
 

 

Advances in Homomorphic Cryptosystems 
 
 

Mufutau Akinwande 
(Lagos State University, Lagos, Nigeria 

mboakinwande@yahoo.com) 
 
 
 

Abstract: During the last few years homomorphic encryption techniques have been studied 
extensively since they have become more and more important in many different cryptographic 
protocols such as voting protocols, lottery protocols, anonymity, privacy, and electronic 
auctions. 
 
This paper critically summarizes the current state-of-art of homomorphic cryptosystems. It 
recalls the basic ideas, discusses their parameters, performances and security issues. And, 
finally we present their capabilities in the future applications. 
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1 Introduction 

The demand for privacy of digital data and of more complex structures like 
algorithms has become stronger during the last few years. This goes hand in hand 
with growth of communication networks like the Internet and a vastly growing 
number of electronic devices. On the one hand these devices enable a great variety of 
attacks on digital goods and on the other hand they are vulnerable to attacks such as 
the manipulation or destruction of data and the theft of sensitive information. For 
storing and reading data securely there exist several possibilities to guarantee privacy 
such as data encryption and tamper resistant hardware [Idowu et al, 05]. The problem 
becomes more complex when asking for the possibility to compute (publicly) with 
private data or to modify functions or algorithms in such a way that they are still 
executable while their privacy is ensured. This is where homomorphic cryptosystems 
can be used since they enable computations with encrypted data. 

[Rivest et al, 78] were the first to solve this issue through homomorphic 
encryption. Unfortunately, [Brickell and Yacobi, 87] pointed out in some security 
flaws in the first proposals of Rivest et al. Since this first attempt, a lot of articles have 
proposed solutions dedicated to numerous application contexts such as secret sharing 
schemes, threshold schemes, zero-knowledge proofs, oblivious transfer, commitment 
schemes, anonymity, privacy, electronic voting, electronic auctions, lottery protocols, 
protection of mobile agents, multiparty computation, mix-nets, watermarking or 
fingerprinting protocols [Rappe, 04]. 

Furthermore, the question rose again in 1991 when [Feigenbaum and Merritt, 91] 
asked: “Is there an encryption function E() such that both E(x+y) and E(xy) are easy 
to compute from E(x) and E(y)?” They were asking explicitly for so called 
algebraically homomorphic encryption techniques. Unfortunately, there has been little 
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progress made in determining whether such encryption techniques exist that are 
efficient and secure, although it is one of the crucial open problems in cryptography. 

We would examine and illuminate homomorphic cryptosystems in three steps 
(“what”, “how”, “why”) that reflect the guidelines about the main characteristics of 
encryption primitives: algorithms, performance, and security. 

2 Basic concepts 

2.1 Homomorphic encryption 

We will present in this section the basic definitions related to homomorphic 
encryption while the current trend will be given in [Section 3]. 

2.1.1 Definition 

Let M (or C) denote the set of the plaintexts (or ciphertexts, respectively). An 
encryption scheme is said to be homomorphic if for any given encryption key k the 
encryption function E satisfies 
 

)()()(        ,, 212121 mEmEmmEMmm CM     

 

for some operators M in M and C  in C, where  =  means “can be directly 
computed from,” that is, without any intermediate decryption [Fontaine and Galand, 
07]. 

Informally speaking, homomorphic cryptosystem is a cryptosystem with the 
additional property that there exists an efficient algorithm to compute an encryption 
of the sum or the product, of two messages given the public key and the encryptions 
of the messages but not the messages themselves. 

If M (or C) is an additive (semi-) group then the scheme is called additively 
homomorphic and the algorithm is called Add. Otherwise the scheme is called 
multiplicatively homomorphic and the algorithm is called Mult.  

2.1.2 Remarks 

 Note that for a homomorphic encryption scheme to be efficient it is crucial to 
make sure that the size of the ciphertexts remains polynomially bounded in 
the security parameter during repeated computations. 

 The security aspects, definitions, and models of homomorphic cryptosystems 
are the same as for other cryptosystems. 

 
If the encryption algorithm E gets as additional input a uniform random number 

r of a set , the encryption scheme is called probabilistic otherwise it is called 
deterministic. Hence if a cryptosystem is probabilistic there belong several different 
ciphertexts to one message depending on the random number Zr  . But note that as 
before the decryption algorithm remains deterministic, i.e. there is just one message 
belonging to a given ciphertext as illustrated in the example (2.1.3). Furthermore, in a 
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probabilistic, homomorphic cryptosystems the encryption algorithm should be 
probabilistic too to hide the input ciphertexts. 

2.1.3 Example 

We now give an example of a deterministic, multiplicatively homomorphic scheme 
and an example for a probabilistic, additively homomorphic scheme. 
 

1. The classical RSA scheme [Rivest et al, 78] is an example of a deterministic, 
multiplicatively homomorphic cryptosystem on )  ,/(  NZZM where N is 

the product of two large primes. As ciphertext space we have 
)  ,/(  NZZC and as key space we have 

 )(mod  1  ,)),,((),( NedpqNdeNkkK de  . The encryption of a 

message Mm is defined as NmmE e
ke

mod:)(   and for decryption of 

a ciphertext CcmE
ek :)(  we compute 

NmNccD d
kk de

modmod:)(,  . Obviously, the encryption of the product 

of the two messages can be efficiently computed by multiplying the 
corresponding ciphertexts, i.e.,  
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 where ., 21 Mmm   Hence, the algorithm Mult can easily be 

 implemented as ).()(:))(),(Mult( 2121 mEmEmEmE
eeee kkkk   

Usually in the RSA scheme as well as in most schemes based on the difficulty of 
factoring the security parameter is the bit length of .N For instance 1024 is a 
common security parameter. 
 
2. The Goldwasser-Micali scheme, proposed in [Goldwasser and Micali, 84] is an 

example of a probabilistic, additively homomorphic cryptosystem on  

)  ,2/(  ZZM  with *)/( NZZZC   where pqN  is the 

product of two large primes.  
We have       
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 since this scheme is probabilistic, the encryption algorithm gets as additional 

 input a random value .Zr   We define NrarmE m
ke

mod:),( 2  and 
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It holds that 

  ).,(),(),( 21212211 rrmmErmErmE
eee kkk   

 
Thus the algorithm Add can be efficiently implemented e.g. as 

),(                                                   

),0(),(),(                                                   
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where Mmm 21 , and Zrrr 321 ,, . 

 
Note that as already mentioned this algorithm should be probabilistic, i.e., it 

obtains a random number 3r as additional input. 

 
A public-key homomorphic encryption scheme on a (semi-) ring ),,( M  can be 

defined in an analogous way. Such schemes consist of two algorithms Add and 
Mult for the homomorphic property instead of one algorithm, i.e., it is additively 
and multiplicatively homomorphic at the same time. Such schemes are called 
algebraically homomorphic. 
 
A lot of such homomorphic schemes have been published that have been widely 

used in many applications. As it will be further discussed, no convincing algebraic 
homomorphic encryption scheme has been found yet, and their design remains an 
open problem. 

Less formally, these definitions mean that, for a fixed key k, it is equivalent to 
perform operations on the plaintexts before encryption or on the corresponding 
ciphertexts after encryption. So we require a kind of distributivity between encryption 
and some data processing operations. 

The schemes we will consider in the next section have to be probabilistic ciphers, 
and we may consider E to behave in a probabilistic way. 

2.2 Security Issues 

A minimal requirement for an encryption scheme is that it must be impossible to 
retrieve an encrypted plaintext for anybody not knowing the decryption key. 
However, this condition may be too weak - in some applications even partial 
information gained from the plaintext could endanger security. This is why we 
demand it to be “infeasible to learn anything about the plaintext from the ciphertext” 
or, in other words, “whatever an eavesdropper can compute about the cleartext given 
the ciphertext, he can also compute without the ciphertext” [Goldwasser and Micali, 
84]. 

Probabilistic encryption was introduced with a clear purpose: security. This 
requires to properly define different security levels. Semantic security was introduced 
in [Goldwasser and Micali, 82], at the same time as probabilistic encryption, in order 
to define what could be a strong security level, unavailable without probabilistic 
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encryption. Roughly, a probabilistic encryption is semantically secure if the 
knowledge of a ciphertext does not provide any useful information on the plaintext to 
some hypothetical adversary having only a reasonably restricted computational 
power. More formally, for any function f and any plaintext m, and with only 
polynomial resources (that is, with algorithms which time/space complexities vary as 
a polynomial function of the size of the inputs), the probability to guess f (m) 
(knowing f but not m) does not increase if the adversary knows a ciphertext 
corresponding to m. This might be thought of as a kind of perfect secrecy in the case 
when we only have polynomial resources. 

Together with this strong requirement, the notion of polynomial security was 
defined: if no passive adversary can, in expected polynomial time, select two plaintext 

messages 1m and 2m  and then correctly distinguish between encryptions of 1m and 

2m  with probability significantly greater than ½, thus the encryption is said to be 

polynomially secure. Polynomial security is now known as the indistinguishability of 
encryptions following the terminology and definitions of [Goldreich, 93]. 

Quite amazingly, [Goldwasser and Micali, 82] proved the equivalence between 
polynomial security and semantic security; [Goldreich, 93] extended these notions 
preserving the equivalence. With this equivalence, it is easy to state that a 
deterministic asymmetric encryption scheme cannot be semantically secure since it 
cannot be indistinguishable: the adversary knows the encryption function, and thus 
can compute the single ciphertext corresponding to each plaintext. 

But with asymmetric encryption schemes, the adversary knows the whole 
encryption material E involving both the encryption function and the encryption key. 
Thus, he can compute any pair (m, E (m)). If we relying on the different contexts, 
from the weakest to the strongest, we have the chosen-plaintext, nonadaptive chosen 
ciphertext and the strongest is the adaptive chosen ciphertext. This leads to the IND-
CPA, IND-CCA1, and IND-CCA2 notions in the literature. IND stands for 
indistinguishability whereas CPA and CCA are acronyms for chosen plaintext attack 
and chosen-ciphertext attack. Finally, CCA1 refers to nonadaptive attacks, and CCA2 
to adaptive ones [Fontaine and Galand, 07]. 

Considering the previous remarks on the ability for anyone to encrypt while using 
asymmetric schemes, the adversary has always the chosen-plaintext ability. 

Another security requirement termed nonmalleability has also been introduced to 
complete the analysis. Given a ciphertext c = E(m), it should be hard for an opponent 

to produce a ciphertext c  such that the corresponding plaintext m , that is not 
necessary known to the opponent, has some known relation with m [Dolev et al, 00]. 

Basically, the adaptive chosen ciphertext indistinguishability IND-CCA2 is the 
strongest requirement for an encryption; in particular, it implies nonmalleability. 

It should be emphasized that a homomorphic encryption cannot have the 
nonmalleability property. With the notation of Section 2, knowing c, we can compute 

ccc C and deduce, by the homomorphic property, that c is a ciphertext 

of mmm M . According to the previous remark on adaptive chosen-ciphertext 
indistinguishability, a homomorphic encryption has no access to the strongest security 
requirement. The highest security level it can reach is IND-CPA. 
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We now point out some security considerations about deterministic homomorphic 
encryption. First, it was proved that a deterministic homomorphic encryption for 
which the operation  is a simple addition is insecure [Fontaine and Galand, 07]. 

Second, [Boneh and Lipton, 96] showed that any deterministic algebraically 
homomorphic cryptosystem can be broken in subexponential time. We note that this 
last point does not mean that deterministic algebraically homomorphic cryptosystems 
are insecure, but that one can find the plaintext from a ciphertext in a subexponential 
time (which is still too long to be practicable). For example, we know that the security 
of RSA encryption depends on factorization algorithms and we know subexponential 
factorization algorithm. Nevertheless, RSA is still considered strong enough [Idowu 
et al, 05]. 

3 Current Trends in Homomorphic Encryption 

First, we recall that both RSA and ElGamal encryption schemes are multiplicatively 
homomorphic. The problem is that the original RSA being deterministic, it cannot 
achieve a security level of IND-CPA (which is the highest security level for 
homomorphic schemes). 

Furthermore its probabilistic variants, obtained through Optimal Asymmetric 
Encryption Padding, OAEP/OAEP+, are no more homomorphic. In contrast to RSA, 
ElGamal offers the best security level for a homomorphic encryption scheme, as it has 
been shown to be IND-CPA. Moreover, it is interesting to notice that an additively 
homomorphic variant of ElGamal has also been proposed. Comparing it with the 
original ElGamal, this variant also involves an element G (G may be equal to g) that 

generates ),(  q with respect to the addition operation. To send an encrypted 

version of the message m to Alice, Bob picks at random qk  and computes  

   ),(),( 21
k
A

mk yGgcc  . 

To get back the plaintext, Alice computes
1

12 )( acc , which is equal to 
mG ; 

then, she has to compute m in a second step. Note that this last decryption step is hard 
to achieve and that there is no other choice for Alice than to use brute force search to 

get back m from
mG . It is also well known that ElGamal’s construction works for any 

family of groups for which the discrete logarithm problem is considered intractable. 
For example, it may be derived in the setup employing elliptic curves. Hence, 
ElGamal and its variants are known to be really interesting candidates for realistic 
homomorphic encryption schemes. 

We will now describe another important family of homomorphic encryption 
schemes, ranging from the first probabilistic system proposed by [Goldwasser and 
Micali, 82], to the famous Paillier’s encryption scheme [Paillier, 99] and its 
improvements. Paillier’s scheme and its variants are famous for their efficiency, but 
also because, as ElGamal, they achieve the highest security level for homomorphic 
encryption schemes. 
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3.1 Goldwasser-Micali (GM) Scheme 

Prerequisite: 
Alice computed a (public, private) key: she first chose n = pq, p and q being large 
prime numbers and g a quadratic nonresidue modulo n whose Jacobi symbol is 1; her 
public key is composed of n and g, and her private key is the factorization of n. 
 
Goal: 
Anyone can send an encrypted message to Alice. 
 
Principle: 

To encrypt a bit b, Bob picks at random an integer
*
nr  , and computes  

nrgc b mod2  
(where c is a quadratic residue if and only if b = 0). To get back to the plaintext, Alice 
determines if c is a quadratic residue or not. To do so, she uses the property that the 

Jacobi symbol (c/p) is equal to
b)1( . 

Note that the scheme encrypts 1 bit of information, while its output is usually 1024 
bits long! 
 
Security: 
This scheme was the first system based upon the concept of probabilistic encryption 
and furthermore the first system proven to be semantically secure (assuming the 
intractability of the quadratic residuosity problem). 
It is, nevertheless, not a practicable scheme since in general, one plaintext-bit is 
expanded into n bits of ciphertext.  

3.2 Damgard-Jurik Scheme 

We now give an encryption scheme which is probabilistic, additively and scalar 
homomorphic cryptosystem. It was published by Damgard and Jurik [Damgard and 
Jurik, 03]. The scheme works as follows: 
 
Key generation: 

 Choose an RSA modulus )12)(12(  qppqN with primes 

.  ,  , , qqpp   

 Select an element 
NQg  where 

NQ denotes the group of all squares in 
)/( NZZ . Choose .      where,/ NQqpZZ    

 Compute .mod Ngh   

The public key is a: = (N, g, h) and the secret key is .  
 
Encryption: 
To encrypt a message m, choose an integer s > 0 so that   ,/ ZNZm s and choose a 

random .4      where,/ 2log NnnZZr  The ciphertext is  

 . ),(:)mod)1()mod(,mod(),( 1 HGNNNhNgrmE smNrr
a

s

   
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Let 
sL denote a function with 

  .mod)mod)1(( 1 ssm
s NmNNL    

 
An algorithm that computes this function, i.e., that calculates the discrete logarithm 
with respect to the element (N + 1) is described in [Damgard and Jurik, 01]. 
 
Decryption: 
Given a ciphertext ),,(),( rmEHGc a s can be deduced from the length of c or it 

is attached to the encryption. Then the message m can be found as  
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Homomorphic Property: 
This scheme is additively homomorphic since given ),( 11 rmEa

 and ),( 22 rmEa
we 

can compute  

),(),(                                 
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Hence the algorithm Add can efficiently be implemented by multiplying the input 
ciphertexts and applying a blinding algorithm. 

3.3 Paillier’s Scheme 

The Paillier scheme [Paillier, 99] is an example of a very efficient, probabilistic, 
additively and scalar homomorphic encryption scheme based on arithmetics in the 
ring of integers modulo 2N  where N is the product of two large primes. It was 
published in 1999 and analysed and extended by several authors such as [Damgard 
and Jurik, 01]. One of these extensions is the elliptic curve Paillier scheme (ECPS) 
which was recently published by Galbraith, S. [Galbraith, 02]. The ECPS is a 
generalization of Paillier’s encryption scheme from the integers modulo a square to 
elliptic curves over rings.  

Paillier himself tried to generalize his scheme to the elliptic curve setting by using 
anomalous elliptic curves over rings, but Galbraith found security flaws in this 
generalization [Galbraith, 02] whereas the ECPS can be proven semantically secure 
relative to a new defined problem. In the same way as Damgard and Jurik managed to 
generalize the original Paillier scheme to higher moduli to enable a wider application 
scope Galbraith developed a generalization of the elliptic curve Paillier scheme 
[Galbraith, 02]. 

The Paillier scheme, the new elliptic curve version by Galbraith as well as his 
further generalization are examples for the probabilistic, additively homomorphic 
cryptosystems, which are also scalar homomorphic. 

The performances of the ECPS and of its generalization are by far slower than the 
original Paillier scheme together with the generalization of Damgard and Jurik since 

513Akinwande M.: Advances in Homomorphic Cryptosystems



 

 

they operate on elliptic curves modulo large numbers. Hence, the elliptic curve 
version is mainly of theoretical interest.   

One interesting point is that the elliptic curve version is based on a slightly 
different assumption than Paillier’s original version. This assumption may also hold 
even if the original Paillier assumption were broken. 

3.3.1 Elliptic Curve Paillier Scheme 

We will now summarize the elliptic curve Paillier scheme and its generalization as 
illustrated by Galbraith.  It is a natural generalization of Paillier’s probabilistic, 
homomorphic public key cryptosystem [Paillier, 99] to elliptic curves over rings. 
 
Key generation: 
To generate a key 

 Compute a modulus pqN   as a product of two primes .3, qp  

 Choose a random elliptic curve 3232: bzaxzxzyE   over NZZ / , i.e. 

.1))274(6,gcd( 23  baN  

 
Let )()( qp FEFEM   be the order of )/( NZZE . Then knowledge of M is 

polynomial-time equivalent to knowledge of the factorization of pqN   (see 

[Galbraith, 02]). Furthermore, if p, q are known then M can be computed in 
polynomial time using the Schoof-Atkin-Elkies algorithm (see e.g. [Blake et al, 
99]). 
 
 Choose a point Q = (x : y : z) with ord(Q)|M in )/( 2 ZNZE . Since we have 

MNNZZE   |)/(| , this point can be found by taking a random point 

)/()::( 2 ZNZEzyxQ  and setting .QNQ   

 Let )/()0:1:(: 2
1 ZNZENP  . 

The public key consists of the modulus N (and hence the point
1P ), the 

coefficients (a, b) of the elliptic curve, and the point Q. The secret key is the 
order M of the group )./( NZZE  

 
Observe that .0for        )0:1:(1 NmmNPmP m   Since 

 )/()0:1:()0:1:)(()( 2
1 ZNZEmNNNmPNm   

 we can also define ./for     2
1 ZNZmPmP m  This is also valid for the 

generalizations given in the following sections. 
 

Encryption: 
To encrypt a message NZZm / choose a random integer Nr 1  and compute 
the point .1 mPrQmPrQC   The ciphertext is the point )./( 2ZNZEC   

 
Decryption: 
To decrypt the ciphertext C use the secret key M to compute  
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 ).0:1:()( mMNPMPMQrMC mMm   

 
Given the x-coordinate mMN interpreted in Z we can divide by N to obtain 

NZZmM / and then multiply by the inverse of NM mod  to recover the message 
./ NZZm  Observe that we have )./(/ 2

1 ZNZENZZ   

 
Homomorphic Property: 
This scheme is additively homomorphic since given encryptions 

1111 PmQrC   of 

1m and  1222 PmQrC  of 
2m  an encryption 

1212121 )()()( PmmQrrCC   of 

) ( 21 mm  can be computed just by adding the ciphertexts 
1C and

2C . Hence, we can 

define the algorithm Add as   
 
 ) ()()(:))(),(( 212121 mmEmEmEmEmEAdd   

or as  
 ) ()()(:))(),(( 212121 mmEQrmEmEmEmEAdd   

 
with Nr 1  in order to blind the result. Since the message set NZZ / the 
cryptosystem is also a scalar homomorphic and the algorithm Mixed-Mult can be 
implemented using repeatedly the algorithm Add and some blinding algorithm 
[Rappe, 04]. 

3.3.2 Generalization of the Elliptic Curve Paillier Scheme 

In a similar way as Damgard and Jurik [Damgard and Jurik, 01] have given a 
generalization of the original Paillier scheme to make it more interesting for 
applications Galbraith generalized the ECPS [Galbraith, 02]. His generalization for 
the elliptic curve case will be presented here. The generalization use higher powers of 
N and have certain advantages as can be seen in [Damgard and Jurik, 01]. So, instead 
of considering the ciphertext group )/( 2 ZNZE we now consider elliptic curve over 

)/( 1ZNZE s for s > 0. In this process we have to take care of subtleties relating to the 

formal group, see [Galbraith, 02]. 
 
Key generation: 
To generate a key 

 Choose a modulus N = pq as a product of two primes greater than 3 and 
choose s > 0. (Thus the message set will be group ./ ZNZ s ) 

 Choose a random elliptic curve NZZbzaxzxzyE /over    : 3232  , i.e., 

.)()(Let    .1))274(6,gcd( 23
qp FEFEMbaN   

 Choose a point )/(in    |)(ord  with  )::( 1ZNZEMQzyxQ s . This point Q 

can be found by taking a random point )/(   )::( 1ZNZEzyxQ s and 

setting QNQ s  .Note that ss MNZNZE  |)/(| 1 . 
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Now, let )./( ):1:())(:1:(: 173
1 ZNZEaNNNNwNP s  We take 

terms in the z-coordinate until the degree is greater than s + 1. It can be shown 
that 

1P has order sN , i.e., 1PN s . 

 
The public key consists of N, s, the coefficients (a, b) of the elliptic curve, and the 
point .Q  The corresponding secret key is the order M of the group )./( NZZE  

 
Encryption: 
To encrypt a message ZNZm s/ choose a random integer sNr 1  and compute 
the point .1mPrQC   The ciphertext is the point )./( 1ZNZEC s  

 
Decryption: 
To recover the message ZNZm s/ compute  
 ).)(:1:(:)( 3

111  NmNmPmmMPmMPMQrMC  

 
Then ZNZm s/ can be computed iteratively and after multiplying the result by 

sNM mod1 we obtain the message as sNMmm mod1 . We observe that owing to 
the fact that for s > 2 the map  is not a group isomorphism but induces only the 

group isomorphism from 
 )./(/)/(     to)/(/)/( 1

1 ZNZEZNZEZNZNZNZN s
j

s
j

sjsj


  

 
The iteration is as follows: We write i

i i Nmm    in terms of its base-N 

representation. Let the point )::(1 zyxPm   be given. The x-coordinate of this point 

equals .2
10  NmNmNNm i

i i
We can determine the value of 0m  

as N
N

x
m mod0  . We can then subtract 10 Pm from 1Pm to obtain a new 

point )::( zyx . From this point we can recover N
N

x
m mod

21   and the process 

is iterated. 
 
Observe that for s = 1 we obtain the basic elliptic curve Paillier scheme.  
 
Obviously this generalization has the same homomorphic properties as the basic 
scheme. This time its semantic security is based on the assumed hardness of the 
following assumption, which we call the generalized elliptic curve Paillier 
assumption:  
Given a point )/( 1ZNZEQ s of order dividing )/( NZZE where N  is the product 

of two large primes and given a random point )/( 1ZNZEC s  determine whether C 

lies in the subgroup generated by .Q  
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We would now analyze the important parameters and properties of the above 
schemes. 
 

 We begin with the rather simple scheme of GM [Goldwasser and  
Micali, 82]. Besides some historical importance, this scheme had an important impact 
on later proposals. Several other schemes, which will be presented below, were 
obtained as generalizations of this one. Here, as for RSA, we use computations 
modulo n = pq, a product of two large primes. Encryption is simple, with a product 
and a square, whereas decryption is heavier, with an exponentiation. Nevertheless, 

this step can be done in ))(( 2pl . 
Unfortunately, this scheme presents a strong drawback since its input consists of 

a single bit. First, this implies that encrypting k bits leads to a cost of ))(( 2plk  . 
This is not very efficient even if it is considered as practical. The second consequence 
concerns the expansion: a single bit of plaintext is encrypted in an integer modulo n, 

that is, )(nl  bits. Thus, the expansion is really huge. This is the main drawback of 
this scheme. 

Now we present the GM scheme from another point of view in order to 
understand how it has been generalized. 

The basic principle of GM is to partition a well-chosen subset of integers modulo 

n into two secret parts: 0M and 1M . Then, encryption selects a random element of 

bM to encrypt b, and decryption allows knowing in which part the randomly selected 
element lies. The core point lies in the way to choose the subset, and to partition it 

into 0M   and 1M . GM uses group theory to achieve the following: the subset is the 
group G of invertible integers modulo n with a Jacobi symbol, with respect to n, equal 
to 1.  

The partition is generated by another group GH  , composed of the elements 
that are invertible modulo n with a Jacobi symbol, with respect to a fixed factor of n, 
equal to 1; with these settings, it is possible to split G into two parts: H and G \ H. 

 
The generalizations of GM play with these two groups; they try to find two groups G 
and H such that G can be split into more than k = 2 parts. 
 

 [Benaloh, 88] is a generalization of GM, that enables to manage inputs of 
)(kl bits, k being a prime satisfying some particular constraints. Encryption is similar 

as in the previous scheme (encrypting a message }1,...,0{  km means picking an 

integer 
*
nr   and computing nrgc km mod ) but decryption is more complex.  

The input and output sizes being, respectively, of )(kl and )(nl bits, the expansion is 

equal to )(/)( klnl . This is better than in the GM case. 
Moreover, the encryption cost is not too high. Nevertheless, the decryption 

cost is estimated to be ))(( klk for precomputation, and the same for each 
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dynamical decryption, i.e. k has to be taken quite small, to limits the gain obtained on 
the expansion. 

 
 [Naccache and Stern, 98] is an improvement of Benaloh’s scheme.  

Considering a parameter k that can be greater than before, it leads to a smaller 
expansion. Note that the constraints on k are slightly different. The encryption step is 
precisely the same as in Benaloh’s scheme, but the decryption is different. To 

summarize, the expansion is still equal to )(/)( klnl , but the decryption cost is 

lower: )))(log()(( 5 nlnl , and the authors claim it is reasonable to choose the 
parameters as to get an expansion equal to 4. 
 

 In order to improve previous schemes,[Okamoto and Uchiyama, 98] decided 

to change the base group G. Considering qpn 2 , p and q still being two large 

primes, and the group
*

2p
G  , they achieve k = p. Thus, the expansion is equal to 

3. As Paillier’s scheme is an improvement of this one and will be fully described 
below, we will not discuss its description in detail. Its advantage lies in the proof that 
its security is equivalent to the factorization of n. Unfortunately, a chosen-ciphertext 
attack has been proposed leading to this factorization. This scheme was used to design 
the EPOC systems currently submitted for the supplement P1363a to the IEEE 
Standard Specifications for Public-Key Cryptography (IEEE P1363). Note that earlier 
versions of EPOC were subject to security flaws, due to a bad use of the scheme 
[Okamoto et al, 00]. 
 

 One of the most well-known homomorphic encryption schemes is  
due to [Paillier, 99], and is described earlier. It is an improvement of the previous one 
that decreases the expansion from 3 to 2. Paillier came back to n = pq, with gcd (n, φ 

(n)) = 1, but considered the group
*

2n
G  , and a proper choice of subgroup H led 

him to )(nlk  . 
The encryption cost is not too high. Decryption needs one exponentiation 

modulo 
2n to the power λ(n), and a multiplication modulo n. Paillier showed in his 

paper how to manage decryption efficiently through the Chinese Remainder Theorem. 
With smaller expansion and lower cost compared with the previous ones, this scheme 
is really attractive. 

[Cramer and Shoup, 02] proposed a general approach to gain security against 
adaptive chosen-ciphertext attacks for certain cryptosystems with some particular 
algebraic properties. Applying it to Paillier’s original scheme, they proposed a 
stronger variant. [Bresson et al., 03] proposed a slightly different version that may be 
more accurate for some applications. 

 
 [Damgard and Jurik, 01] proposed a generalization of Paillier’s  

scheme to groups of the form 
*

1 sn with s > 0. The larger the s is, the smaller the 
expansion is. Moreover, this scheme leads to a lot of applications. For example, we 
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can mention the adaptation of the size of the plaintexts, the use of threshold 
cryptography, electronic voting, and so forth.  

To encrypt a message nm  , one picks 
*
nr  at random and computes 

1 s

s

n

nmrg . 

The authors showed that if one can break the scheme for a given value 
s = σ, then one can break it for s = σ − 1. They also show that the semantic security 
of this scheme is equivalent to that of Paillier. To summarize, the expansion is of 
1+1/s, and hence can be close to 1 if s is sufficiently large.  

The ratio of the encryption cost of this scheme over Paillier’s can be 
estimated to be s(s + 1)(s + 2)/6. The same ratio for the decryption step equals           
(s + 1)(s + 2)/6. 

Note that even if this scheme is better than Paillier’s according to its lower 
expansion, it remains more costly. Moreover, if we want to encrypt or decrypt k 

blocks of )(nl  bits, running Paillier’s scheme k times is less costly than running 
Damgard-Jurik’s scheme once. 

 
 [Galbraith, 02] proposed an adaptation of the previous scheme in  

the context of elliptic curves. Its expansion is equal to 3. The ratio of the encryption 
(respectively, decryption) cost of this scheme in the case s = 1 over Paillier’s can be 
estimated to be about 7 (respectively, 14). But, in contrast to the previous scheme, the 
larger the s is, the more the cost may decrease. Moreover, as in the case of Damgard-
Jurik’s scheme, the higher the s is, the stronger the scheme is. 
 

 [Castagnos, 07] explored another improvement direction considering  

quadratic fields quotients. We have the same kind of structure regarding 
1sn as 

before, but in another context. To summarize, the expansion is 3 and the ratio of the 
encryption/decryption cost of this scheme in the case s = 1 over Paillier’s can be 
estimated to be about 2 (plus 2 computations of Legendre symbols for the decryption 
step). 
 

 Finally, we would mention the ElGamal-Paillier amalgam, as proposed by 
[Damgard and Jurik, 03], which merges Paillier and the additively homomorphic 
variant of ElGamal. The goal was to gain the advantages of both schemes while 
minimizing their drawbacks. Preserving the notation of both ElGamal and Paillier 
schemes, we will describe the encryption in the particular case s = 1, which leads 

Damgard-Jurik’s variant to the original Paillier. To encrypt a message nm  , Bob 
picks at random an integer k, and computes  

)mod)mod()1(,mod(),( 2
21 nnynngcc nk

A
mk  . 
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4 Conclusions 

We observe that Paillier scheme is always better than Damgard-Jurik because the 
latter is always slow and as s increases; it gets worse, much worse. It also has 
complicated discrete logarithm function. 

Although, there is no surprise that RSA is the overall fastest, but Paillier scheme 
fastest probabilistic homomorphic scheme is faster than RSA in decryption because of 
finding r. Thus, since Paillier is faster with the same advantages, it is a much better 
choice. 

As we saw, these schemes are not well suited for every use, and their 
characteristics must be taken into account. Nowadays, such schemes are studied in 
wide application contexts, but the research is still challenging in the cryptographic 
community to design more powerful/ secure schemes. 

Since homomorphic cryptosystems present a promising new direction for 
research, we would like to mention a few research directions and challenges.  

First, it is important to have different kinds of schemes, because of applications 
and security purposes. One direction to design homomorphic schemes that are not 
directly related to the same mathematical problems as ElGamal or Paillier (and 
variants) is to consider the recent papers dealing with Weil pairing [Boneh and 
Franklin, 01]. As this new direction is more and more promising in the design of 
asymmetric schemes, the investigation in the particular case of homomorphic ciphers 
is of interest. ElGamal may not be directly used in the Weil pairing setup as the 
mathematical problem it is based on becomes easy to manage. One more promising 
direction is the use of the pairing-based scheme proposed by [Boneh and Franklin, 01] 
to obtain a secure homomorphic ID-based scheme. 

A second interesting research direction lies in the area of symmetric encryption. 
As all the homomorphic encryption schemes we mentioned so far are asymmetric, 
they are not as fast as symmetric ones could be. But, homomorphy is easier to manage 
when mathematical operators are involved in the encryption process, which is not 
usually the case in symmetric schemes. Very few symmetric homomorphic schemes 
have been proposed, most of them being broken [Fontaine and Galand, 07].  

As per algebraic homomorphy, designing algebraically homomorphic encryption 
schemes is a real challenge today. No satisfactory solution has been proposed so far, 
and, as [Boneh and Lipton, 96] conjectured that any algebraically homomorphic 
encryption would prove to be insecure; the question of their existence and design is 
still open. 
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