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Abstract: This paper presents an efficient data preprocessing procedure for the support of 
vector clustering (SVC) to reduce the size of a training dataset. Solving the optimization 
problem and labeling the data points with cluster labels are time-consuming in the SVC training 
procedure. This makes using SVC to process large datasets inefficient. We proposed a data 
preprocessing procedure to solve the problem. The procedure contains a shared nearest 
neighbor (SNN) algorithm, and utilizes the concept of unit vectors for eliminating insignificant 
data points from the dataset. Computer simulations have been conducted on artificial and 
benchmark datasets to demonstrate the effectiveness of the proposed method. 
 
Keywords: Support Vector Clustering, Shared Nearest Neighbors, Noise Elimination 
Categories: I.2.6, I.5.0, I.5.1, I.5.3 

1 Introduction  

Due to the rapid growth of computer and information technologies, databases become 
larger and larger, which increases the need of more efficient and effective analytical 
tools to analyze and retrieve useful information/knowledge from databases. Clustering 
algorithms are useful for discovering groups and distributions in large databases and 
have been widely adopted in diverse scientific fields and commercial sectors. 
Clustering algorithms partition a dataset into clusters or classes, where similar data 
are grouped into the same cluster and dissimilar data are grouped into different 
clusters. In recent years, a number of clustering algorithms have been proposed 
[Ankerst et al. 1999, Ester et al. 1996, Guha et al. 1998, Guha et al. 1999, Zhang et al. 
1996] for dealing with large databases. These algorithms are capable of finding 
clusters with different shapes, sizes, densities, and even in the presence of noise and 
outliers in datasets. Although these algorithms can handle clusters with different 
shapes, they still cannot produce arbitrary cluster boundaries to adequately capture or 
represent the characteristics of clusters in the dataset. Support vector clustering (SVC) 
[Ben-Hur et al. 2000, Cortes and Vapnik 1995] can overcome the limitation of these 
clustering algorithms. The SVC algorithm, first proposed by Ben-Hur et al., identifies 
the cluster contours with arbitrary geometric representations, and automatically 
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determines the number of clusters for a given dataset by a unified framework. The 
SVC algorithm has been widely researched in both theoretical developments and 
practical applications due to its outstanding features [Ben-Hur et al. 2000, Cortes and 
Vapnik 1995]. In the SVC algorithm, data points are mapped from the data space to a 
high dimensional feature space using Gaussian kernels. The objective of the SVC 
algorithm is to look for the smallest sphere that encloses the images of data points in 
the feature space. This sphere is then mapped back to the data space, where a number 
of contours which enclose the data points are formed. These contours are interpreted 
as cluster boundaries. In general, the SVC algorithm involves three main steps 
[Saketha Nath and Shevade 2006]: 1) finding the hyper-sphere by solving the Wolfe 
dual optimization problem, 2) identifying the clusters by labeling the data points with 
cluster labels, and 3) searching a satisfactory clustering outcome by tuning kernel 
parameters. 

In our previous research work [Wang and Chiang 2008a, Wang and Chiang 
2008b], we have developed an effective parameter search algorithm to automatically 
search suitable parameters for the SVC algorithm. However, there is a common 
agreement in SVC research community—solving the optimization problem and 
labeling the data points with cluster labels are time-consuming in the SVC training 
procedure. The above limitations make the SVC algorithm inapplicable for large 
datasets. From our review of literature, we found that many research efforts have been 
conducted to improve the effectiveness of cluster labeling. Because the computation 
of cluster labeling is considerably expensive, many researchers have engaged in 
reducing time complexity of this aspect. Yang et al. [Yang et al. 2002] used proximity 
graphs to model the proximity structure of datasets. Their approach constructed 
appropriate proximity graphs to model the proximity and adjacency. After the SVC 
training process, they employed cutoff criteria to estimate the edges of a proximity 
graph. This method avoids redundant checks in a complete graph, and also avoids the 
loss of neighborhood information as it can occur when only estimating the 
adjacencies of support vectors. Lee and Lee [Lee and Lee 2005] created a new cluster 
labeling method based on some invariant topological properties of a trained kernel 
radius function. The method they proposed consisted of two phases. The first phase 
was to decompose a given data set into a small number of disjoint groups where each 
group was represented by its candidate point and all of its member points belong to 
the same cluster. The second phase was then to label the candidate points. Nath and 
Shevade [Saketha Nath and Shevade 2006] presented a novel approach that increases 
the efficiency of the SVC scheme. The geometry presented in the clustering problem 
was exploited to reduce the training data size. Their experiments showed that the 
preprocessing procedure drastically decreased the run-time of the cluster algorithm. 
However, different pre-specified parameters could produce totally different clustering 
results.  

Based on the above discussion, we proposed an efficient data preprocessing 
procedure to accelerate the training of SVC without significantly altering the final 
cluster configuration. The proposed procedure ameliorates the drawbacks of the SVC 
algorithm for dealing with large datasets. The preprocessing procedure utilizes a 
shared nearest neighbor (SNN) algorithm for eliminating the noise points, and the 
concept of unit vectors for removing the core points from the dataset. Since the size of 
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the dataset is reduced, the computational burden for solving the optimization 
problems as well as cluster labeling can be greatly decreased. 

The organization of this paper is as follows. The overview of the SVC algorithm 
is provided in Section 2. In Section 3, the proposed data preprocessing procedure for 
the SVC algorithm is introduced in detail. The simulation results on artificial and 
benchmark datasets are presented in Section 4. Finally, conclusions are given in 
Section 5.  

2 Support Vector Clustering 

The mathematical formulation of the SVC algorithm is summarized as follows. 
Assume a dataset containing N points { }1 2, , , , ,d

N i ∈x x x x where d is the 
dimension of the data space. A nonlinear mapping function Φ is used to map the data 
set into a high-dimensional feature space such that the radius of the sphere, denoted 
by R, enclosing all the data points is as small as possible. Such an objective can be 
formulated by the following optimization problem: 

2

2 2

min  

subject to ( ) -       

j
j

j j

R C

R jx a

ξ

ξ

+

Φ ≤ + ∀

∑
                      (1) 

where ║·║is the Euclidean norm, a is the center of the sphere, ξj are slack variables 
that loosen the constraints to allow some data points lying outside the sphere, C is a 
constant, and C∑ξj is a penalty term. To solve the optimization problem in (1), it is 
convenient to introduce the Lagrangian function: 

22 2( , , , , ) - ( - ( ) - ) - ,j j j j j j j j j
j

L R R R Ca x aξ β μ ξ β ξ μ ξ= + Φ +∑ ∑ ∑         (2) 

where βj ≥ 0 and μ j ≥ 0 are the Lagrange multipliers. With (2), we can derive the 
following conditions by the Lagrange theorem and the Karush-Kuhn-Tucker (KKT) 
complementarity [Cortes and Vapnik 1995]. 

0,j jξ μ =                                                      (3) 

( )22 ( ) 0.j j jR ξ β+ − Φ − =x a                              

(4) 
    According to (3) and (4), we can classify each data point into 1) an internal point, 
2) an external point, and 3) a boundary point in the feature space. Point xj is classified 
as an internal point if βj = 0. When 0 < βj < C, the data point xj, is denoted as a 
support vector (SV). SVs lying on the surface of the feature-space sphere are the so-
called boundary points. These SVs can be used to describe the cluster contour in the 
input space. When βj = C, the data points located outside the feature space are defined 
as the external points or bounded support vectors (BSVs).   

Using the above conditions, (1) can be turned into the Wolfe dual optimization 
problem with only variables βj: 
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where the dot product of (Φ(xi)⋅Φ(xj)) represents the Mercer kernel K(xi, xj). Here, we 
select Gaussian functions as kernels, i.e., K(xi, xj) = exp(-q║xi - xj║2). For any point x 
in the data space, the distance of its image in the feature space from the center of the 
sphere is given by 

22

,
( ) ( ) - ( , ) - 2 ( , ) ( , ).j j i j i j

j i j
R K K Kx x a x x x x x xβ β β= Φ = +∑ ∑     (6) 

The radius R of the sphere can be obtained by 
{ } = ( ) |  is a support vector . i iR R x x                           (7) 

In practice, the average of the above set is used as the radius R. The SVs, BSVs, 
and the other points are located on the cluster boundaries, the outside of the 
boundaries, and the inside of the boundaries, respectively. From the above discussion, 
we found that there are two important user-specified parameters: q and C. The value 
of q governs the number of clusters and the smoothness/tightness of the cluster 
boundaries as well, while the value of C determines the existence of outliers during 
the clustering process. 

The above SVC training procedure determines only the cluster contours of the 
data set. The cluster description itself does not differentiate points that belong to 
different clusters. As noted in [Ben-Hur et al. 2000, Cortes and Vapnik 1995], if there 
are two data points, xi and xj, that belong to the same cluster in the input space, one 
can check if the line segment between them always travels within the high 
dimensional sphere. Checking the line segment is implemented by sampling a number 
of points on the segment (usually 10-20 points). Two data points, xi and xj, satisfying 
the above condition are defined as connected components. An adjacency matrix A is 
defined to identify the connected components of a cluster. We define the components 
of A, aij, between pairs of points xi and xj : 

1, if all  on the line segment connecting  and ,  ( ) . 
=

0, otherwise.
i j

ij
R R

a
y x x y ≤⎧⎪

⎨
⎪⎩

        (8) 

The values of aij can be obtained by sampling a number of points from the line 
segment connecting xi and xj. In the matrix A, if aij = 1 that means xi and xj belong to 
the same cluster; otherwise, they are in different clusters. In general, the cluster 
labeling step that checks the connectivity for each pair of samples is more time-
consuming than the SVC training step. The time complexity of this procedure is 
O(lN2), where l is the number of samples on the line segment. 

3 An Efficient Data Preprocessing Procedure for SVC 

Solving the optimization problem and labeling the data points with cluster labels are 
time-consuming in the SVC training procedure. This makes using the SVC algorithm 
to process large datasets inefficient. Thus, how to exclude redundant data points from 
a dataset is an important issue for minimizing the time spent in solving the 
optimization problem of the SVC algorithm. Our research challenge in this topic is 
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(a)                                                           (b)  
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(c)                                                           (d)  

Figure 1: A 2D dataset example for using SNN. (a) The original dataset.             
(b) The distribution of highly similar data points. (c) The distribution of medium 
similar data points. (d) The distribution of low similar data points. 

how to identify insignificant data points so that the removal of these data points does 
not significantly alter the final cluster configuration. Our idea is to eliminate 
insignificant data points, such as noise and core points, from the training datasets, and 
use the remaining data points to do the SVC analysis. Due to the size reduction of the 

training datasets, the computational effort for solving the optimization problem can be 
greatly decreased. To fulfil the idea, we first explore the shared nearest neighbor 
(SNN) algorithm [Ertöz et al. 2003, Jarvis and Patrick 1973] to eliminate noise points. 
Subsequently, the concept of unit vectors [Saketha Nath and Shevade 2006] is 
employed to reduce the core points of clusters and to retain the data points near the 
cluster boundaries. Based on these two methods, we developed an efficient data 
preprocessing procedure for SVC to reduce the size of the training datasets without 
altering the cluster configuration of the datasets. 

3.1 Elimination of Noise Points by A Shared Nearest Neighbor Algorithm 

A shared nearest neighbor (SNN) algorithm proposed by Jarvis and Patrick [Jarvis 
and Patrick 1973] first finds the nearest neighbors of each data point, and then 
computes the similarity between pairs of points in terms of how many nearest 
neighbors each pair of the data points shares. The SNN algorithm can help us to 
eliminate noise and outliers, and to identify core points that are the representative 
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points from the regions with relatively high densities. The representative points are 
then further processed by the concept of unit vectors to remove the insignificant 
points from the core points. Ideally, the remaining points are the boundary points that 
can depict the cluster contours of the original datasets. 

To eliminate noise points and outliers, the SNN algorithm first obtains a 
similarity matrix whose components are defined as the similarity measure between a 
pair of points [Ertöz et al. 2003, Jarvis and Patrick 1973]. The similarity measure 
between a pair of points is defined as follows. First, a link is created between a pair of 
points, r and s, if and only if r and s have each other in the list of their k1 nearest 
neighbors, where k1 is a user pre-specified parameter. The strength of a link between 
two points is expressed by the number of nearest neighbors that are shared by the two 
points. Specifically, if r and s are the two points, the strength of the link between r 
and s, their similarity is defined as: 

( , ) = size ( ( ) ( )).similarity r s NN r NN s∩                                 (9) 
where NN(r) and NN(s) are the nearest neighbor lists of r and s, respectively. 
Figure 1 illustrates the results of the original dataset after removing noise points and 
outliers and identifying core points by using SNN. The original dataset contains 5000 
points. We set the number of nearest neighbors in the list of r or s, k1, equals to 20. If 
the value of similarity(r, s) is greater than or equal to α, we define that the points r 
and s are close (or similar) to each other. In this example, we set α = 10. Figure 1(b) 
shows the data distribution of the points whose numbers of commonly shared nearest 
neighbors (CSNN) are more than 15 points. In this case, we say that the points are 
highly similar to each other. Figure 1(c) shows the distribution of the points whose 
CSNN numbers are greater than 10 but less than 14 points. We define that the points 
are medium similar to each other. Likewise, Figure 1(d) shows the distribution of low 
similar data points whose CSNN numbers are less than 10 points. In this study, the 
highly similar points are defined as core points and the low similar data points are 
noise points and outliers.  
The steps of the SNN algorithm [Ertöz et al. 2003] for eliminating the noise points are 
as follows: 
Step 1: Initialization. Set k1 and calculate the similarity matrix. 
Step 2: Closeness computation. Set α. Here, we set the value α as the average strength 
of all data points: 

1

1  1

1

( , )
,

km

i j
i j

similarity

m k
α = ==

×

∑∑ x x
                                     (10) 

where m is the total number of data points. If the strength, similarity(r, s), between the 
two points is greater than α, these two points are close to each other. 
Step 3: Removal of noise points and outliers. First, we define a threshold δ that is 
used to define low-similar data points.  

- ,mean stdS Sδ =                                            (11) 
where 

1

,
1  1=

km

i j
i j

mean

Count
S

m
= =
∑∑

,                                   (12) 
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(a)                                            (b) 

Figure 2: (a) Point A is a core point. (b) Point B is a boundary point. 
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Counti,j in (12) and (13) is defined as: 

,

1, if ( , )  
= ,

0, otherwise
i j

i j

similarity
Count
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x x
                        (14) 

where 11  and 1 .i m j k≤ ≤ ≤ ≤  For a specific point xi, if the strength of 

xi,
1

,
 1

k

i j
j

Count δ
=

≤∑ , xi is defined as a noise point or a outlier and is removed from the 

dataset. 

Step 4: End of the SNN algorithm. After eliminating the noise points, the SNN 
algorithm is completed. 

3.2  Elimination of Core Points by the Concept of Unit Vectors 

After the SNN algorithm is performed, most of noise points or outliers are removed 
from the datasets. We hope that the proposed data preprocessing procedure does not 
significantly alter the final cluster configurations but can save the computational time 
of SVC. Therefore, we need to eliminate non-support vector data points, such as core 
points. To achieve the objective, we further propose a method based on the concept of 
unit vectors [Saketha Nath and Shevade 2006] to eliminate the core points and retain 
the representative data points that are near the cluster boundaries. Figure 2 shows the 
difference between a core point and a boundary point. Figure 2(a) indicates point A is 
a core point that has neighboring points from all directions, while in Fig. 2(b), point B 
is a boundary point that has neighbors from only certain directions. For a data point 
xp, the summation of the unit vectors drawn from xp to its k2 nearest neighbors is 
calculated and defined as λp:  
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Figure 3: The flowchart of the proposed efficient data preprocessing procedure 
for SVC. 
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where p = 1, 2, …, h, and h is the total number of the remaining data points after 
using the SNN algorithm to remove noise points. The smaller the value of λp is, the 
higher the possibility of xp being a core point is. This is because the possibility of xp 
having neighboring points from all directions is higher. 

To eliminate core points by the concept of unit vectors, we define θ1 as the 
average value of λp, p = 1, 2, …, h, by: 

1
1

1 h

p
ph

θ λ
=

= ∑ .                                                (16) 

If λp is smaller than θ1, xp is defined as a core point and is removed from the 
dataset. We further extend the above idea to remove noise points. We consider the 
points located far away from core points as noise points. We define θ2 as the distance 
for distinguishing noise points from all the remaining data points. The distance is 
expressed by 

( )
1
22

2 1 1
1

1+ -  ,
-1

h

p
ph

θ θ λ θ
=

⎡ ⎤
⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦

∑                                     (17) 
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                                      (c)                                                              (d) 

Figure 4: (a) The original artificial dataset. (b) The noise points marked with circles 
are eliminated from the dataset. (c) The distributions of core and representative 
points. The core points marked with circles are eliminated from the dataset. (d) The 
final clustering result obtained by SVC. The contours represent cluster boundaries. 
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(a)                                                             (b) 

Figure 5: (a) More data points are removed if the value of α is large. (b) More 
noise points are retained if the value of α is small. 

which equals to θ1 plus a standard deviation of λp. For a data point xp, if λp is bigger 
than θ2, it is classified as a noise point and is removed from the dataset. We 
summarize the above procedure for removing core and noise points as follows. First, 
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(a)                                                             (b) 

Figure 6: (a) The core and noise points marked with circles can be removed from the 
artificial dataset. (b) The final clustering result obtained by SVC. Cluster boundaries 
are denoted by the contours. 

    
(a)                                                             (b) 

Figure 7: (a) The clustering results of DBSCAN. (b) The clustering results of 
OPTICS. 

for each of the remaining data points, say xi (i = 1, …, h), we calculate the summation 
of the unit vectors from its k2 nearest neighbors, denoted as λi. We then compute θ1 
and θ2 according to (16) and (17). We classify each data point by the following 
conditions: 
1. If λi ≤ θ1, xi is classified as a core point. 
2. If λi ≥ θ2, xi is classified as a noise point. 
3. Otherwise, xi is a representative point of the dataset and will be used in the SVC 

training procedure. 
 
The elimination of insignificant data points, e.g., noise and core points, from the 

dataset will not alter the final cluster configuration of the SVC algorithm but greatly 
improve its efficiency. There is because the computational complexity of solving the 
optimization problem and labeling the data points with cluster labels in the SVC 
algorithm can significantly decreased by reducing of the size of the training dataset. 
The overall time complexity of our proposed method is O(NlogN), where N is the 
number of points. Figure 3 shows the flowchart of the proposed data preprocessing 
procedure for SVC. 
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Figure 8: (a) The original benchmark dataset I. (b) The noise points marked with 
circles are eliminated. (c) The distributions of core and representative points. The 
core points marked with circles are eliminated from the dataset. (d) The final 
clustering result obtained by SVC. 

4 Simulation Results 

The effectiveness of the proposed data preprocessing procedure for the SVC 
algorithm has been validated through extensive computer simulations of different 
examples. We compared our proposed approach with the HRE method [Saketha Nath 
and Shevade 2006]. The HRE method is an efficient clustering scheme using support 
vector methods but requires users to pre-specified 8 parameters. We also compared 
our proposed approach with two well-known density-based methods, Density-Based 
Spatial Clustering of Applications with Noise (DBSCAN) [Daszykowski et al. 2001] 
and Ordering Points to Identify the Clustering Structure (OPTICS) [Daszykowski et al. 
2002] that are good at dealing with large datasets. DBSCAN is to create cluster with 
minimum size and density. This algorithm grows regions with sufficiently high 
density into clusters and discovers clusters of arbitrary shape in spatial databases with 
noise. Here, we adopt a modified DBSCAN method [Daszykowski et al. 2001] for 
comparing with our approach. The modified DBSCAN method only requires one 
user-specified parameter while the original DBSCAN [Ester et al. 1996] has two 
parameters to be specified. OPTICS is a density-based method that computes an 
augmented clustering ordering for automatic and interactive cluster analysis. The 
ordering represents the density-based clustering structure of the dataset. We provide 
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(a)                                                               (b) 

Figure 9: (a) The core and noise points marked with circles can be removed from the 
benchmark dataset I. (b) The final clustering result obtained by SVC.  

   
(a)                                                                (b) 

Figure 10: (a) The clustering results of DBSCAN. (b) The clustering results of 
OPTICS. 

three examples that contain the artificial, benchmark datasets [Karypis et al. 1999] 
and the Wisconsin breast cancer dataset [Black et al. 1998]. These 2-dimensional 
datasets contain 3000 to 5000 points with arbitrary shapes of clusters, various 
densities, and much noise. 

4.1  Artificial Dataset 

The artificial dataset consists of 3000 data points in a two-dimensional space. There 
are five different sizes of clusters in the dataset. We set k1 = 40 and k2 = 10 in this 
example and obtained α = 23.29, δ = 13.06, and λp = 3.77 from (10), (11), and (15), 
respectively. Figure 4(a) shows the distribution of the original artificial dataset. We 
used the SNN algorithm to eliminate the noise points and the result is shown in Fig. 
4(b). In this step, a total of 529 data points were eliminated. Next, we used the 
concept of unit vectors to eliminate the core points and 712 data points were retained. 
The result is shown in Fig. 4(c). The execution time of our proposed method was 1.88 
sec. Finally, we set q = 20 and C = 0.01 to obtain the final clustering results using the 
SVC algorithm. The clustering result is illustrated in Fig. 4(d). We performed more 
experiments with different α for comparison. In Fig 5(a), We set α = 38. Too many 
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                                   (c)                                                              (d) 
Figure 11: (a) The original benchmark dataset II. (b) The noise points marked with 
circles are eliminated from the dataset. (c) The distributions of core and 
representative points. The core points marked with circles are eliminated from the 
dataset. (d) The final clustering result obtained by SVC. 

data points were removed, which resulted in an unsatisfactory clustering outcome. In 
Fig 5(b), We set α = 5. Most data points including noise data were retained in the 
dataset, which increased the computational time of SVC. Thus, it is important to 
choose a suitable parameter α. The result of the data preprocessing step using the 
HRE method is shown in Fig. 6(a). The execution time of the HRE method was 2.62 
sec. 712 data points were retained in the dataset. By setting q = 20 and C = 0.01, we 
obtained the final clustering result shown in Fig. 6(b). The hollow contours were not 
an ideal clustering outcome. The artificial set was also tested by two density-based 
clustering algorithms—DBSCAN [Daszykowski et al. 2001] and OPTICS 
[Daszykowski et al. 2002]. Figure 7 illustrates the clustering results of DBSCAN and 
OPTICS. The cluster number determined by our proposed method equals five, but 
DBSCAN and OPTICS cannot find the correct cluster number. Obviously, this 
example confirms that our proposed method is more accurate and efficient than HRE, 
DBSCAN and OPTICS. 
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(a)                                                               (b) 

Figure 12: (a) The core and noise points marked with circles can be removed from 
the benchmark dataset II. (b) The final clustering result obtained by SVC.  

4.2 Benchmark Datasets 

1) Benchmark Dataset I 
The benchmark dataset I consists of 5000 data points in a two-dimensional space with 
a large amount of noise points. There are six clusters in this dataset and the clusters 
are not linearly separable. We set k1 = 55 and k2 = 10 in this example and obtained α = 
35.87, δ = 18.37, and λp = 3.91 from (10), (11), and (15), respectively. The original 
dataset is shown in Fig. 8(a). Figure 8(b) indicates the result obtained by the SNN 
algorithm with the removal of 788 noise points from the original dataset. There were 
1176 data points retained after using the concept of unit vectors to eliminate the core 
points. The result is shown in Fig. 8(c). The execution time of our proposed method 
was 43.87 sec. Figure 8(d) illustrates the clustering results obtained by the SVC 
algorithm with q = 0.002 and C =0.01. The result obtained by the HRE method is 
shown in Fig. 9(a). There were 1176 data points retained in the dataset. The execution 
time of the HRE method was 57.62 sec. By setting q = 0.002 and C = 0.01, we 
obtained the final cluster result that is shown in Fig. 9(b). Because some of the noise 
points between characters were not removed completely, the clustering outcome was 
not as good as that of our approach. Our proposed method can identify the correct 
cluster number that equals six, but DBSCAN and OPTICS cannot obtain the correct 
number with different selections of the parameters. Figure 10(a) and (b) show the 
numbers of clusters vs. the values of the parameters for DBSCAN and OPTICS, 
respectively. 

2) Benchmark Dataset II 
The benchmark dataset II also consists of 5000 data points and six clusters in a two-
dimensional space with a large amount of noise points. We set k1 = 55 and k2 = 10 in 
this example and obtained α = 34.23, δ = 17.85, and λp = 3.72 from (10), (11), and 
(15), respectively. Figure 11(a) illustrates the original dataset. Figure 11(b) indicates 
the result obtained by the SNN algorithm that eliminates 773 noise points. Finally, 
there were 1201 data points retained after using the concept of unit vectors to 
eliminate the core points and the result is illustrated in Fig. 11(c). The execution time 
of our proposed method was 44.94 sec. Figure 11(d) shows the clustering results 
obtained by the SVC algorithm with q = 0.001 and C =0.01. The result obtained by 
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(a)                                                              (b) 

Figure 13: (a) The clustering results of DBSCAN. (b) The clustering results of 
OPTICS. 

the HRE method is shown in Fig. 12(a). There were 1201 data points retained in the 
dataset. The execution time of the HRE method was 58.13 sec. By setting q = 0.001 
and C = 0.01, we obtained the final cluster result that is shown in Fig. 12(b). Figure 
13 illustrates the clustering results of DBSCAN and OPTICS. Our proposed method 
can find the correct cluster number but HRE, DBSCAN and OPTICS cannot do so for 
different parameter selections.  

The simulation results of the benchmark datasets confirm that our proposed 
methods can correctly identify the cluster numbers as well as the cluster boundaries 
that are not altered by the data preprocessing procedure. However, the cluster results 
of the benchmark datasets produced by HRE, DBSCAN and OPTICS show that these 
methods are sensitive to cluster densities and the amount of noise contained in the 
dataset.  
 
3) Wisconsin Breast Cancer Dataset 
The Wisconsin breast cancer dataset [Black et al. 1998] contains 699 cases of 
diagnostic samples, and each sample contains nine features. After the removal of the 
16 samples with missing values, there are a total of 683 data patterns belonging to 
benign (444 samples) and malignant tumors (239 samples). We set k1 = 55 and k2 = 10 
in this example and obtained α = 20.8501, δ = 7.7513, and λp = 3.25 from (10), (11), 
and (15), respectively. We used the SNN algorithm to eliminate the noise points. In 
this step, a total of 117 data points were eliminated. Next, we used the concept of unit 
vectors to eliminate the core points and 203 data points were retained. The execution 
time of our proposed method was 5.37 sec. Finally, we set q = 0.03 and C = 0.01 to 
obtain the final clustering results using the SVC algorithm. The classification 
accuracy of the Wisconsin breast cancer dataset was 96.57% by our proposed method. 
The result of the data preprocessing step using the HRE method, 203 data points were 
retained in the dataset. The execution time of the HRE method was 7.06 sec. By 
setting q = 0.03 and C = 0.01, the classification accuracy of the Wisconsin breast 
cancer dataset was 93.25%. The performance of our proposed method was better than 
the HRE method in this example. From the result of this example, we believed that 
our proposed approach can be served as an effective tool in dealing with classification 
problems. 
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5 Conclusions 

This paper presents an efficient data preprocessing procedure that ameliorates the 
limitations of SVC for large datasets. Our approach can eliminate insignificant data 
points from the training datasets without significantly altering the final cluster 
configuration. The preprocessing procedure utilizes a shared nearest neighbor (SNN) 
algorithm for eliminating the noise points, and the concept of unit vectors for 
removing the core points from the datasets. Our simulation results have successfully 
validated the effectiveness of the proposed method for improving the capability of 
SVC in dealing with large datasets. Our future research includes the verification of 
our proposed method on different real-world applications. 
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