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Abstract: During the last few years homomorphic encryption techniques have been studied
extensively since they have become more and more important in many different cry, aphic
protocols such as voting protocols, lottery protocols, anonymity, privacyg and {efectyonic
auctions.

This paper critically summarizes the current state-of-art of homornorph' cryptosystems. It
recalls the basic ideas, discusses their parameters, performances an ity issues. And,
finally we present their capabilities in the future applications.
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Categories. E.3 E

The demand for privacy of digita ? of more complex structures like

1 Introduction

agorithms has become stronger duri last few years. This goes hand in hand
with growth of communication like the Internet and a vastly growing
number of electronic devices. On.t e hand these devices enable a great variety of
attacks on digital goods and @other hand they are vulnerable to attacks such as
the manipulation or destructi data and the theft of sensitive information. For
storing and reading dataﬁy there exist several possibilities to guarantee privacy
such as data encrypti per resistant hardware [Idowu et al, 05]. The problem
becomes more p hen asking for the possibility to compute (publicly) with
private data or_to y functions or algorithms in such a way that they are still
executable v@ﬁa r privacy is ensured. This is where homomorphic cryptosystems
hey enable computations with encrypted data.

t et a, 78] were the first to solve this issue through homomorphic
encrypiion. Unfortunately, [Brickell and Yacobi, 87] pointed out in some security

proposed solutions dedicated to numerous application contexts such as secret sharing
schemes, threshold schemes, zero-knowledge proofs, oblivious transfer, commitment
schemes, anonymity, privacy, electronic voting, electronic auctions, lottery protocols,
protection of mobile agents, multiparty computation, mix-nets, watermarking or
fingerprinting protocols [Rappe, 04].

Furthermore, the question rose again in 1991 when [Feigenbaum and Merritt, 91]
asked: “Is there an encryption function E() such that both E(x+y) and E(xy) are easy
to compute from E(x) and E(y)?" They were asking explicitly for so called
algebrai cally homomorphic encryption techniques. Unfortunately, there has been little
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progress made in determining whether such encryption techniques exist that are
efficient and secure, although it is one of the crucia open problemsin cryptography.

We would examine and illuminate homomorphic cryptosystems in three steps
("what”, “how”, “why”) that reflect the guidelines about the main characteristics of
encryption primitives: algorithms, performance, and security.

2 Basic concepts

21 Homomor phic encryption

We will present in this section the basic definitions related to, 4o orphic
encryption while the current trend will be given in [Section 3]. \

2.1.1  Definition

®
Let M (or C) denote the set of the plaintexts (or ciph%%ctively). An

encryption scheme is said to be homomorphic if for any yption key k& the
encryption function E satisfies

PN
Vmy,m, €M, E(my o, my)=E(m)o. E(m,)

W
for some operators °uin M and °c i ere = means “can be directly
computed from,” that is, without any i e decryption [Fontaine and Galand,

07].

Informally speaking, homo hic*Cryptosystem is a cryptosystem with the
additional property that there ¢ efficient algorithm to compute an encryption
of the sum or the product, of & essages given the public key and the encryptions

homomorphic and algorithm is called Add. Otherwise the scheme is called
multiplicatively om@rphic and the algorithm is called Mult.

212 Re@s

hat for a homomorphic encryption scheme to be efficient it is crucial to
make sure that the size of the ciphertexts remains polynomially bounded in
e security parameter during repeated computations.
e  The security aspects, definitions, and models of homomorphic cryptosystems
are the same as for other cryptosystems.

If M (or C) is ~ e (semi-) group then the scheme is caled additively

If the encryption algorithm E gets as additional input a uniform random number
rof a setZ, the encryption scheme is caled probabilistic otherwise it is called
deterministic. Hence if a cryptosystem is probabilistic there belong severa different
ciphertexts to one message depending on the random number 7 € Z . But note that as
before the decryption algorithm remains deterministic, i.e. there is just one message
belonging to a given ciphertext as illustrated in the example (2.1.3). Furthermore, in a



508 Akinwande M.: Advances in Homomor phic Cryptosystems

probabilistic, homomorphic cryptosystems the encryption algorithm should be
probabilistic too to hide the input ciphertexts.

213 Example

We now give an example of a deterministic, multiplicatively homomorphic scheme
and an example for a probabilistic, additively homomorphic scheme.

1. Theclassical RSA scheme [Rivest et al, 78] is an example of adeterministic,
multiplicatively homomorphic cryptosystemon M = (Z/ NZ, x) where N is
the product of two large primes. As ciphertext space we have

C =(Z !Nz, x)and as key space we have
K ={(k,,k,) = (N,e),d)|N = pq, ed =1 modg(N)}. Th won of a
message m € M isdefined as £, (m) = m* mod N’ d@uryption of
aciphertext E; (m)=c € C wecompute &
D, , ()= c¢* mod N = mmod N . Obviously, &cryption of the product
22 :P;’;vc\)/rc:dri?]zs?gir (;:thtsi .e;‘.f,ici entl tmpx@ ultiplying the

E, (myxm,) = (mym,)* modN = (m," mod N)(m," mod N)

=E, (m,) x E, (m,)
where m,,m, € M. Hergorithm Mult can easily be
implemented as MUlt(E ) (m,), E, (m,)) = E, (m)x E, (m,).

Usually in the RSA well as in most schemes based on the difficulty of
factoring the wm ameter is the bit length of N.For instance 1024 is a

common eter.

2.The -Micali scheme, proposed in [Goldwasser and Micali, 84] isan
am f a probabilistic, additively homomorphic cryptosystem on

M=(Z12Z, +) with C=Z=(ZINZ) where N =pgis the

uct of two large primes.
N=pq,ae(ZINZ) :(“]:(“J:_l .
p q

Wehave
K= {(ke'kd) = ((N,a),(p,q))
since this scheme is probabilistic, the encryption algorithm gets as additional
input arandom value r € Z. We define £, (m,r) = a"r’ modN and

Dy, 1, (€)= {

0, if cisasquare
1 otherwise
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It holds that
E, (my,n)x E, (my,r,) = E; (my+my,nr,).

Thus the algorithm Add can be efficiently implemented e.g. as

Add (Eke (ml’rl)’Eke (my,1,),13) = E, (ml’rl)XEkL, (my,r,)x ry mod N
= Eke (my, 1) Eke (my,r,) X Eke (0,73)
:Eke (my +my,ryryrs)

where m,,m, e M and r,,r,,r, € Z .

Note that as already mentioned this al gorithm should be probab|l \o

obtains arandom number 7; as additional input.

(M ,+,X) can be
two algorithms Add and
m, i.e., it is additively
" Such schemes are called

A public-key homomorphic encryption scheme on a (
defined in an analogous way. Such schemes consi
Mult for the homomorphic property instead of
and multiplicatively homomorphic at the sam
algebraically homomorphic.

A lot of such homomorphic schemes h
used in many applications. As it will

been published that have been widely
er discussed, no convincing algebraic

homomorphic encryption schem found yet, and their design remains an
open problem.

Less formally, these defipitio ean that, for a fixed key k, it is equivalent to
perform operations on th intexts before encryption or on the corresponding
ciphertexts after encrypt' we require a kind of distributivity between encryption

and some data proc ations.
The schem I consider in the next section have to be probabilistic ciphers,

and we may co

0 behave in a probabilistic way.

2.2 Sec ssues

uirement for an encryption scheme is that it must be impossible to
encrypted plaintext for anybody not knowing the decryption key.
, this condition may be too weak - in some applications even partia
information gained from the plaintext could endanger security. This is why we
demand it to be “infeasible to learn anything about the plaintext from the ciphertext”
or, in other words, “whatever an eavesdropper can compute about the cleartext given
the ciphertext, he can also compute without the ciphertext” [Goldwasser and Micali,
84].

Probabilistic encryption was introduced with a clear purpose: security. This
reguires to properly define different security levels. Semantic security was introduced
in [Goldwasser and Micali, 82], at the same time as probabilistic encryption, in order
to define what could be a strong security level, unavailable without probabilistic
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encryption. Roughly, a probabilistic encryption is semantically secure if the
knowledge of a ciphertext does not provide any useful information on the plaintext to
some hypothetical adversary having only a reasonably restricted computational
power. More formally, for any function f and any plaintext m, and with only
polynomial resources (that is, with agorithms which time/space complexities vary as
a polynomial function of the size of the inputs), the probability to guess f (m)
(knowing f but not m) does not increase if the adversary knows a ciphertext
corresponding to m. This might be thought of as akind of perfect secrecy in the case
when we only have polynomial resources.

Together with this strong requirement, the notion of polynomial security was
defined: if no passive adversary can, in expected polynomial time, select two text

messages m, and m, and then correctly distinguish between encry and

m, with probability significantly greater than %%, thus the encryptien is“said to be

polynomially secure. Polynomial security is now known as th& indi ishability of
encryptions following the terminology and definitions of [ Gal ﬁr

Quite amazingly, [Goldwasser and Micali, 82] prov:
polynomial security and semantic security; [Goldreich
preserving the equivalence. With this equivalencg, i
deterministic asymmetric encryption scheme cann antically secure since it
cannot be indistinguishable: the adversary knows theyencryption function, and thus
can compute the single ciphertext correspon to each plaintext.

But with asymmetric encryption sc the adversary knows the whole
encryption material E involving both @ ion function and the encryption key.

m)
t

valence between
] ded these notions
is easy to state that a

Thus, he can compute any pair (i, If we relying on the different contexts,
from the weakest to the strongest he chosen-plaintext, nonadaptive chosen
ciphertext and the strongest is ive chosen ciphertext. This leads to the IND-
CPA, IND-CCA1, and |N@2 notions in the literature. IND stands for
i ndi stinguishability wher and CCA are acronyms for chosen plaintext attack
and chosen-ciphertext nally, CCA1 refers to nonadaptive attacks, and CCA2
to adaptive ones [Fonrtaine'and Galand, 07].

Consi dering@ fous remarks on the ability for anyone to encrypt while using
asymmetric he adversary has always the chosen-plaintext ability.

Another@ty requirement termed nonmalleability has also been introduced to
col the ysis. Given a ciphertext ¢ = E(m), it should be hard for an opponent

ciphertext ¢’ such that the corresponding plaintextm', that is not
nec nown to the opponent, has some known relation with m [Dolev et a, 00].
Basically, the adaptive chosen ciphertext indistinguishability IND-CCA?2 is the
strongest requirement for an encryption; in particular, it implies nonmalleability.

It should be emphasized that a homomorphic encryption cannot have the
nonmalleability property. With the notation of Section 2, knowing ¢, we can compute

¢'=coc Cand deduce, by the homomorphic property, that c'is a ciphertext

ofm' =m °y ™M . According to the previous remark on adaptive chosen-ciphertext
indistinguishability, a homomorphic encryption has no access to the strongest security
requirement. The highest security level it can reach is IND-CPA.
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We now point out some security considerations about deterministic homomorphic
encryption. First, it was proved that a deterministic homomorphic encryption for
which the operation ° isasimple addition is insecure [Fontaine and Galand, 07].

Second, [Boneh and Lipton, 96] showed that any deterministic algebraically
homomorphic cryptosystem can be broken in subexponential time. We note that this
last point does not mean that deterministic algebraically homomorphic cryptosystems
are insecure, but that one can find the plaintext from a ciphertext in a subexponential
time (which is till too long to be practicable). For example, we know that the security
of RSA encryption depends on factorization al gorithms and we know subexponential
factorization agorithm. Nevertheless, RSA s still considered strong enough [Idowu
et a, 05].

3 Current Trendsin Homomor phic Encryption \
[

First, we recall that both RSA and ElIGamal encryption schel %er ultiplicatively
homomorphic. The problem is that the origina RSA beir:% Inistic, it cannot
achieve a security level of IND-CPA (which is theyhighest security level for
homomorphic schemes).

Furthermore its probabilistic variants, obtain gh Optimal Asymmetric
Encryption Padding, OAEP/OAEP+, are nosmore ho orphic. In contrast to RSA,
ElGamal offers the best security level for a homgomorphic encryption scheme, asit has
been shown to be IND-CPA. Moreover, it eresting to notice that an additively
homomorphic variant of ElIGamal has peen proposed. Comparing it with the
original ElGamal, this variant aso in ‘9’:» an element G (G may be equa to g) that

generates (Zq’+) with respect addition operation. To send an encrypted

version of the message m to Alice, Bob picks at random k e Zq and computes
lene) = (g",G"yY).
al
m

To get bac r%(t, Alice computes €2 (¢ )™, which is equa to G™;
then, she hasto in asecond step. Note that thislast decryption step is hard
to achieve at e is no other choice for Alice than to use brute force search to

get b f G" . Itisalso well known that ElGamal’s construction works for any
s for which the discrete logarithm problem is considered intractable.
For le, it may be derived in the setup employing elliptic curves. Hence,
ElGamal"and its variants are known to be realy interesting candidates for redlistic
homomorphic encryption schemes.

We will now describe another important family of homomorphic encryption
schemes, ranging from the first probabilistic system proposed by [Goldwasser and
Micali, 82], to the famous Paillier's encryption scheme [Paillier, 99] and its
improvements. Paillier’s scheme and its variants are famous for their efficiency, but
also because, as ElGamal, they achieve the highest security level for homomorphic
encryption schemes.
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31 Goldwasser-Micali (GM) Scheme

Prerequisite:

Alice computed a (public, private) key: she first chose n = pgq, p and ¢ being large
prime numbers and g a quadratic nonresidue modulo » whose Jacobi symbol is 1; her
public key is composed of » and g, and her private key is the factorization of ».

Goal.
Anyone can send an encrypted message to Alice.

Principle:

To encrypt abit 5, Bob picks a random an integer” € Z,, , and compx/\e

c=g"r*modn
(where ¢ isaquadratic residue if and only if b = 0). To get bagck to t@ntext, Alice
determines if ¢ is a quadratic residue or not. To do so, she use& perty that the

Jacobi symbol (c/p) is equal to (—1)” &,

Note that the scheme encrypts 1 bit of information, whifig,its output is usually 1024
bitslong! (b

Security:

This scheme was the first system based uporrthe concept of probabilistic encryption
and furthermore the first system proven % Semantically secure (assuming the

intractability of the quadratic residuosi otem).
It is, nevertheless, not a practic& e since in general, one plaintext-bit is

expanded into n bits of ciphertext.

32 Damgard-Jurik Sch

We now give an en
homomorphic crypt

Jurik, 03]. The %

Key generat@
ho an RSA modulus N = pg=(2p'+1)(2¢' +1)with primes

v 4, q
" ect an element g e, where Q, denotes the group of al squares in

(ZINz)*.Choose ¢ e Z/7Z, where z=p'q'=|0,|.

= Compute 1= g* mod N.
Thepublickey isa: = (N, g, h) and the secret key is q.

heme which is probabilistic, additively and scalar
It was published by Damgard and Jurik [Damgard and
rks asfollows:

Encryption:
To encrypt a message m, choose an integer s > 0 sothat m e Z/ N*Z, and choose a

random » e Z /nZ, where n=4"%" The ciphertextis
E,(m,r)=(g" modN,(h" mod N)" (N +1)" mod N**") = (G, H).
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Let 7 denote afunction with
L ((N+D)" modN*")=mmodN".

An agorithm that computes this function, i.e.,, that calculates the discrete logarithm
with respect to the element (N + 1) is described in [Damgard and Jurik, 01].

Decryption:
Given a ciphertext ¢ = (G, H) = E, (m,r),s can be deduced from the length of ¢ or it

is attached to the encryption. Then the message m can be found as
m=L_ (H(G*modN)™")

=L ((g“ mod N)" (N+1)" (g™ mod N) ™) \@
=L (N+2)" mod N°**™). ‘ )

@
Homomorphic Property: }
This scheme is additively homomorphic since givenfg_(#,, d E, (m,,r,)We

can compute

E, (m +m,,r,+r,)=(g"""? mod N, (h*""> mod N% )" "2 mod N **)
=E, (my,n)xE, (m,,

Hence the algorithm Add can efficientl emented by multiplying the input
ciphertexts and applying a blinding al@m

33 Paillier's Scheme

The Paillier scheme [Paillier§ 99]Jis an example of a very efficient, probabilistic,
additively and scalar hoj Ic encryption scheme based on arithmetics in the

ring of integers mod here N is the product of two large primes. It was

ese extensions is the elliptic curve Paillier scheme (ECPS)
ublished by Galbraith, S. [Galbraith, 02]. The ECPS is a
generallzati(@’aillier’ s encryption scheme from the integers modulo a square to
esover rings.

mself tried to generalize his scheme to the elliptic curve setting by using
elliptic curves over rings, but Galbraith found security flaws in this
generaization [Galbraith, 02] whereas the ECPS can be proven semantically secure
relative to a new defined problem. In the same way as Damgard and Jurik managed to
generaize the original Paillier scheme to higher moduli to enable a wider application
scope Galbraith developed a generalization of the elliptic curve Paillier scheme
[Galbraith, 02].

The Paillier scheme, the new elliptic curve version by Galbraith as well as his
further generalization are examples for the probabilistic, additively homomorphic
cryptosystems, which are also scalar homomorphic.

The performances of the ECPS and of its generalization are by far slower than the
original Paillier scheme together with the generalization of Damgard and Jurik since
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they operate on dliptic curves modulo large numbers. Hence, the elliptic curve
version is mainly of theoretical interest.

One interesting point is that the eliptic curve version is based on a dightly
different assumption than Paillier’s original version. This assumption may also hold
even if the original Paillier assumption were broken.

3.3.1 Elliptic Curve Paillier Scheme

We will now summarize the elliptic curve Paillier scheme and its generalization as
illustrated by Galbraith. It is a natural generalization of Paillier's probabilistic,
homomorphic public key cryptosystem [Paillier, 99] to elliptic curves over ri @

Key generation:

To generate akey
* Computeamodulus N = pg asaproduct of two primes p@
= Choose a random elliptic curve E: y°z = x®+ax 24& erZINZ, ie
ged(N,6(4a® + 276%)) = 1. &

Let m Z‘E(FF)HE(E,)‘ be the order of E(Z @en knowledge of M is
h

polynomial-time equivalent to knowlegdge of t torization of N = pg (see

[Galbraith, 02]). Furthermore, if p, g nown then M can be computed in
polynomial time using the Schoof-Atk algorithm (see e.g. [Blake et a,
99)).

= Chooseapoint Q = (x .
|E(ZINZ)| = MN,
0'=(x"1y"12)
Let B:= (N (ZIN?Z).

The public onssts of the modulus N (and hence the pointp,), the

coefficient f the eliptic curve, and the point Q. The secret key is the
order M@ group E(Z |/ NZ).

at mP, =P, =(mN:1:0) for 0<m< N. Since
+N)P,=((m+N)N:1:0)=(mN :1:0) € E(Z| N°Z)
weé can aso define mpP, =P, for meZ/N?Z.This is adso vaid for the
generalizations given in the following sections.

ith ord(Q)|M in E(Z | N?Z). Since we have
his point can be found by taking a random point

?7)and setting O = NQ'".

Encryption:
To encrypt a message m < Z / NZ choose a random integer 1<r» < N and compute

the point C = »Q +mPB, = rQ + P,. The ciphertextisthe point C € E(Z | N*Z).

Decryption:
To decrypt the ciphertext C use the secret key M to compute
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MC =r(MQ)+MP,=P,, =(mMN :1:0).

Given the x-coordinate mMN interpreted in Z we can divide by N to obtain
mM e Z | NZ and then multiply by the inverse of A mod N to recover the message
me Z | NZ. Observethat wehave 7/ NZ = E,(Z | N?Z).

Homomorphic Property:
This scheme is additively homomorphic since given encryptions C, = 50 +m, B, of

my and C, =nQ+m,hH of m, an encryption (C+Cy) = (n+1)0+(m +m,) R of
(m, +m,) can be computed just by adding the ciphertexts ¢, and C, . Hence,
define the algorithm Add as

Add(E(my), E(m,)) = E(m) + E(m,) = E(m,+m,) & ‘ )
Add(E(m,), E(m;)) = E(m) + E(m;) +7'Q = E(m, &

with 1< < N in order to blind the result. Since &age set Q=Z7/NZthe
cryptosystem is also a scalar homomorphic and t thm Mixed-Mult can be
implemented using repeatedly the algorithm Add some blinding algorithm
[Rappe, 04].

or as

3.3.2 Generalization of the Ellipti aillier Scheme

In a similar way as Damgard Damgard and Jurik, 01] have given a
generaization of the origina scheme to make it more interesting for
applications Galbraith generalized the ECPS [Galbraith, 02]. His generalization for

the elliptic curve case will be ted here. The generalization use higher powers of
N and have certain adv can be seen in [Damgard and Jurik, 01]. So, instead
of considering the cighert@ group E(Z/ N*Z)we now consider elliptic curve over
E(Z | N**"z)for his process we have to take care of subtletiesrelating to the
formal group raith, 02].

Key g :

To ey

hoose a modulus N = pq as a product of two primes greater than 3 and

choose s > 0. (Thus the message set will be group Z/ N°*Z.)

= Choose a random elliptic curve E: y°z = x®+axz*+bz° over Z/ NZ, i.e,
ged(N 6(4a’ +27b%)) = 1. Let M =|E(F,)|-|E(F,)|.

* ChooseapointQ = (x: y:z) with ord(Q) | M in E(Z/N**'Z). Thispoint O
can be found by taking a random point Q' =(x":y':z") e E(Z/ N*"*Z) and
settingQ = N°Q'.Notethat |E(Z/ N**'Z)|= MN" .
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Now, let P :=(N:1:w(N))=(N:1:N°+aN' +--)eE(ZIN*"Z). We take
terms in the z-coordinate until the degree is greater than s + 1. It can be shown
that phasorderN*,i.e, N°B=0.

The public key consists of &, s, the coefficients (a, b) of the éliptic curve, and the
point Q. The corresponding secret key isthe order M of the group E(Z/ NZ).

Encryption:
To encrypt a message m < Z / N°Z choose a random integer 1< » < N* and compute
the point C = rQ +mP,. The ciphertextisthe point C e E(Z/ N°**Z). @

Decryption:

To recover the message m € Z /| N*Z compute o ‘ )
MC =r(MQ) + mMP, = mMP, :=m'P, = (m'N +---:1: (yi) )
ti

&ng the result by

observe that owing to
ut induces only the

Then m' € Z | N’ Z can be computed iteratively and after
M ™ mod N we obtain the message asn = m'M ™ modg”’ .
the fact that for s > 2 the map ¢ is not agroup isom%
group isomorphism from

N/(ZIN*Z)I N NZIN°Z) to E ‘Z)I E,(ZI N°Z).

The iteration is as follows. We e m’=z.m,-’Ni in terms of its base-N
representation. Let the point »'B =4 : »: z) be given. The x-coordinate of this point
equalsz_m;Ni~N+~~-=m(’)N‘ml’;\’2+...+..._We can determine the value of my

X

asmy =ﬁmOdN. then subtract m(P,from m' P, to obtain a new
X

point (x: y: z)hr IS point we can recover m,; = FmOdN and the process

isiter,

for s = 1 we obtain the basic elliptic curve Paillier scheme.

Obviously this generalization has the same homomorphic properties as the basic
scheme. This time its semantic security is based on the assumed hardness of the
following assumption, which we call the generalized elliptic curve Paillier
assumption:

Givenapoint Q e £E(Z/ N**Z)of order dividing |£(Z / NZ)| where N isthe product

of two large primes and given arandom point C € E(Z / N**Z) determine whether C
liesin the subgroup generated by Q.
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We would now analyze the important parameters and properties of the above
schemes.

+  We begin with the rather simple scheme of GM [Goldwasser and
Micali, 82]. Besides some historical importance, this scheme had an important impact
on later proposals. Several other schemes, which will be presented below, were
obtained as generalizations of this one. Here, as for RSA, we use computations
modulo n = pq, a product of two large primes. Encryption is simple, with a product
and a sguare, whereas decryption is heavier, with an exponentiation. Nevertheless,

this step can be donein O(I(P)Z) .
Unfortunately, this scheme presents a strong drawback since its input (@sjs of

asingle bit. First, this implies that encrypting £ bits leads to a cost of O(k - Z(P)z) .
Thisis not very efficient even if it is considered as practical. The d cofsequence
concerns the expansion: a single bit of plaintext is encrypted fh modulo n,

that is, I(n) pits, Thus, the expansion is really huge. Thisis§ th in drawback of
this scheme.

Now we present the GM scheme from another/peint of view in order to
understand how it has been generalized.

The basic principle of GM isto partition a well- @ subset of integers modulo

n into two secret parts: My ang M 1. Then ryption selects a random element of

M, 1o encrypt b, and decryption allows
element lies. The core point liesin t

into Mo andM . GM uses gro

group G of invertible integers I
to 1.

The partition is gen@y another groupH cG , composed of the elements
that are invertible mgdulo ith a Jacobi symbol, with respect to a fixed factor of n,
equal to 1; with ings, it is possible to split G into two parts: H and G | H.

in which part the randomly selected
ay to choose the subset, and to partition it

to achieve the following: the subset is the
with a Jacobi symbol, with respect to », equal

The generaliZatfons of GM play with these two groups; they try to find two groups G
ht can be split into more than £ = 2 parts.

enaloh, 88] is a generalization of GM, that enables to manage inputs of
ifS, k being a prime satisfying some particular constraints. Encryption is similar
as in the previous scheme (encrypting a message " € {0k =T means picking an
integer " € Z:, and computing € = & "r* modn ) but decryption is more complex.

The input and output sizes being, respectively, of I(k) and ! (n) bits, the expansion is

equal to I(n)11(k)  Thisis better than in the GM case.
Moreover, the encryption cost is not too high. Nevertheless, the decryption

cost is estimated to be O(ﬁl(k)) for precomputation, and the same for each
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dynamical decryption, i.e. k£ has to be taken quite small, to limits the gain obtained on
the expansion.

+ [Naccache and Stern, 98] is an improvement of Benaloh’s scheme.
Considering a parameter k that can be greater than before, it leads to a smaller
expansion. Note that the constraints on k are slightly different. The encryption step is
precisely the same as in Benaloh’'s scheme, but the decryption is different. To

summarize, the expansion is still equal to I(n)/1 (k) but the decryption cost is
lower: O(/(n)°109(/(n))), and the authors claim it is reasonable to choose the

parameters as to get an expansion equal to 4. @
X i i ecided

+« In order to improve previous schemeﬁ[Okamoto and Uchiyama,

to change the base group G. Considering? = P C[ p and g stil be| two large

primes, and the groqu z p?, they achieve k = p. Thus, %nson isequal to
3. As Paillier's scheme is an improvement of this one % e fully described
below, we will not discuss its description in detail. Its tage lies in the proof that
its security is equivalent to the factorization of n. ely, a chosen-ciphertext
attack has been proposed leading to this factorization. scheme was used to design
the EPOC systems currently submitted for.the supplement P1363a to the IEEE
Standard Specifications for Public-Key Cry y (IEEE P1363). Note that earlier
versions of EPOC were subject to securit due to a bad use of the scheme
[Okamoto et al, 00].

+ One of the most well-k momorphic encryption schemesis
due to [Paillier, 99], and is d ribed earlier. It is an improvement of the previous one
that decreases the expansi to 2. Paillier came back to n = pg, with gcd (1, ¢

(n)) = 1, but consid qu = an , and a proper choice of subgroup H led
himto k =1 (”
ipn c

ost is not too high. Decryption needs one exponentiation

modulo 7 @power A(n), and a multiplication modulo ». Paillier showed in his
age decryption efficiently through the Chinese Remainder Theorem.
xpansion and lower cost compared with the previous ones, this scheme
ractive.
Cramer and Shoup, 02] proposed a general approach to gain security against
adaptive chosen-ciphertext attacks for certain cryptosystems with some particular
algebraic properties. Applying it to Paillier's origina scheme, they proposed a
stronger variant. [Bresson et al., 03] proposed a dightly different version that may be
more accurate for some applications.

isr

+ [Damgard and Jurik, 01] proposed a generalization of Paillier’s

scheme to groups of the form Z,,m with s > 0. The larger the s is, the smaller the
expansion is. Moreover, this scheme leads to a lot of applications. For example, we
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can mention the adaptation of the size of the plaintexts, the use of threshold
cryptography, electronic voting, and so forth.

To encrypt a message” €Z,, | one picks ” € Z, a random and computes
g"r" ez ..

The authors showed that if one can break the scheme for a given value

s = o, then one can break it for s = ¢ — 1. They also show that the semantic security
of this scheme is equivalent to that of Paillier. To summarize, the expansion is of
1+1/s, and hence can be close to 1 if s is sufficiently large.

The ratio of the encryption cost of this scheme over Paillier's be
estimated to be s(s + 1)(s + 2)/6. The same ratio for the decrypti st@als
(s +D)(s + 2)/6.

Note that even if this scheme is better than Paillier's accordiag togits lower
expansion, it remains more costly. Moreover, if we want tg enc@yr decrypt &

blocks of (1) bits, running Paillier's scheme £ times is,| stly than running
Damgard-Jurik’ s scheme once.

KD

+ [Galbraith, 02] proposed an adaptation of th schemein

the context of elliptic curves. Its expansion is equa%( e ratio of the encryption
(respectively, decryption) cost of this scheme in the s = 1 over Paillier's can be
estimated to be about 7 (respectively, 14). in contrast to the previous scheme, the
larger the s is, the more the cost may decr reover, as in the case of Damgard-
Jurik’ s scheme, the higher the s is, the i

+ [Castagnos, 07] explored;anot mprovement direction considering

quadratic fields quotients. W, e the same kind of structure regarding n'as
before, but in another context! mmarize, the expansion is 3 and the ratio of the
encryption/decryption ¢ his scheme in the case s = 1 over Paillier's can be
estimated to be abou

step).

computations of Legendre symbols for the decryption

,&/ould mention the ElGamal-Paillier amalgam, as proposed by

eir drawbacks. Preserving the notation of both EIGama and Paillier
e will describe the encryption in the particular case s = 1, which leads

Damgard-Jurik’s variant to the original Paillier. To encrypt a message " € Z,,, Bob
picks at random an integer &, and computes

(cy,¢,) = (g* modn,(L+n)" (y* modn)” modn?)
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4 Conclusions

We observe that Paillier scheme is aways better than Damgard-Jurik because the
latter is aways slow and as s increases; it gets worse, much worse. It aso has
complicated discrete logarithm function.

Although, there is no surprise that RSA is the overal fastest, but Paillier scheme
fastest probabilistic homomorphic scheme is faster than RSA in decryption because of
finding r. Thus, since Paillier is faster with the same advantages, it is a much better
choice.

As we saw, these schemes are not well suited for every use, and their
characteristics must be taken into account. Nowadays, such schemes are in

wide application contexts, but the research is still chalenging in th hic
community to design more powerful/ secure schemes.
r

Since homomorphic cryptosystems present a promising n irection for
research, we would like to mention a few research directions andch es.

First, it is important to have different kinds of schem % of applications
and security purposes. One direction to design homomo emes that are not
directly related to the same mathematical problems ElGamal or Paillier (and
variants) is to consider the recent papers dealing mith il pairing [Boneh and
Franklin, 01]. As this new direction is more and %romising in the design of
articularcase of homomorphic ciphers
in the Well pairing setup as the
to manage. One more promising
proposed by [Boneh and Franklin, 01]

asymmetric schemes, the investigation in t
is of interest. EIGama may not be directl
mathematical problem it is based on beco
direction is the use of the pairing-b:

eme.

to obtain a secure homomorphic IR,
A second interesting researc! ion lies in the area of symmetric encryption.

As al the homomorphic encr, hemes we mentioned so far are asymmetric,

they are not as fast as symmet could be. But, homomorphy is easier to manage
when mathematical op e involved in the encryption process, which is not
usually the case in schemeﬁ Very few symmetric homomorphic schemes

have been pro 51 of them being broken [Fontaine and Galand, 07].

As per alg% omorphy, designing algebraically homomorphic encryption
schemes i |s enge today. No satisfactory solution has been proposed so far,
d Lipton, 96] conjectured that any algebraically homomorphic

would prove to be insecure; the question of their existence and design is
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