
Agent Migration: Framework for Analysis

Dariusz Król
(Institute of Informatics, Wrocław University of Technology, Poland

Dariusz.Krol@pwr.wroc.pl)

Aleksander Lupa
(Institute of Informatics, Wrocław University of Technology, Poland

133689@student.pwr.wroc.pl)

Abstract: A lot of work is devoted to analysing architectures for coordinating the behaviour of
individual agents. However, providing agents with abilities to migrate continues to be a highly
challenging problem. We propose a novel multi-agent framework, called Agent-based
Migration (AM). We begin by defining the principal objective, which is the migration
phenomenon applied, in our case, to distributed calculation of prime numbers. We present the
AM architecture in detail. Then, we introduce different types of migration and the
communication scheme. We also conduct a set of experiments in two environments: 4
heterogeneous computers and 45 (almost) homogeneous computers. Specifically, we are
looking for a way to find optimal configurations for migration in both environments. The
conclusion from this work is that introducing propagation to a system in a form of agent
migration in both networks could considerably decrease the execution time according to used
algorithms and established assumptions.

Keywords: Propagation, Mobile Agent, Multi-Agent System, Performance Evaluation
Categories: C 2.4, C.4, H.1.0

1 Introduction
The efficient utilization of network resources is an important issue. The problem is
hard due to the distributed nature of computer networks, high communication
demands and the desire for limited communication overheads. One solution to such
challenges is to design efficient, decentralized and fault-tolerant data propagation
model which accomplishes tasks with no access to global network information.
Mechanisms of agent propagation are useful because agents can be organised into
efficient configurations without imposing external centralised controls. Operation
without a central coordinator eliminates possible bottlenecks in terms of scalability
and reliability. Other most interesting properties of modern networks are mechanisms
of biologically inspired self-organisation [Chakravarti, 05].

The concept of information propagation is common to distributed environments
in the following forms: data propagation for collaboration [Kazienko, 07] [Mitschang,
03] [Repantis, 04], adaptive task allocation and resource negotiation [Fatima, 01]
[Jiang, 05], mobile object and code update [Levis, 04] [Navvaro, 05], message
dispatching [Korzeniowski, 08], routing algorithm [Tan, 03] [Wedde, 06], self-
organising computation [Bernon, 06], recommendation [DZhang, 08] and many more.

In spite of the rapid growth of complex networks [Centola, 07] and multi-agent
systems [Ni, 08], there is no universal measurement method that allows evaluating the

Journal of Universal Computer Science, vol. 15, no. 4 (2009), 941-966
submitted: 30/6/09, accepted: 27/2/09, appeared: 28/2/09 © J.UCS

performance of data propagation processes. The existing works on systems
performance evaluation deal principally with the structural aspect concerning the
network communication topology [Jurasovic, 06] [Krol, 08] [Zhang, 08], with the
syntactical aspect concerning the message complexity and critical thresholds [Huang,
08], and eventually the statistical aspect concerning the quantitative methods to
analyse robustness (the ability of a system to perform without failure under a wide
range of conditions) [Krol, 09]. Like [Hmida, 08] our study covers all three aspects,
but in contrast to his model, we place particular emphasis on the flexibility, the ability
of a system to readily adapt to changing requirements via agent propagation. The
analyses generally focus on three parameters: the network communication
complexity, e.g. performance metrics, the time needed for operation completion, e.g.
round trip times, and the traffic generated during execution, e.g. data transferred and
message overhead [Chmiel, 05].

The contribution of this work lies in the fact that by data propagation in a network
(provided by agent migration) we reduce execution time. Agents with their ability to
react on changes in the environment, i.e. changes in the number of agents on a node,
are able to adapt to current conditions using migration. Available resources can be
adjusted to needs of computation by migrating agents using a load balancing
algorithm [Cao, 05]. There are also a few additional research objectives. The first one
is the investigation of different migration types, if and how they affect the execution
time. The second is finding the optimal configuration of parameters for the computed
task in two different networks and finally, discovering the dependencies between key
features of the experiments like migration type and execution time.

The remainder of this paper is structured as follows. We begin by explaining the
concept of migration found in the distributed computing. In Section 3, we present the
AM architecture in detail. We then introduce different types of migration and the
communication scheme. In Section 5 the experiments with a discussion of the results
are presented. Finally, the last section summarizes the work.

2 Migration Phenomenon
2.1 The Problem

With the growing number of computers connected in a network there are more
possibilities to distribute information in a flexible way. When the number of nodes in
the network becomes too high, the centralized control is becoming difficult,
inefficient and the system does not scale. The communication costs within big
centralized network are becoming high and time-consuming. The time to broadcast a
message from one computer to the set of others and getting the acknowledgement in
such environment is unacceptable. The conclusion here is that the coordination of
objects involved in distributed problem solving has to be done generally in a
decentralized way. Objects should be able to migrate in order to increase the
efficiency of the system. An important fact here is that the coordination of work in a
decentralized network demands high level of autonomy from those objects
[Krivokapic, 00].

Objects are composed of a state, data and a set of operations that can be invoked
from outside in order to manipulate that data. This is the idea of a passive object,
which does what it is asked without any question. Active objects are equipped with

942 Krol D., Lupa A.: Agent Migration: Framework for Analysis

autonomous behaviour – so they are not controlled from outside, e.g. by method
invocations, but they have the ability to perceive external environment and react to
changes occurring in it. In many cases such objects would be large and they would
have a set of methods, which allow operating on their data. When many objects are
involved in a common task, they need to cooperate. Different tasks require different
kind of cooperation (also in intensity). In order to do it they have to communicate by
means of messaging and decide all over what action, if any, should be taken.

Object migration has to meet certain requirements:
• Transparency and availability. The migration process should not be visible

to the user. Also when an object is moving, it should be available. For
example, messages sent to the object during its movement should be
received.

• Fault tolerance. Migration always results in a correct state. The input of the
process is an object at location 1 and the output is the same object in the
location 2. There are no additional copies of the object. Even if there are
failures in the network, the object should not be lost.

• Flexible migration policy. Migration algorithm should be exchangeable over
time. Migration policy should be sometimes upgraded to adjust to the
changing environment. There has to be a possibility to tell a certain object to
move from one location to another because of planned actions, security
reasons or errors in the network.

• Efficiency. The migration, including the decision and the process, has to be
efficient. An object should not migrate too often, because of the costly
decision making. After migrating to another location, it should stay there
long enough for a new evaluation.

The implementation of migration is based on the premise that the object is not
executing operations during the movement. The migration process has to be executed
after agreement of two locations, before the action is made. If the object is going to
migrate first it will ask if the migration is possible. There should be a local manager
on a location where the object currently is deployed and where it is going to be
moved. Both managers have to agree to the migration process. Moreover, there should
be another object, which would be responsible for instantiating the migrating object at
a current location. The details of proposed migration process are described in the next
section.

If an object has been moved incorrectly, the communication costs and transaction
time conducted using this object may increase. When objects are moving in the
network, the environment becomes dynamic and sometimes it is very hard to predict
what will happen after changes. So it could be expected that one object will be moved
many times. The decision about migration is made by the object and it is based on
information about the network.

Beside migration there is a possibility of cloning an object. Cloning means that
the original object stays in the origin environment, but the copy could be created in
another environment (or in the same environment). If there are global object
identifiers, the new born object has to have other identifier than the original one.

The description of an object in this section is very close to the agent definition.
Here the object is autonomous; it has to cooperate with other objects. It is also
reactive and in some way proactive, because it decides when to migrate.

943Krol D., Lupa A.: Agent Migration: Framework for Analysis

2.2 Prime Number Generator

The prime number generation problem was selected for this research. We assume that
we generate a given number of primes above a given start number and write the
results into the file. All computers search prime numbers and as soon as possible they
send the solution to the one, which is responsible for saving the results in a file. Prime
number generator was selected to be solved in a distributed way because of its
computation-focused nature. A range of numbers to examine is given and from the
result point of view, it does not matter, on which machine the computation is running.
The most important aspect is that there is a possibility to move agents from the slow
computers to the faster ones.

The algorithm for prime number is simple. For each x from given range [a,b]
calculate square root c = sqrt(x) and check if any number from range [2,c] divides x
without reminder; if no then add x to the list of prime numbers. Of course, there are
more efficient ways to calculate prime numbers. The goal is not to calculate them as
fast as possible, but to show how distribution could be managed using agent
migration.

This approach has several advantages. One of them is that the range to search the
primes can be divided, and the results can be merged at the end giving the complete
solution to the problem. In order not to create a bottle-neck, partial results are being
sent continuously to be saved into the file.

3 Agent-based Migration Framework Architecture

In this architecture, in general the AM framework consists of two kinds of units:
nodes and a broker. A node is a component, on which agents reside, which is
supposed to search prime numbers. A broker is a component, which distributes the
task into the framework and saves the results into the file. It is not destined to
calculate primes.

We assume the following algorithm for distributing the task over the nodes.
When the broker gets the task order it knows how many nodes are available, because
when a node enters the network, it sends a ready message to the broker. We do not
consider any changes after the broker has received the task order. At the beginning
there is no information about the available resources, so primes search range is
divided equally by the number of nodes and then sent as a task request. While
processing, nodes also send found primes to the broker by portions.

This section describes how tasks in the framework are accomplished, which
agents are responsible for carrying them out and what the structure of messages
connected with these processes is.

3.1 Main Process

The main process is the core of the framework. Its main goal is to distribute task and
afterwards collect all messages concerning reporting in order to display the final
results. All activities used in the diagram are agent services.

944 Krol D., Lupa A.: Agent Migration: Framework for Analysis

Figure 1: Main process diagram

There are 4 types of agents participating in the main process: Broker, Saver,
Coordinator and Primer. This process, depicted on Figure 1, starts outside of the
system, when a user or agent from another system sends a message to the Broker that
includes the range of numbers to search primes from. The next step is done by the
Broker, which distributes task to Coordinators. The diagram shows the control flow
only for one Coordinator and one Primer, with actually many Coordinators and many
Primers.

Task distribution from the Broker goes to the local level and finally each Primer
gets its task. Searching primes consists of many single search processes after which
results are sent to the Saver agent. This is shown in figure by a dashed arrow. The box
“Possible migration processes” denotes the place in the main process flow when
migration process is possible. They take place after the initial task distribution and
before end of work.

The last phase of the main process starts when Primers finish searching the whole
range of numbers they got. Each of them sends a message to the Coordinator (a
Coordinator “commanding” the location where Primer resides) and when all Primers
report back to Coordinators, agents send job end message to the Broker. When Broker
gets all job end messages, it expects the main process to be nearing completion.
Because there are possible message asynchronisms, Saver agent starts a timeout
counting in order to receive all messages from Primers, whose results have not been
written into the file so far. This possibility exists mainly because each result message
includes large data to write. When timeout is over, Saver agent confirms that there are
most probably no other result messages (also called save messages). When Broker
gets this message, it displays information about the experiment. This ends the main
process.

3.2 Migration Sequence Diagram

The sequence diagram for the main process shows all messages that are sent in the
system. As depicted in Figure 2 we defined 6 entities. There are only one Saver agent
and Broker agent. However, in the whole AM framework there are usually many

945Krol D., Lupa A.: Agent Migration: Framework for Analysis

Coordinators and Primers. In the diagram, it is denoted in a symbolic way: There is
Primer 1 and Primer M, and also Coordinator 1 and Coordinator N. They reflect the
synchronised and asynchronised communication patterns between agents.

Figure 2: Migration sequence diagram of main process

The main process starts with job request message from Broker. It is a message
with a range of numbers to search primes for each node. These job requests are sent
by Broker agent asynchronously. After a Coordinator gets a job request message it
distributes tasks locally by sending request to Primers also asynchronously. In the
meantime a message from Broker to another Coordinator (e.g. Coordinator N) might
have just arrived. Hence when some Primers might have already started searching, on
another node the job message might have just arrived.

Primers after checking some numbers send them to the Saver agent and then there
is a possibility of a problem. When a Primer is ending its work it sends
asynchronously a save message to Saver and end message to a local Coordinator. It is
important to mention that agents on each node are working asynchronously. After a
Coordinator gets end message from all Primers, it sends job completed to the Broker.
When a Broker gets job completed message from all Coordinators it sends a
confirmation message to the Saver agent. And as we can see in Figure 2, there is one
problem. It is shown for Primer 1 and Coordinator 1. Sometimes it happens that a
save message sent by Primer 1 arrives later than three messages sent in a sequence:
end message from Primer 1 to Coordinator 1, job completed message sent by
Coordinator 1 to Broker and confirm end message sent from Broker to Saver. That is
the reason of timeout process done by Saver. When timeout elapses, it sends End
message to Broker, which also ends the entire processing.

946 Krol D., Lupa A.: Agent Migration: Framework for Analysis

3.3 Migration Process

The migration process diagram presented in Figure 3 is an activity diagram with three
classes of agents: Migration Coordinator, Coordinator and Primer. They represent
what happens when an object flow (a message) arrives – how the states are changing.

Migration
possible?

Report request sending

Progress reporting

Time till end estimation

Gathering reports

Migration calculating

Migration proposals sending

Local migration coordination

Migration

Gathering state reports

Progress reporting

Gathering migration reports

Calculating primes

Report time elapsing

Calculating primes

Ready

Progress request sending

Report sending

Progress request sending

Migration Coordinator Coordinator Primer

Reporting after migration

Reporting before migration

Gathering progress reports

No

Yes

Migration report sending

Coordinator [Ready]

Primer [Calculating primes]

Figure 3: Migration process diagram

Migration process starts from Migration Coordinator. When all agents are ready
just after the start of an experiment Migration Coordinator also gets a message from
Broker that experiment has started. After this event it starts counting the report time.
After this time is over, it has to check if a migration is possible. There are few
migration conditions. One of course is that at least two agents are still active and they
have estimated their time for more seconds than the node threshold (time till end on a
node after which migration is not applicable). When this is true, the whole process
starts. If not, the task is already finished or will be finishing soon.

After report time is over, Migration Coordinator goes to state when it sends report
request messages to all Coordinators participating in the experiment. Afterwards it
changes state for gathering those reports. In other words, it waits for all reports to
arrive. When a Coordinator gets a message to report, it sends progress report request
to all Primer agents in the current location. Afterwards, like the Migration
Coordinator, it changes state for gathering those reports. When a Primer agent gets
this message, it is calculating prime numbers, so it checks how much it has done and
reports back to Coordinator. Afterwards it returns to accomplishing its task.

947Krol D., Lupa A.: Agent Migration: Framework for Analysis

When Migration Coordinator sends all migration proposals, it goes to the state of
gathering migration reports. In other words, it waits for Coordinators to report to it
that all migrations are completed. A Coordinator agent always knows how many
agents should depart or arrive. After getting a migration proposal message from the
Migration Coordinator with the destination where to migrate, agent sends a migration
proposal message to the first available active agent (Primer that has not reported end
of work). When a Primer gets this message, it stops calculating and prepares itself for
a migration. Just before leaving and just after arriving in another environment it sends
a message to the local Coordinator with the information about the range that it was
checking and the range of numbers that it has already checked. In this way
Coordinator always knows how many numbers are checked for being primes and how
many are to be checked. After a Primer settles down in the new environment it goes
back to its main task – searching primes.

There is a possibility that a migration proposal will be rejected. This might
happen when some changes will take place in time between report sent to Migration
Coordinator and migration proposal message delivery. This situation happens when
some Primers are finishing their job and reporting it. Then a Coordinator will move
them to the non-active group – so they cannot migrate. When in the migration
proposal it is suggested that the last active agent has to leave the node, it will be
rejected, because node with no active agent when the experiment is not finished has
no value of existence.

When a Coordinator notifies that there are no incoming or departing agents left, it
sends a message to the Migration Coordinator that local migration is finished. When
the Migration Coordinator gets this kind of report from all Coordinators that were
supposed to report, it starts counting the report time and the algorithm starts again.

3.4 Migration Calculation

This process assesses the ability of a node to perform a task. The key point here is that
the estimation is based on the previous efficiency of a node when performing a task. It
is compliant to the assumption that at the beginning of an experiment the ability of
nodes to perform the task is unknown.

When a Coordinator gets all progress reports it estimates remaining time till the
end of experiment based on the data it has. This is an important moment in the whole
algorithm. Time till the end is estimated based on a sample from the previous change
in the environment for the node – from the last migration or the beginning of the
experiment. Basically, when Primers are reporting, they deliver two parameters - what
is the range of numbers to examine and how many numbers have already been
checked. All Primers report that there are two sums being calculated: a sum of
numbers to check and a sum of numbers that already have been examined. Based on
the new and old report there is a quantity of numbers calculated that have been
examined. Then, the time from the last change is calculated. Based on these two
values the speed for node i (1) is calculated.

After the Migration Coordinator gets all reports form Coordinators it starts the
calculation. During that time all Coordinators wait for messages. When the agent
network is being created at the beginning of an experiment, Migration Coordinator
creates a list of objects describing nodes. This list is used for migration calculation but
also for remembering names, locations in the network and for information if a node

948 Krol D., Lupa A.: Agent Migration: Framework for Analysis

has to report back after migration finishing. As the reports arrive the information in
the list is being refreshed.

ii

ii
i timechangelasttimecurrent

numberscheckedlastnumberscheckedcurrentlyspeed

−

−
=

(1)

i

i
i speed

checktonumbersofnumbertimeestimated _____ =
(2)

i

i
i agentsofnumber

timeestimatedvalueagent
__
__ =

(3)

i

i
i valueagent

timeestimatedtimeactiveaveragechangeagent
_

____ −
=

(4)

iii changeagentagentsofnumberagentsproposed ____ += (5)

agentsproposedofsum
sumagentscurrentagentsproposedagentsproposednorm ii ___

__*___ =
(6)

For each node we have data on the estimated time (2) and the list is sorted

beginning with the shortest time till the end of experiment. Then for each node three
values are calculated. The agent value for node i (3) is a measure of how much time
from the estimated time till the end falls to one agent. The next value is a bit more
complicated (4). In this algorithm there is such a value as an average active time. The
term active time applies to those nodes only, where migration can take place or in
other words, which have the estimated time higher than the node threshold parameter
(see Section 5.1). So the goal is to calculate how many agents on node i should have
the time as close to average as possible. The assumption is that an agent (Primer)
represents some work to do and if there was a certain number of agents, then the time
would be close to average. Having such simple assumption, the number of proposed
agents for each node is calculated (5). If for example a node has a time lower than
average – then there should be more agents and the agent value change is greater than
zero. If not then some agents should migrate from this node. But after calculating the
proposed agent number there is a possibility that there should be more or less agents
than currently is, so it is necessary to correct this number on each node by sum of
agents divided by sum of proposed agents (6).

After this process agents are distributed according the resources (agents) available
in the system. But there is a possibility that still the sums of agents and proposed
agents are not equal, so there is correction algorithm, that makes these sums equal by
adding or subtracting proposed agents for each nodes starting from those that have the
biggest number of proposed agents.

After executing this algorithm a list of proposed migrations is created. Building
this list is based on making equal the number of agents and proposed agents on a node
(in the node information list) possessed by Migration Coordinator. Agents always
migrate from the node that has the biggest estimated time to the node that has the
lowest estimated time.

949Krol D., Lupa A.: Agent Migration: Framework for Analysis

4 Migration Types and Communication Scheme

JADE [Bellifemine, 08] [JADE, 08] a mature and the most popular multi-agent
platform was selected to be the environment for our framework implementation. One
of the main reasons in its favour is that it is used in many commercial and industrial
applications and it is considered as an efficient one. It is also widely accepted by
scientists who test their project implementations on JADE. As many other muli-agent
platforms, JADE is compliant with FIPA specifications and it is released under an
open source licence.

4.1 Migration Types

There are three migration types: move, copy and birth. Their differences in
dispatching messages were depicted in the migration sequence diagram. These three
ways are different, because of the differences in core implementation. In the
framework they are implemented using JADE methods and also by sending messages.
Migration is available only for Primer agents, which actually represent the work to be
done.

4.1.1 Move

As shown in Figure 4, the move migration is intended to support agent mobility and is
called either by the Agent Platform or by the agent itself to start a migration process.

Figure 4: Move migration sequence diagram

When an agent invokes a move method itself a message is created, which
contains the agent code and data. In Java programming language data is composed of
asset of object. Those objects are transformed to byte array, which can be stored in a
message, using the Java serialization mechanism. This message, with code and data is
transferred through the network using TCP/IP protocol. Java deserialization

950 Krol D., Lupa A.: Agent Migration: Framework for Analysis

mechanism is used at destination to recover objects. The class loading (ClassLoader)
mechanism allows classes incoming in the message to be dynamically loaded
(transformed into executable classes). So the list of crucial processes for one-way
migration process is stated below: Creation of the agent, Serialization of the agent,
Message sending to the destination environment (there has to be an acting server),
Deserialization of the agent at destination, Loading the code from incoming agent and
resuming the agent.

The move method requires a Location Object which holds the name of the
location, container identifier object and platform identifier object. These objects are
necessary to start the migration process performed by jade.core.mobility package.
What is important is mentioned in the method description – agent state is changed
from Active to Transit. The method ceases all current activities and suspends agent
till the platform has relocated it. The operations before and after moving can be
specified using methods beforeMove() and afterMove().

In the framework these methods are used for sending messages to Coordinators
on the source and destination platform in order to have the integrity of the task
sustained. The message to the Coordinator when leaving includes the difference
between the beginning and the end of the range of numbers, which was examined by
the current agent. After a Coordinator gets this message, it subtracts this from the
overall range of numbers to be searched.

When an agent is arriving at the new location it sends a message that includes the
range of numbers left to be examined. Coordinator, after getting it, adds this range to
the overall pool of numbers to be checked.

4.1.2 Copy

As shown in Figure 5, the copy migration is based on cloning the agent in the new
location and, after the original agent is copied, destroying it. In the implemented
system coping is executed by a copy method. This method is intended to support
agent mobility and is called either by the Agent Platform or by the agent itself to start
a cloning process. The actual cloning takes place asynchronously.

This method beside a new Location requires also a new agent name. In a JADE
platform agent’s name must be unique and there cannot exist two agents with the
same name. The cloning process is different than moving because an agent, which
was the original one, stays on the platform it was residing. Similar to the move
migration there is a possibility to prepare an agent to this operation and for example
save its state by overriding methods beforeCopy() and afterCopy().

Messaging in case of copy is done in the same way as in move migration. The
only difference is that after the agent is copied, the original one executes self-
destruction by invoking doDelete() method.

In the framework this migration type is technically faster and should take less
time than the previous one, because an agent does not leave the environment, so there
is no time wasted for this process. Creating agent on another environment involves
the same operation as in the move migration. The only additional time is for
destroying the original agent.

951Krol D., Lupa A.: Agent Migration: Framework for Analysis

Figure 5: Copy migration sequence diagram

4.1.3 Birth

Birth migration, see Figure 6, is implemented by using messages to transfer necessary
data and to activate new agent to execute its task. There is no method in JADE system
that does it.

Coordinator 2 Coordinator 1 Primer 1

Before migration

Primer 1 N doDelete()

Creation request

Create ()

Request

Time

Container-2 Container-1

Figure 6: Birth migration sequence diagram

This process is initiated by the agent itself. The agent gets a message with the
Location object, as in the previous types, but instead of putting itself to a non active
state it sends a message to the Coordinator on the destined node with all necessary
data to create an agent, which is the same as the original data. This data consists of the

952 Krol D., Lupa A.: Agent Migration: Framework for Analysis

current number that is next in the queue for checking and the end of the range of
number to check. The migration type and primes range search could be added, but the
assumption is that on the other node these parameters are the same.

When the Coordinator on the other node gets this message it creates a Primer
agent, adds it to the list of available Primers and sends a message with the data it got
before. The number of examined numbers is not necessary. After getting this request
message (the same type as during the task distribution) agent starts working. The
original agent executes method doDelete() just after sending the message.

4.2 Communication Scheme

The communication diagram presented in Figure 7 does not show all agents in the
system. If there are many agents of a specific kind there are only two agents in the
diagram in order to represent if there is a connection between them. The N and M
suggests that usually there are a different numbers of Coordinators and Primers in the
system.

When agents are building an agent network there has to be a certain sequence
while doing it. This sequence was created to achieve an order also while creating
agents. The second reason for creating an order lies in the set up method. While
building a network, there should be a central point, which will be responsible for
gathering information. Although not necessary, for this system it was easier to
introduce such a central point than to add some intelligent behaviour to the agents just
to recognize what other agents are in the network.

BrokerSaver Migration Coordinator

Coordinator N

Primer 1 Primer M

Coordinator 1

Main-Container

Container-1 Container-N

Figure 7: Communication scheme between agents

From the communication diagram it is inferred that Primers are not able to
communicate directly to the Broker or Migration Coordinator agent, just to Saver,
which is a simple functional agent, and to Coordinators. The arrow from the Primer to
other Coordinator (not the local one) is only used when it comes to the birth migration
type for the migration message. Also, Coordinators between themselves do not
normally communicate – only when migration from one node to the second is
rejected, because it is the fastest way. After considering these cases the hierarchical

953Krol D., Lupa A.: Agent Migration: Framework for Analysis

topology emerges from the lower level – Primer agents, through the middle one –
Coordinators (also Saver might be considered here), to the highest level – Broker and
Migration Coordinator. This theory is also proved by communication diagram, where
the main communication thrust goes in those directions.

On the other hand, because there are connections between Coordinators and
Primers, one way connection from Primers to remote Coordinator and the network
between Migration Coordinator, Coordinators and Broker is almost complete (only
one way connection between Broker and Migration Coordinator). The partial pattern
of decentralized topology is realized here.

5 Results of the experiments

The ultimate goal is to find optimal configuration for two different environments:
home and university. In order to do this there has been a set of experiments
conducted. Other main purpose is to show, that migration helps to improve efficiency
of task completion when a network is composed of computers, which are not
homogeneous – they have different configuration or/and different computing power at
the moment (they can be busy because of other programs running).

5.1 Meaningful Values for Parameters

When agents in the system are being created they get some parameters from the
outside in order to control somehow the experiment process. Some of them were
already mentioned, but without a detailed description.
Parameters for Coordinator agent:
• Number of agents on a node. This is the first parameter from Coordinator and it is

given to speed up the agent creating network. When there are already Containers
in the Agent Platform, they are ready to have the Coordinators created. Just after
Coordinator is created it creates also Primers in the current location. This
parameter is responsible how many of them will be initiated with the Coordinator.
The default value is set to 10.

• Valid time. This is the parameter connected with the migration process and it was
mentioned before. When after the migration phase a Coordinator gets all progress
reports from Primers, it saves the state. It means the time of getting the last report
and the sum of ranges of searching primes from. When a report request comes
from Migration Coordinator, it sends progress report request again. If the
difference between times of getting the last report from this phase and the saved is
lower that valid time (also might be called trial minimum time) then a Coordinator
estimates time based on the efficiency of a current node from the beginning of the
experiment. Parameter is given in seconds and the default value is 1 second.

Parameters for Primer agent:
• Migration type. This argument is passed from Coordinator while creating a

Primer. In the system there are two places when it comes to the migration
decisions. The main role goes to the Migration Coordinator, because it decides
where agents should go, but Primer agents decide how they go to the other
environment. This parameter is a number and has values from 1 to 3. 1
corresponds to move migration type, 2 to copy and 3 to birth. There is a possibility

954 Krol D., Lupa A.: Agent Migration: Framework for Analysis

for agents on different nodes to have different types of migrations, but it is only as
a start, because each Primer carries the migration type with it. Only when agent is
born on another node it gets parameters from the Coordinator of the current node.
In a standard situation Primers posses the type of migration on each node of the
experiment. The default value is set for birth migration type.

• Primes range search unit. This is one of the most important parameter in the
system (also called elementary primes range search). When a Primer is searching
for prime numbers, it has to have a range of numbers to search from. This
parameter is a number of numbers, which are checked at one time. After a Primer
checks a unit of numbers, it generally checks if there are messages waiting to be
handled. This parameter is also responsible for how often the save messages are
generated. Every Primer agent after checking a range unit sends a message to the
Saver agent in order to save the results (prime number). After primes are sent the
list of primes held by the Primer agent is cleared. The default value is set to 150.

Parameters for Migration Coordinator agent:
• Type of migration algorithm. This parameter is a number and has minimal value

of 1. Migration type algorithm mainly concerns how many agents are migrating
during the one migration process. There are three possibilities. The value of 1 sets
unlimited number of agents for migration.. The value of 2 sets algorithm for
limited one. The main core of algorithm is of course the same, but algorithm stops
when the number of proposed migrations reaches its limit. The value of 3 and
higher sets mixed migration algorithm. First the unlimited migration is conducted
and then after number of migration phases reaches its threshold, then limited
migration is performed. The default value is set for 1.

• Report time. This parameter is given in a number of seconds, which have to elapse
from the end of migration phase (when all Coordinators report local migration has
finished) till the next report request sending by Migration Coordinator. The default
value is set to 20 seconds.

• Node threshold. This parameter is given in a number of seconds. It is strictly
connected with migration process. Coordinators are sending reports to Migration
Coordinator - they send the estimated time till the job ends on the node and
number of agents. When migration calculation starts, it needs all these values, but
it does not include a node into calculation when its estimated time is lower than
node threshold. Then this node is also omitted when calculating average active
node time, sum of agents and sum of proposed agents. This parameter is given in
order to avoid unnecessary migration. This migration is when a node has already
finished its job and afterwards there are new agents arriving with some work to
do. This parameter could also be used to anathematize nodes from migration
earlier. The default value is set to 15 seconds.

5.2 Testbed

There are two environments, in which experiments were conducted. Both of them are
reliable and experiment can be easily repeated.

The first one is a home network, which is composed of four computers with
different configuration each:

955Krol D., Lupa A.: Agent Migration: Framework for Analysis

Computer 1 Intel Core Duo 1.86 GHz, 2 GB RAM, Windows Vista SP1
Computer 2 Intel 1.86 GHz, 448 MB RAM, Windows XP Prof. SP2
Computer 3 AMD Athlon 3200+ 2.2 GHz, 1 GB RAM, Windows XP Prof. SP2
Computer 4 AMD Athlon 1700+ 1.44 GHz, 256 RAM, Windows XP Prof. SP2
Computer 5 Intel 2,81 GHz, 448 MB RAM, Windows XP Prof. SP2

Table 1: List of computers used in experiments

The network is Ethernet 100Mb/s. All computers are connected to the DI-604
Ethernet Broadband Routed, which is often used for home networking and small
business networking. During the experiment there were only several problems with
the network, but generally it is a stable environment.

The second environment is composed of computers at Wrocław University of
Technology in laboratories for student practice in programming languages. The
network is composed at least from 45 computers with the same parameters:

The speed of network is also 100Mb/s. All computers are also connected to a
router. This is more reliable environment that the previous one. There were only
several network problems, but they did not affect the experiment results

5.3 Performance Measurements

In order to evaluate the effectiveness of agent migration six groups of experiments
were conducted: computer efficiency, maximum and minimum strategies, multi-agent
migrations, parameters investigation, networked computers efficiency, and massive
multi-agent migration. The results from first four groups are described in [Lupa, 08].
The results from the rest are as follows.

5.3.1 Networked Computer Efficiency Investigation

The experiment is set at university where all computers have the same power. The
experiment started with one computer networked with another, which was only
supposed to collect the prime numbers sent and save them to the file. This was done
in order not to slow down one of the computers performing calculation with
additional container and with file saving operations. When experiment continued,
more computers were joining the network up to 46 of them.

Experiment parameters are as follows: 20 agents on each node, primes search
range unit of 1000. The range of numbers to check for primes was from 1 billion to
1.004 billion.

Figure 8 presents the increase of efficiency with adding computers to the
network. The shape of it was to be expected, but also for this number of computers
there is point, form where the execution time starts to grow. Very important here are
the parameters: 20 agents are calculating the prime numbers on each computer and the
range of searching from primes for each agent equals 1000. This means every one
thousand searched candidates for primes there is a break in order to check if there is a
message for the calculating agent. Total range is from 1 billion to 1.004 billion. So
after quick calculation there are at least 4000 so called “portions” to examine. If the

956 Krol D., Lupa A.: Agent Migration: Framework for Analysis

portion is lower than an agent checks message queue more often and its efficiency
decreases, and so the experiment time rises.

Figure 8: Relationship between time and computers number solving the task

Computers Time First
reported Diff. Organisation

messages
Saved
messages

1 338,3 338.3 0 47 4000
3 113.5 112.4 1.1 133 4020
5 68.3 67.4 0.9 219 4000
20 17.6 16.9 0.7 864 4000
45 7.8 7.5 0.3 1939 4050

Table 2: Partial results from networked prime number calculation

Table 2 presents the most important data from the networked prime number
calculation. An interesting issue is the event of first computer reported. When prime
numbers are being calculated, it is normal that some computers finish faster than
others, even though they have the same parameters and almost the same number of
operations to do (it depends on a value of the square root of a candidate number). The
difference between the execution time and first reported computer is shown on the
table below. At the beginning it is quite erratic but afterwards it stabilizes into
descending trend. Moreover, it is important that the difference is very small, up to
more than a second. The cause is the same configuration of all computers.

The number of organization messages in the experiment has a linear correlation
with the number of computers in a network (on each computer there were 20
Primers). The number rises by 43 with each added computer and it starts from 4
messages, which are always necessary to make an agent network in the experiment.

Save messages are determined by the number of portions that agents get. Where
there is low number of nodes in the experiment, this number does not go much higher
than 4000, which is the result of dividing the range between low numbers of
computers. When node number increases, it is almost impossible to distribute full
1000 ranges throughout all the agents, so the message number in some cases rises by
10%. But still this change does not affect the results (execution time) much. They
seem to be in a steady descending trend.

957Krol D., Lupa A.: Agent Migration: Framework for Analysis

There are several conclusions from this experiment:
• Finding the optimal number of computers for this experiment is a hard task.

The optimum point is vague.
• The network in able to transfer all the data within designated time with

almost no problems. There is not enough data than to make it slow down. Of
course with different set of parameters that the default one, which seem to be
close to optimal, this is possible.

• The ideal time is connected with the first computer reported in the network.
• Computers reporting the end of calculated primes are doing it within a short

time from each other, which corresponds to their configuration.
• Number of organization messages is connected in a linear way with the

number of computers.
• Number of saving messages is sensitive to the distribution of the main range

of number to primes within.
• The difference between first machine reported and number of computer

forms a descending trend.

5.3.2 Massive multi-agent migration

The experiment is conducted in order to test the implemented system using big
number of computers. Because the university environment is homogeneous, there was
a heterogeneity introduced by running more instances on one computer. Tests were
conducted on 15 computers in which on five of them there was one JADE container
running. On the next five there were two containers running and on the rest 3
containers. The number of containers equals 30. In this experiment the main goal is to
find the optimal parameters for the described configuration. Without migration the
experiment took 1000.5 seconds and the first computer reported after 317.6 seconds.

Experiment parameters are as follows: 10 agents on each node, primes search
range unit of 100, report time set as 30 seconds, node threshold set for 15 seconds, the
default migration type is birth. The range of numbers to check for primes was from 1
billion to 1.110 billion. The unlimited migration algorithm is used here.

Figure 9 shows that container times change with the changing report time
parameter. The difference between here and experiments conducted at home is that
one computer does not correspond to one container. Summing all number of
containers – there are 30 of them here.

When the report time is low, the experiment time is higher and the first container
reports quite early. When closing to the value of 30 seconds, the experiment time is
lowering and the first container reports later. When the report time is between 25 and
35 seconds, the execution time is in a niche, where results are similar. In the whole
chart the average container time is almost the same all the time. The reason here
probably is the number of containers. The first container value has its maximum when
the report time equals 30 seconds.

958 Krol D., Lupa A.: Agent Migration: Framework for Analysis

Figure 9: Relationship between container times and report time

As depicted on Figure 9, the optimal value here seems to be 30 seconds as a
report time. Comparing to the execution time, it is quite a value – almost 5% of the
whole time. It is also important here that the number of agents is low and the primes
range search is small, which makes communication in the experiment quite fast.
These values were chosen because of the large number of containers. We can clearly
see that with low report time value the environment is very dynamic and with bigger
values (like 50 seconds) it much less dynamic.

Figure 10: Relationship between report time, report messages and migrations

Figure 10 shows how many report messages are sent when the report time rises.
Of course, when it does, the number of messages is lowering, but it is not the regular
proportion, but counter proportion. This chart can also be interpreted as measure of
systems dynamics. The higher the number of messages, the more agents and
containers are participating in migration phases. After the report time crosses the
value of 30 or 35 seconds, the number of messages is lowering in a slower pace. This

959Krol D., Lupa A.: Agent Migration: Framework for Analysis

is on one hand the result of how many times agents are reporting to local
Coordinators, but also how many containers and agents are participating in the
migration process.

The number of migrations has its minimum around 25 to 35 seconds for the
report time. Afterwards the migration numbers is a bit higher but it seems also quite
stable and before these values it falls down rapidly. After the comparison of execution
time and chart and migrations chart there is one additional conclusion – number of
migrations is related to the execution time (the same minimum values).

Figure 11: Relationship between agents on a node and container times

Figure 11 presents how the number of agents affects container times. Starting
from execution time, it falls when the number of agents is nearing 10 from the
number of 5 agents and rises starting from 15 agents on a node. The line of first
container reported behaves in an exactly opposite manner and average container time
is almost a constant value. The slight descending trend starts from 15 agents on a
node.

The results are explainable. When there are only few agents, they cannot cover
differences in computing power, so some containers finish earlier and when there are
too many agents, report communication is more time-consuming and migration takes
more time and so the system is not able to react quickly. This may be a problem when
some agents are starting to finish their job and number of active agents in the system
falls down. In that kind of situation containers reports more distributed through the
time; migration is not able to cover those differences.

The most important conclusion from this chart is that the optimal number of
agents stating on a node is between 10 and 15. For these two values the proximity of
execution time, first container reported and average reported time is very high. That
means the migration is able to cover computer efficiency differences quite well
(difference between execution time and first container reported is less than 2%).

As shown in Figure 12, starting from the migrations number, it seems to be
comparable in the range of agents from 5 to 10 and then it starts to rise rapidly. Then

960 Krol D., Lupa A.: Agent Migration: Framework for Analysis

it rises rapidly when the number of starting agents on a node crosses 15. The
relationship between report messages and starting agents on a node is almost linear.

The number of migrations at the beginning of a chart, which is comparable, may
be dependent on the minimum number of migrations during the experiment that
makes the efficiency of a container close to optimal. As it is also depicted, the number
of report messages does not correspond to the migration number in any way, beside
both are generally rising when the number of agents on a nodes increases.

Figure 12: Relationship between agents on a node, migrations and report messages

After experiments with primes range search unit and computer times the
conclusion was that with lowering the search range unit computers spend more time
on checking if they have a message pending instead of calculating. The Figure 13
shows that again, but the shape is different.

Figure 13: Relationship between primes range search unit and container times

961Krol D., Lupa A.: Agent Migration: Framework for Analysis

There is a constantly descending trend of container times, but the difference
between first container reported and execution time is getting bigger with increase of
primes range search unit. Moreover, with the higher values of search range the
execution time stabilizes between 645 seconds and 650 seconds, but the first container
reports earlier. It is connected with the communication time during the experiment
(the higher search range, the longer communication between agents). The close
proximity of container times at the beginning is also a consequence of this
relationship. The average container time seems to be in almost all cases in the middle
between first container time and last container time (execution time).

Figure 14: Relationship between migrations, report messages and primes range unit

Figure 14 shows that report messages and not related to migrations when the
primes range search unit is changing. The migration number has almost linear
relationship with the search range. The value change between the lowest and the
highest values almost doubles.

The difference in report messages for the lowest value of primes range search unit
and the highest one is around 8% (comparing the difference to the maximum value).
The conclusion here is that the relationship is almost constant. The shape of it is more
chaotic, because of the formed local minimum and maximum (beside values for at the
beginning and at the end).

Figure 15 shows a comparison of migration types. For each value types
(execution time, average container time, first container time) the differences are lower
that 1%. An important factor here is that the experiment was conducted for primes
range search unit value set as 150. Even though the conclusion here is that migration
type does not have an impact on execution time. These results are more influenced by
other parameters, like report time, primes range search unit or number of agents
starting on a node.

There are several conclusions from this experiment:
• The optimal report time value is around 30 seconds. The minimal report time

value, which is comparable with the optimal solution, is 10 seconds. 5
second time makes environment too much dynamic.

962 Krol D., Lupa A.: Agent Migration: Framework for Analysis

• Migrations and report messages have a connection between themselves when
the report time is changing. The value of report time for migrations and
report messages is comparable with the optimal value starting from the report
time set for 20 or 25 seconds.

• The optimal number of starting agents on a node is between 10 and 15.
Lower values make the environment too static and higher make it too
dynamic.

• The lower agent number, the lower migration number.
• The optimal primes range search unit starts after values of 150, 200. It is also

not clear because of relationship with containers time.
• Migration type does not influence the execution time.

Figure 15: Relationship between computer time and migration type

6 Discussion and Conclusion

We spent countless hours making multiple runs in order to assure ourselves that the
results were due to inherent randomness and not model errors. Table 3 provides the
best values from these runs. Note that the agent migration increases the efficiency in
task execution.

Parameter Heterogeneous
computers

Homogeneous
computers

Profit in execution time 58% 35.4%
Primes range search unit 150 150-200
Report time 20s 30s
Agents on a node 5-20 10-15

Table 3: Optimal configurations for heterogeneous and homogeneous computers

963Krol D., Lupa A.: Agent Migration: Framework for Analysis

Moreover, we can combine the results of all of above cases and draw the
following conclusions. The more agents in the system, the more dynamic the
environment is and also the more migrations take place. The most important
parameter in the system is primes range search unit, because it is able to balance the
calculations efficiency and the communication velocity. The optimal configuration is
when all computers finish their tasks in time close to each other. The closer the
migration phases are in time, the more migrations there are in the system. To make
the system more stable migration phases have to be distant in time. This also impacts
the number of messages in the system – the more stable the system is the lower
communication costs. The lower number of migrations the shorter the execution time
assuming there is enough agents in the system, that are able to cover differences in
computer efficiency (the optimal number of agents seems to be around 10 or 15).

Investigations on migration types have given a conclusion that birth migration
type is the more efficient one. It is also the simplest migration (fewer operations have
to be done). In move or migration type operations like serialization and class loading
have to be conducted, which slows down their efficiency. However, it is very
important to mention that migration type does not have an impact on execution time.
Other parameters responsible especially for load balancing are more crucial to
efficiency of the distributed computing.

When there are migrations in the system, there is a possibility of cycle migration
phenomenon. This has a negative impact on nodes efficiency and it was proven using
full experiments report. The cause of this lies in the accuracy of time till end
estimation for a node and the number of agents. There are two ways of limiting it: low
number of agents or limited migration, but there is always a danger that after a sudden
event in the system (like one node efficiency collapse) it could not handle changes in
a short time (slightly higher execution time).

When the number of agents in the system is small, a limited migration could
function more efficiently. The overall conclusion here is that within a dynamic
environment the key is to find a balance between covering differences in computer
efficiency and unexpected events (the more agents, the more accurate it is) and
limiting migrations and migration cycles (the less agents the better).

The upgrades to AM framework could be connected with two key points:
algorithm for migration and time estimation. More advanced algorithm for migration
calculation could be more concentrated on avoiding migration cycles (something like
limited migration) with parameters regarding how the node was handling the task
previously. The time till end estimation could be more influenced by historical
efficiency based on assumption that it does not change so often.

Finally the architecture of this system enables to introduce more task types. The
prime numbers calculation is a simple one, but it also possess features of a distributed
problem. With different problem agent migration types could reveal more differences
if an agent would possess more data with itself. Moreover if a task is knowledge-
intensive this knowledge could spread out and be exchange in the network. In
summary, this work and system project opens new horizons in investigating code and
data propagation in a multi-agent system.

964 Krol D., Lupa A.: Agent Migration: Framework for Analysis

Acknowledgements

The authors would like to express their gratitude to M. Nowostawski from the
University of Otago and P. Luczycki from IBM, for their useful comments and
suggestions to a draft version of this paper.

References

[Bellifemine, 08] Bellifemine, F., Caire, G.: A. Poggi, G. Rimassa, JADE: A software
framework for developing multi-agent applications. Lessons learned, Information and Software
Technology, 50, 2008, 10-21.

[Bernon, 06] Bernon, C., Chevrier, V., Hilaire, V., Marrow, P.: Applications of Self-Organising
Multi-Agent Systems: An Initial Framework for Comparison, Informatica, 30, 2006, 73-82.

[Cao, 05] Cao, J., Spooner, D. P., Jarvis, S. A., Nudd, G. R.: Grid load balancing using
intelligent agents, Future Generation Computer Systems, 21(1), 2005, 135-149.

[Centola, 06] Centola, D., Eguiluz, V.M., Macy, M.W.: Cascade dynamics of complex
propagation, Physica A, 374, 2007, 449-456.

[Chakravarti, 05] Chakravarti, A.J., Baumgartner, G., Lauria, M.: The Organic Grid: Self-
Organizing Computation on a Peer-to-Peer Network, IEEE Transactions on Systems, Man, and
Cybernetics—Part A: Systems and Humans, 35(3), 2005, 373-384.

[Chmiel, 05] Chmiel, M., Gawinecki, M., Kaczmarek, P., Szymczak, M., Paprzycki, M.:
Efficiency of JADE agent platform, Scientific Programming, 13, 2005, 1-14.

[DZhang, 08] Zhang, D., Simoff, S., Aciar, S., Debenham, J.: A multi agent recommender
system that utilises consumer reviews in its recommendations, Int. J. Intelligent Information
and Database Systems, 2(1), 2008, 69-81.

[Fatima, 01] Fatima, S., Wooldridge, M.: Adaptive Task and Resource Allocation in Multi-
Agent Systems, In Proc. of the 5th International Conference on Autonomous Agents 2001, 537-
544.

[Hmida, 08] Hmida, F.B., Chaari, W.L., Tagina, M.: Performance Evaluation of Multiagent
Systems: Communication Criterion, In Proc. KES-AMSTA 2008, LNAI 4953, 2008, 773-782.

[Huang, 08] Huang, C.Y., Cheng, C.Y., Sun, C.T.: Resource Limitations, Transmission Costs
and Critical Thresholds in Scale-Free Networks, In Proc. KES-AMSTA 2008, LNAI 4953,
2008, 485-494.

[JADE, 08] Jade - Java Agent DEvelopment Framework, available from: http://jade.tilab.com/
[cited 2008 September 30].

[Jiang, 05] Jiang, Y.C., Jiang, J.C.: A multi-agent coordination model for the variation of
underlying network topology, Expert Systems with Applications, 29, 2005, 372-382.

[Jurasovic, 06] Jurasovic, K., Jezic, G., Kusek, M.: A Performance Analysis of Multi-Agent
Systems, International Transactions on Systems Science and Applications, 1(4), 2006, 335-342.

[Kazienko, 07] Kazienko, P., Musiał, K.: On utilising social networks to discover
representatives of human communities, Int. J. Intelligent Information and Database Systems,
1(3/4), 2007, 293-310.

965Krol D., Lupa A.: Agent Migration: Framework for Analysis

[Korzeniowski, 08] Korzeniowski, Ł., Król, D.: Instant messaging data processing of
autonomous mobile systems, In Knowledge processing and reasoning for information society,
Exit Press, 2008, 83-99.

[Krivokapic, 00] Krivokapic, N., Kemper, M. A.: Migrating Autonomous Objects in a WAN
Environment, Journal of Intelligent Information Systems, 15, 2000, 221-251.

[Krol, 08] Król, D., Zelmozer, M.: Structural Performance Evaluation of Multi-Agent Systems,
Journal of Universal Computer Science, 14(7), 2008, 1154-1178.

[Krol, 09] Król, D., Kukla, G.: Quantitative Analysis of the Error Propagation Phenomenon in
Distributed Information Systems, In Proc. of the 1st Asian Conference on Intelligent
Information and Database Systems, IEEE Computer Society, 2009 (in press).

[Levis, 04] Levis, P., Patel, N., Culler, D., Shenker, S.: Trickle: A selfregulating algorithm for
code propagation and maintenance in wireless sensor networks, Technical Report, University of
California at Berkely, 2004.

[Lupa, 08] Król, D., Lupa, A.: Code and Data Propagation on a PC’s Multi-Agent System, In
New Trends in Multimedia and Network Information Systems, IOS Press 2008, 259-275.

[Mitschang, 03] Mitschang, B.: Data propagation as an enabling technology for collaboration
and cooperative information systems, Computers in Industry, 52, 2003, 59-69.

[Navarro, 05] Navarro, G., Ortega-Ruiz, J.A., Ametller, J., Robles, S.: Distributed
Authorization Framework for Mobile Agents, In Proc. MATA 2005, LNCS 3744, 2005, 127-
136.

[Ni, 08] Ni, J., Luo, D., Ou, Y., Luo, C.: Agent-based evolutionary optimisation of trading
strategies, Int. J. Intelligent Information and Database Systems, 2(1), 2008, 25-48.

[Repantis, 04] Repantis, T.: Adaptive Data Propagation in Peer-to-Peer Systems, Course
Project Report for CS253 - Distributed Systems, University of California, Riverside, 2004.

[Tan, 03] Tan, K., Zhang, Q., Zhu, W.: Shortest Path Routing in Partially Connected Ad Hoc
Networks, In Proc. IEEE Globecom 2003, 2, 2003, 1038-1042.

[Wedde, 06] Wedde, H.F., Farooq, M.: A comprehensive review of nature inspired routing
algorithms for fixed telecommunication networks, Journal of Systems Architecture, 52, 2006,
461-484.

[Zhang, 08] Zhang, H.L., Leung, H.C., Raikundalia, G.K.:Topological analysis of AOCD-
based agent networks and experimental results, Journal of Computer and System Sciences, 74,
2008, 255-278.

966 Krol D., Lupa A.: Agent Migration: Framework for Analysis

