a, a′) < ε. Similarly d(b, b′) < ε. ��
Corollary 43. Let (X, d, α) be a computable metric space which has the effective
covering property and compact closed balls and let S be a co-r.e. arc in this space.
Then for all a, b ∈ S and ε > 0 there exist recursive points a′, b′ ∈ S, a′ 	= b′,
such that d(a, a′) < ε, d(b, b′) < ε and such that the subarc of S determined by
a′ and b′ is recursive.

Theorem 44. Let (X, d, α) be a computable metric space which has the effec-
tive covering property and compact closed balls. Let S ⊆ X be a chainable and
decomposable continuum. Suppose S is a co-r.e. set in (X, d, α). Then for each
ε > 0 there exists a subcontinuum K of S which is recursive in (X, d, α) and
such that ρ(S, K) < ε, where ρ is the Hausdorff metric. Moreover, K can be
chosen so that it is chainable from a to b, where a and b are recursive points in
S.

Proof. Let A and B be proper subcontinua of S whose union is S. We claim
that there exists r > 0 such that for each r−chain C0, . . . , Cm in X which
covers S there exists i ∈ {0, . . . , m} such that Ci ∩ A = ∅. Indeed, if such r

does not exist, then S ⊆ A, hence S ⊆ A which is impossible. Similar claim
holds for B. Therefore there exists an ε−chain C0, . . . , Cm in X which covers S,

such that Ci ∩ S 	= ∅, ∀i ∈ {0, . . . , m} and Cv ∩ A = ∅, Cw ∩ B = ∅ for some
v, w ∈ {0, . . . , m}. It follows from Lemma 30 that (C0 ∩ A = ∅ or Cm ∩ A = ∅)
and (C0 ∩ B = ∅ or Cm ∩ B = ∅).

Suppose C0 ∩ A = ∅. Then C0 ∩ B 	= ∅, Cm ∩ B = ∅ and Cm ∩ A 	= ∅. Let
b ∈ C0 ∩ B, a ∈ Cm ∩ A. Then a ∈ A \ B, b ∈ B \ A. Theorem 42 and the fact
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that C0 and Cm are open sets imply that there exist recursive points a′, b′ in
S such that a′ ∈ Cm, b′ ∈ C0 and a recursive subcontinuum K of S chainable
from a′ to b′. We have K ∩ C0 	= ∅, K ∩ Cm 	= ∅ and Lemma 30 implies that
K ∩ Ci 	= ∅, ∀i ∈ {0, . . . , m}. If s ∈ S, then s ∈ Ci for some i ∈ {0, . . . , m} and
since Ci ∩ K 	= ∅ there exists x ∈ K such that d(s, x) < diamCi < ε. It follows
from Proposition 6 that ρ(S, K) < ε. We get the same conclusion in the case
Cm ∩ A = ∅. ��
Let us summarize. Suppose X is a computable metric space which has the ef-
fective covering property and compact closed balls. If S is a co-recursively enu-
merable subset of X which, as a subspace of X, is a circularly chainable, but
not chainable continuum, then S is recursive (Theorem 35). On the other hand,
since each chainable continuum which is not circularly chainable is decomposable
[Burgess 1959], we have a slightly weaker version of Theorem 44: if S is a co-r.e.
subset of X which, as a subspace, is a chainable, but not circularly chainable
continuum, then for each ε > 0 there exists a recursive subcontinuum of S which
is ε−close to S.

Let us take now, for simplicity, that S is a co-r.e. subset of X which is neither
indecomposable nor 2-indecomposable. Then Theorem 35 and Theorem 44 give:

1) if S is circularly chainable, then S is recursive;
2) if S is chainable, then S is “almost recursive”.
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