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Abstract: In this paper we review the existing linear and quadratic complexity (upper)
bounds on the values of the positive roots of polynomials and their impact on the per-
formance of the Vincent-Akritas-Strzeboński (VAS) continued fractions method for the
isolation of real roots of polynomials. We first present the following four linear complex-
ity bounds (two “old” and two “new” ones, respectively): Cauchy’s, (C ), K ioustelidis’,
(K ), F irst-Lambda, (FL) and Local-M ax, (LM ); we then state the quadratic complex-
ity extensions of these four bounds, namely: CQ, KQ, FLQ, and LMQ — the second,
(KQ), having being presented by Hong back in 1998. All eight bounds are derived from
Theorem 5 below. The estimates computed by the quadratic complexity bounds are
less than or equal to those computed by their linear complexity counterparts. Moreover,
it turns out that VAS(lmq) — the VAS method implementing LMQ — is 40% faster
than the original version VAS(cauchy).
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1 Introduction

Computing (lower) bounds on the values of the positive roots of polynomials is
a crucial operation in the VAS continued fractions method for the isolation of
the real roots of polynomials. Therefore, we begin by reviewing some basic facts
about this method, which is based on Vincent’s theorem, [Vincent, 1836]:

Theorem 1. (Vincent’s original theorem — continued fractions version, 1836)
If in a polynomial, p(x), of degree n, with rational coefficients and without mul-
tiple roots we perform sequentially replacements of the form

x← α1 + 1
x , x← α2 + 1

x , x← α3 + 1
x , . . .

where α1 ≥ 0 is an arbitrary non negative integer and α2, α3, . . . are arbitrary
positive integers, αi > 0, i > 1, then the resulting polynomial either has no sign
1 For his inspiring work on bounds of positive roots of polynomials.
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variations or it has one sign variation. In the last case the equation has exactly
one positive root, which is represented by the continued fraction

α1 + 1
α2+ 1

α3+ 1

...

whereas in the first case there are no positive roots.

[Alesina & Galuzzi, 1998], [Alesina & Galuzzi, 1999], [Alesina & Galuzzi, 2000],
are a must for a complete historical survey of the subject, whereas for im-
plementation details of this theorem in the process of real root isolation see
the papers by Akritas, Strzeboński and Vigklas [Akritas 1978], [Akritas 1980],
[Akritas & Strzeboński, 2005], [Akritas, Strzeboński & Vigklas, 2008] and Chap-
ter 7 in [Akritas 1989]. The thing to note is that the quantities αi (the partial
quotients of the continued fraction) are computed by repeated application of a
method for estimating lower bounds on the values of the positive roots of a
polynomial.

Therefore, the efficiency of the VAS continued fractions method depends on
how good these estimates are.

Cauchy’s, (C ), (linear complexity) bound on the values of the positive roots
of a polynomial, was used until recently in the VAS continued fractions real
root isolation method, [Akritas & Strzeboński, 2005]. In the SYNAPS imple-
mentation of the VAS, Tsigaridas and Emiris, [Tsigaridas & Emiris, 2006], used
K ioustelidis’, (K ), (linear complexity) bound, [Kioustelidis, 1986], and indepen-
dently verified the results obtained in [Akritas & Strzeboński, 2005]2.

In 2006 a new theorem, Theorem 5, was discovered, [Akritas & Vigklas, 2007],
[Akritas, Strzeboński & Vigklas, 2006], which extended and generalized a theo-
rem by Ştefănescu of 2005, [Ştefănescu, 2005], in such a way that both Cauchy’s
and Kioustelidis’ linear complexity bounds on the values of the positive roots of
a polynomial are derived from it; moreover, based on Theorem 5, two new linear
complexity bounds were developed: F irst-Lambda, (FL) and Local-M ax, (LM ).

Recently, the linear complexity bounds were extended and their correspond-
ing new quadratic complexity bounds on the values of the positive roots of poly-
nomials were developed: Cauchy’s Quadratic, (CQ), K ioustelidis’ Quadratic,
(KQ, [Hoon, 1998]), F irst-Lambda Quadratic, (FLQ), and Local-M ax Quadratic
(LMQ). All four quadratic complexity bounds are also derived from Theorem 5.

The rest of the paper is structured as follows:
In section 2 we present Ştefănescu’s theorem of 2005, and Theorem 5, from

which all bounds mentioned above are derived.
2 See also Sharma’s work, [Sharma, 2007a] and [Sharma, 2007b], where he used the

worst possible positive lower bound to prove that the VAS method is still polynomial
in time!
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In section 3 we present the four linear complexity bounds:Cauchy’s, K iouste-
lidis’, F irst-Lambda, and Local-M ax. These can be found elsewhere, see the
paper by Akritas, Strzeboński & Vigklas [Akritas, Strzeboński & Vigklas, 2006],
but are included here for completion. As it is impossible for any single bound
to always compute the best estimates, taking the minimum of the last two,
FL+LM, results in the best linear complexity bound.

In section 4 we present the four quadratic complexity bounds: CQ, KQ, FLQ,
and LMQ. Here, it is impossible to tell which of FLQ, LMQ and FLQ+LMQ is
the best; for theoretical reasons LMQ was chosen.

And finally there is the conclusions section.

2 Theoretical Background

As was pointed out in the introduction, the efficiency of the VAS continued frac-
tions method depends heavily on how good are the estimates of the lower bounds
on the values of the positive roots.

A lower bound, �b, on the values of the positive roots of a polynomial p(x),
of degree n, is found by first computing an upper bound, ub, on the values of
the positive roots of xnp( 1

x ) and then setting �b = 1
ub .

So, clearly, what is needed is an efficient method for computing upper bounds
on the values of (just) the positive roots of polynomial equations.

In the initial implementation of VAS, in 1978, the lower bounds were com-
puted using a theorem by Cauchy, [Obreschkoff, 1963].

Theorem 2. (Cauchy’s theorem) Let

p(x) = αnxn + αn−1x
n−1 + . . . + α0, (αn > 0) (1)

be a polynomial with real coefficients αn, αn−1, . . . , α0, of degree n > 0, and
with αn−k < 0 for at least one k, 1 ≤ k ≤ n. If λ is the number of negative
coefficients, then an upper bound on the values of the positive roots of p(x) is
given by

ubC = max
{1≤k≤n:αn−k<0}

k

√
−λαn−k

αn

Note that if λ = 0 there are no positive roots.

Subsequently, Kioustelidis’ bound appeared, [Kioustelidis, 1986], and was
used in the SYNAPS implementation of VAS by Tsigaridas and Emiris in 2006,
[Tsigaridas & Emiris, 2006]. Kioustelidis’ theorem is closely related to the one
by Cauchy:
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Theorem 3. (Kioustelidis’ theorem, 1986) Let p(x) be a polynomial as in Eq. (1),
of degree n > 0, with αn−k < 0 for at least one k, 1 ≤ k ≤ n. Then an upper
bound on the values of the positive roots of p(x) is given by

ubK = 2 max
{1≤k≤n:αn−k<0}

k

√
−αn−k

αn
.

However, both implementations of the VAS continued fractions method —
that is, using either Cauchy’s, [Akritas & Strzeboński, 2005], or Kioustelidis’
bound, [Tsigaridas & Emiris, 2006] — showed that its “Achilles’ heel” was the
case of very many very large rational roots. In this case — as can be seen from
Table 1 presented below — the VAS method was up to 4 times slower than
VCA(rel) — the fastest implementation of the VCA bisection method developed
by Rouillier and Zimmermann, [Rouillier and Zimmermann, 2004]. (Table 1 cor-
responds to the last table (Table 4), found in [Akritas & Strzeboński, 2005].)

Table 1: Products of factors (x-randomly generated integer root). All computa-
tions were done on a 850 MHz Athlon PC with 256 MB RAM; (s) stands for
time in seconds and (MB) for the amount of memory used, in MBytes.

Roots Degree No. of roots VAS VCA(rel)

(bit length) t(s)/M(MB) t(s)/M(MB)

10 100 100 0.8/1.82 0.61/1.92
10 200 200 2.45/2.07 10.1/2.64
10 500 500 33.9/3.34 878/8.4

1000 20 20 0.12/1.88 0.044/1.83
1000 50 50 16.7/3.18 4.27/2.86
1000 100 100 550/8.9 133/6.49

The last three lines of Table 1 demonstrate the weaker performance of VAS

in the case of very many very large rational roots.
To see if the performance of VAS could be improved, we needed to better

understand the nature of these bounds, and this was achieved with the help of
Ştefănescu’s theorem of 2005, [Ştefănescu, 2005].

Theorem 4. (Ştefănescu’s theorem, 2005) Let p(x) ∈ R[x] be such that the num-
ber of variations of signs of its coefficients is even. If

p(x) = c1x
d1 − b1x

m1 + c2x
d2 − b2x

m2 + . . . + ckxdk − bkxmk + g(x),
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with g(x) ∈ R+[x],ci > 0, bi > 0, di > mi > di+1 for all i, the number

ubS = max

{(
b1

c1

)1/(d1−m1)

, . . . ,

(
bk

ck

)1/(dk−mk)
}

is an upper bound for the positive roots of the polynomial p for any choice of
c1, . . . , ck.

Ştefănescu’s theorem introduces the concept of matching or pairing a positive
coefficient with an unmatched negative coefficient of a lower order term; however,
Ştefănescu’s theorem worked only for polynomials with an even number of sign
variations.

Note: More precisely, it is the term with the positive coefficient that is being
matched to the term with the negative coefficient.

Ştefănescu’s theorem was generalized in the sense that Theorem 5 below ap-
plies to polynomialswith anynumber of signvariations, [Akritas & Vigklas, 2007].
To accomplish this, the concept was introduced of breaking up a positive coef-
ficient into several parts to be paired with negative coefficients of lower order
terms3, [Akritas, Strzeboński & Vigklas, 2006].

Theorem 5. (Akritas-Strzeboński-Vigklas, 2006) Let p(x)

p(x) = αnxn + αn−1x
n−1 + . . . + α0, (αn > 0)

be a polynomial with real coefficients and let d(p) and t(p) denote the degree and
the number of its terms, respectively.

Moreover, assume that p(x) can be written as

p(x) = q1(x) − q2(x) + q3(x) − q4(x) + . . . + q2m−1(x)− q2m(x) + g(x), (2)

where all the polynomials qi(x), i = 1, 2, . . . , 2m and g(x) have only positive
coefficients. In addition, assume that for i = 1, 2, . . . , m we have

q2i−1(x) = c2i−1,1x
e2i−1,1 + . . . + c2i−1,t(q2i−1)x

e2i−1,t(q2i−1 )

and

q2i(x) = b2i,1x
e2i,1 + . . . + b2i,t(q2i)x

e2i,t(q2i ) ,

where e2i−1,1 = d(q2i−1) and e2i,1 = d(q2i) and the exponent of each term in
q2i−1(x) is greater than the exponent of each term in q2i(x). If for all indices
i = 1, 2, . . . , m, we have

t(q2i−1) ≥ t(q2i),
3 After the extension by Akritas, Strzeboński and Vigklas,

[Akritas, Strzeboński & Vigklas, 2006], Ştefănescu also extended his Theorem 4,
[Ştefănescu, 2007].
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then an upper bound of the values of the positive roots of p(x) is given by

ub = max
{i=1,2,...,m}

{(
b2i,1

c2i−1,1

) 1
e2i−1,1−e2i,1

, . . . ,

(
b2i,t(q2i)

c2i−1,t(q2i)

) 1
e2i−1,t(q2i)−e2i,t(q2i)

}
,

(3)
for any permutation of the positive coefficients c2i−1,j, j = 1, 2, . . . , t(q2i−1).
Otherwise, for each of the indices i for which we have

t(q2i−1) < t(q2i),

we break up one of the coefficients of q2i−1(x) into t(q2i) − t(q2i−1) + 1 parts,
so that now t(q2i) = t(q2i−1) and apply the same formula (3) given above.

For a proof of this theorem see the paper by Akritas, Strzeboński & Vigk-
las [Akritas, Strzeboński & Vigklas, 2006]. Please note that the partial exten-
sion of Theorem 4 presented in [Akritas & Vigklas, 2007] does not treat the case
t(q2i−1) < t(q2i).

Crucial Observation. Pairing up positive with negative coefficients and break-
ing up a positive coefficient into the required number of parts — to match the
corresponding number of negative coefficients — are the key ideas of this theo-
rem. In general, formulae analogous to (3) hold for the cases where: (a) we pair
coefficients from the non-adjacent polynomials q2l−1(x) and q2i(x), for 1 ≤ l < i,
and (b) we break up one or more positive coefficients into several parts to be
paired with the negative coefficients of lower order terms.

3 Linear Complexity Bounds Derived from Theorem 5

The bounds in the literature, such as Cauchy’s and Kioustelidis’, are of linear
complexity.

The General Idea of the Linear Complexity Bounds: These bounds
are computed as follows:

– each negative coefficient of the polynomial is paired with one of the preceding
unmatched positive coefficients;

– the maximum of all the computed radicals is taken as the estimate of the
bound.

Using Theorem 5 we obtain the following interpretation of Cauchy’s and
Kioustelidis’ theorems:

528 Akritas A.G.: Linear and Quadratic Complexity Bounds ...



C. Cauchy’s “leading-coefficient” implementation of Theorem 5. For a polyno-
mial p(x), as in Eq. (1), with λ negative coefficients, Cauchy’s method first
breaks up its leading coefficient, αn, into λ equal parts and then pairs each
part with the first unmatched negative coefficient. That is, we have:

ubC = max
{1≤k≤n:αn−k<0}

k

√
−λαn−k

αn

or, equivalently,

ubC = max
{1≤k≤n:αn−k<0}

k

√
−αn−k

αn

λ

.

K. Kioustelidis’ “leading-coefficient” implementation of Theorem 5. For a poly-
nomial p(x), as in Eq. (1), Kioustelidis’ method matches the coefficient−αn−k

of the term −αn−kxn−k in p(x) with αn

2k , the leading coefficient divided by
2k.

ubK = 2 max
{1≤k≤n:αn−k<0}

k

√
−αn−k

αn

or, equivalently,

ubK = max
{1≤k≤n:αn−k<0}

k

√
−αn−k

αn

2k

.

Kioustelidis’ “leading-coefficient” implementation of Theorem 5, differs from
that of Cauchy’s only in that the leading coefficient is now broken up in unequal
parts, by dividing it with different powers of 2, [Kioustelidis, 1986].

Using Theorem 5 a new linear complexity method, first–λ, was developed for
computing upper bounds on the values of the positive roots of polynomials.

FL. “first–λ” implementation of Theorem 5. For a polynomial p(x), as in (2),
with λ negative coefficients we first take care of all cases for which t(q2i) >

t(q2i−1), by breaking up the last coefficient c2i−1,t(q2i), of q2i−1(x), into
t(q2i)−t(q2i−1)+1 equal parts. We then pair each of the first λ positive coeffi-
cients of p(x), encountered as we move in non-increasing order of exponents,
with the first unmatched negative coefficient.

This is an improvement over the other two bounds by Cauchy and Kiouste-
lidis, but as the following Example demonstrates, all three methods can fail
miserably.
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Example: Consider the polynomial

x3 + 10100x2 − 10100x− 1,

which has one sign variation and, hence, only one positive root = 1.

– For Cauchy’s theorem we pair the terms {x3

2 ,−10100x} and {x3

2 ,−1}, and
taking the maximum of the radicals computed (as in Ştefănescu’s theorem,
Theorem 4) we obtain a bound estimate of 1.41421 ∗ 1050.

– Likewise, for Kioustelidis’ theorem we pair the terms {x3

22 ,−10100x} and
{x3

23 ,−1}, and obtain a bound estimate of 2 ∗ 1050.

– Similarly, for first–λ we pair the terms {x3,−10100x} and {10100x2,−1}, and
obtain a bound estimate of 1050.

To correct this inadequacy yet another new linear complexity method, local-
max, was developed for computing an upper bound on the values of the positive
roots of polynomials:

LM. “local-max” implementation of Theorem 5. For a polynomial p(x), as
in (1), the coefficient −αk of the term −αkxk in p(x) — as given in Eq. (1)
— is paired with the coefficient αm

2t , of the term αmxm, where αm is the
largest positive coefficient with n ≥ m > k and t indicates the number of
times the coefficient αm has been used.

Example, continued: For local-max we pair the terms { 10100x2

2 ,−10100x} and
{ 10100x2

22 ,−1}, and taking the maximum of the radicals computed we obtain a
bound estimate of 2.

All four linear complexity bounds mentioned above have been tested exten-
sively — on various classes of specific and random polynomials — and the
following is a summary of the findings, [Akritas, Strzeboński & Vigklas, 2006],
[Akritas & Vigklas, 2007]:

– Kioustelidis’ bound is, in general, better (or much better) than Cauchy’s;
this happens because the former breaks up the leading coefficient in unequal
parts, whereas the latter breaks it up in equal parts.

– the first-λ bound, as the name indicates, uses additional coefficients and,
therefore, it is not surprising that it is, in general, better (or much better)
than both previous bounds. In the few cases where Kioustelidis’ bound is
better than first-λ, the local-max bound takes again the lead.
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Therefore, given their linear cost of execution, min(FL, LM) or FL + LM is
the best among the linear complexity bounds on values of the positive roots of
a polynomial, [Akritas, Strzeboński & Vigklas, 2006].

In Table 2 below we recalculate the results of Table 1, and compare the tim-
ings in seconds, t(s), for: (a) VAS(cauchy), the VAS continued fractions method
using Cauchy’s rule (the “old” method), (b) VAS(fl+lm), the VAS continued frac-
tions method using min(FL, LM) or FL + LM (the “new” method), and (c)
VCA(rel), the fastest implementation of the VCA bisection method. (Table 2 cor-
responds to the last table (Table 2), found in the paper by Akritas, Strzeboński
& Vigklas [Akritas, Strzeboński & Vigklas, 2007].)

Table 2: Products of terms x− r with random integer r. The tests were run on
a laptop computer with 1.8 Ghz Pentium M processor, running a Linux virtual
machine with 1.78 GB of RAM.

Roots Deg VAS(cauchy) t(s) VAS(fl+lm) t(s) VCA(rel) t(s)
(bit length) Average (Min/Max) Average (Min/Max) Average (Min/Max)

10 100 0.314 (0.248/0.392) 0.253 (0.228/0.280) 0.346 (0.308/0.384)
10 200 1.74 (1.42/2.33) 1.51 (1.34/1.66) 3.90 (3.72/4.05)
10 500 17.6 (16.9/18/7) 17.4 (16.3/18.1) 129 (122/140)

1000 20 0.066 (0.040/0.084) 0.031 (0.024/0.040) 0.038 (0.028/0.044)
1000 50 1.96 (1.45/2.44) 0.633 (0.512/0.840) 1.03 (0.916/1.27)
1000 100 52.3 (36.7/81.3) 12.7 (11.3/14.6) 17.2 (16.1/18.7)

Due to the different computational environment the times t(s) differ sub-
stantially, but they confirm the fact that VAS(fl+lm) is now always faster than
VCA(rel).

Again, of interest are the last three lines of Table 2, where as in Table 1 the
performance of VAS(cauchy) is worse than VCA(rel) — at worst 3 times slower,
as the last entry indicates. However, from these same lines of Table 2 we observe
that VAS(fl+lm) is now always faster than VCA(rel) — at best twice as fast,
as seen in the 5-th line.

When the times of VAS(cauchy) were compared with those of VAS(fl+lm)

— on various classes of specific and random polynomials — not only was an
overall speed-up of 15% observed, [Akritas, Strzeboński & Vigklas, 2008], but
VAS(fl+lm) also became always faster than the Vincent-Collins-Akritas4 bi-
section method (VCA), see the papers [Akritas, Strzeboński & Vigklas, 2007],
[Akritas, Strzeboński & Vigklas, 2008], [Boulier, 2007], [Collins & Akritas, 1976].

4 Misleadingly referred to in the literature as “modified Uspensky’s” or “Descartes”’
method.
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4 Quadratic Complexity Bounds Derived from Theorem 5

To further improve the performance of the VAS continued fractions method it
was decided to use quadratic complexity bounds on the values of the positive
real roots hoping that their improved estimates should compensate for the extra
time needed to compute them. These bounds are based on the following idea:

The General Idea of the Quadratic Complexity Bounds: These bounds
are computed as follows:

– each negative coefficient of the polynomial is paired with all the preceding
positive coefficients and the minimum of the computed values is taken;

– the maximum of all those minimums is taken as the estimate of the bound.

In general, the estimates obtained from the quadratic complexity bounds are
less than or equal to those obtained from the corresponding linear complexity
bounds, as the former are computed after much greater effort and time5. The
quadratic complexity bounds described below are all extensions of their linear
complexity counterparts.

Thus, we have:

CQ. Cauchy’s Quadratic complexity implementation of Theorem 5. For a
polynomial p(x), as in Eq. (1), each negative coefficient ai < 0 is “paired”
with each one of the preceding positive coefficients aj divided by λi — that
is, each positive coefficient aj is “broken up” into equal parts, as is done with
just the leading coefficient in Cauchy’s bound; λi is the number of negative
coefficients to the right of, and including, ai — and the minimum is taken
over all j; subsequently, the maximum is taken over all i.

That is, we have:

ubCQ = max
{ai<0}

min
{aj>0:j>i}

j−i

√
− ai

aj

λi

.

Example, continued: For CQ we first compute

– the minimum of the two radicals obtained from the pairs of terms
{x3

2 ,−10100x} and { 10100x2

2 ,−10100x} which is 2,

5 It should be noted that time is not so importance in our case, since
— as can be seen in line 4 of the description of the VAS algorithm,
[Akritas, Strzeboński & Vigklas, 2008] — these bounds are estimated before a trans-
lation of complexity at least O(n2) is executed.
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– the minimum of the two radicals obtained from the pairs of terms {x3,−1}
and {10100x2,−1} which is 1

1050 ,

and we then obtain as a bound estimate the value max{2, 1
1050 } = 2.

KQ. Kioustelidis’ Quadratic complexity implementation of Theorem 5. For
a polynomial p(x), as in Eq. (1), each negative coefficient ai < 0 is “paired”
with each one of the preceding positive coefficients aj divided by 2j−i — that
is, each positive coefficient aj is “broken up” into unequal parts, as is done
with just the leading coefficient in Kioustelidis’ bound — and the minimum
is taken over all j; subsequently, the maximum is taken over all i.

That is, we have:

ubKQ = 2 max
{ai<0}

min
{aj>0:j>i}

j−i

√
− ai

aj
,

or, equivalently,

ubKQ = max
{ai<0}

min
{aj>0:j>i}

j−i

√
− ai

aj

2j−i

.

Example, continued: For KQ we first compute

– the minimum of the two radicals obtained from the pairs of terms
{x3

22 ,−10100x} and { 10100x2

2 ,−10100x} which is 2,

– the minimum of the two radicals obtained from the pairs of terms {x3

23 ,−1}
and { 10100x2

22 ,−1} which is 2
1050 ,

and we then obtain as a bound estimate the value max{2, 2
1050 } = 2.

FLQ. “First-Lambda” Quadratic complexity implementation of Theorem 5.
For a polynomial p(x), as in (2), with λ negative coefficients we first take
care of all cases for which t(q2�) > t(q2�−1), by breaking up the last coef-
ficient c2�−1,t(q2�), of q2�−1(x), into d2�−1,t(q2�) = t(q2�) − t(q2�−1) + 1 equal
parts. Then each negative coefficient ai < 0 is “paired” with each one of the
preceding min(i, λ) positive coefficients aj divided by dj — that is, each of
the preceding min(i, λ) positive coefficient aj is “broken up” into dj equal
parts, where dj is initially set to 1 and its value changes only if the positive
coefficient aj is broken up into equal parts, as stated in Theorem 5; u(j)
indicates the number of times aj can be used to calculate the minimum, it
is originally set equal to dj and its value decreases each time aj is used in
the computation of the minimum — and the minimum is taken over all j;
subsequently, the maximum is taken over all i.
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That is, we have:

ubFLQ = max
{ai<0}

min
{aj>0:j>min(i,λ):u(j) �=0}

j−i

√
− ai

aj

dj

.

From the above descriptions it is clear that FLQ tests just the first min(ι, λ)
positive coefficients, whereas all the other quadratic complexity bounds test
every preceding positive coefficient. Hence, FLQ is faster (or quite faster) than
all of them.

Example, continued: For FLQ we first compute

– the minimum of the two radicals obtained from the pairs of terms
{x3,−10100x} and {10100x2,−10100x} which is 1 — evaluated from the sec-
ond pair of terms,

– the radical obtained from the pair of terms {x3,−1} which is 1,

and we then obtain as a bound estimate the value max{1, 1} = 1. Note that
once a term with a positive coefficient has been used in obtaining the minimum,
it cannot be used again!

LMQ. “Local-Max” Quadratic complexity implementation of Theorem 5.
For a polynomial p(x), as in (1), each negative coefficient ai < 0 is “paired”
with each one of the preceding positive coefficients aj divided by 2tj —
that is, each positive coefficient aj is “broken up” into unequal parts, as is
done with just the locally maximum coefficient in the local max bound; tj
is initially set to 1 and is incremented each time the positive coefficient aj

is used — and the minimum is taken over all j; subsequently, the maximum
is taken over all i.

That is, we have:

ubLMQ = max
{ai<0}

min
{aj>0:j>i}

j−i

√
− ai

aj

2tj

.

Since 2tj ≤ 2j−i — where i and j are the indices realizing the max of min;
equality holds when there are no missing terms in the polynomial — it is clear

that the estimates computed by LMQ are sharper by the factor 2
j−i−tj

j−i than
those computed by Kioustelidis’ KQ.

Example, continued: For LMQ we first compute

– the minimum of the two radicals obtained from the pairs of terms
{x3

2 ,−10100x} and { 10100x2

2 ,−10100x} which is 2,
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– the minimum of the two radicals obtained from the pairs of terms {x3

22 ,−1}
and { 10100x2

22 ,−1} which is 2
1050 ,

and we then obtain as a bound estimate the value max{2, 2
1050 } = 2.

Notice how the estimates of all quadratic complexity bounds are much better
than those of their linear complexity counterparts. Extensive experimentation
revealed that the bounds FLQ, LMQ and min(FLQ, LMQ) behave the same
when implemented in the VAS continued fractions method for the isolation of
real roots of polynomials, [Akritas, Argyris & Strzeboński, 2008]. Therefore, for
theoretical reasons, it was decided to use LMQ. It turns out that VAS(lmq) —
the VAS method implementing LMQ — is 40% faster than the original version
VAS(cauchy), [Akritas, Strzeboński & Vigklas, 2008].

We finally present Table 3 — corresponding to Table 8 in the paper by
Akritas, Strzeboński & Vigklas [Akritas, Strzeboński & Vigklas, 2008] — where
we demonstrate the performance of VAS using quadratic complexity bounds. This
is actually the only case where the best linear complexity bound FL + LM is
slightly better than LMQ.

Table 3: Products of terms x − r with random integer r. The average speed-up
for this table is about 35%.

Bit-length Degree VAS(cauchy) VAS(fl+lm) VAS(lmq)

t(s) t(s) t(s)
of roots Avg(Min/Max) Avg(Min/Max) Avg(Min/Max)

10 100 0.46 (0.28/0.94) 0.24 (0.18/0.28) 0.34 (0.30/0.41)
10 200 1.46 (1.24/1.85) 1.40 (1.28/1.69) 1.40 (1.20/1.69)
10 500 18.1 (16.5/18.9) 18.1 (16.6/18.8) 22.1 (18.7/24.2)

1000 20 0.07 (0.04/0.14) 0.02 (0.02/0.03) 0.03 (0.02/0.04)
1000 50 3.69 (2.38/6.26) 0.81 (0.60/1.28) 0.81 (0.52/1.11)
1000 100 47.8 (37.6/56.9) 13.8 (10.3/19.2) 15.8 (11.3/21.3)

5 Conclusions

Linear complexity bounds are in general inferior to the quadratic complexity
ones, both in the computed estimate and when implemented in the VAS continued
fractions method for real root isolation method.

Quadratic complexity bounds, when implemented in the VAS real root isola-
tion method, speed up its performance by an average overall factor of 40%.
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