
A SWEBOK-based Viewpoint of the Web Engineering
Discipline

Antonio Navarro
(Universidad Complutense de Madrid, Madrid, Spain

anavarro@sip.ucm.es)

Abstract: Despite web engineering being an emerging discipline, there is currently an
important array of literature on this subject. The aim of this paper is to provide a software
engineering-based view of the web engineering discipline reviewing and classifying a
significant part of the software engineering-related literature that makes up its body of
knowledge. In order to facilitate the classification of this software engineering literature, this
paper categorizes it into knowledge areas, providing a brief analysis of each area. These
knowledge areas match the knowledge areas defined in the Guide to the Software Engineering
Body of Knowledge (SWEBOK). As an immediate consequence of this paper, a comparison
between software engineering and web engineering disciplines arises.

Keywords: Design, Management, Measurement, Web Engineering, Software Engineering
Body of Knowledge, Web Engineering Body of Knowledge
Category: D.2

1 Introduction

Web engineering is an emerging discipline that appeared as a result of the importance
that the development of web applications has acquired in the last few years [Kappel,
04]. Murugesan et al. [Murugesan, 01b] define this discipline as: “the application of a
systematic, disciplined, quantifiable approach to the development, operation, and
maintenance of web-based applications or the application of engineering to web-
based software” [Deshpande, 01; Deshpande, 02]. Thus, this definition of web
engineering is very similar to the definition of software engineering provided by the
IEEE Std. 610.12-1990: “the application of a systematic, disciplined, quantifiable
approach to the development, operation and maintenance of software” [IEEE, 90].

At present, there is a significant amount of literature on web engineering. As web
engineering is made up of different disciplines [Barta, 98; Deshpande, 02; Gellersen,
97; Ginige, 01; Murugesan, 01b; White, 96], this literature can be classified according
to the different components that make up the web engineering discipline. For
example, Ginige and Murugesan [Ginige, 01] identify the following disciplines as
constituents of the web engineering discipline: systems analysis and design, software
engineering, hypermedia and hypertext engineering, requirements engineering,
human-computer interaction, user interface development, information engineering,
information indexing and retrieval, testing modeling and simulation, project
management and graphic design and presentation.

In order to determine the influence of each constituent discipline, this paper
classifies more than seven hundred papers published in the International Journal of

Journal of Universal Computer Science, vol. 15, no. 17 (2009), 3169-3200
submitted: 4/6/09, accepted: 2/9/09, appeared: 1/11/09 © J.UCS

Web Engineering and Technology, the Journal of Web Engineering, the International
Conference on Web Engineering, and the Web Engineering Tracks of the World Wide
Web Conference.

As software engineering seems to be one of the most important constituents of
web engineering, this paper provides a classification of part of software engineering-
related web engineering literature according to several software engineering
knowledge areas. For this classification, web engineering literature outside of the
software engineering discipline (e.g. information systems literature) was not
considered. Thus, this paper provides a partial vision of the web engineering
discipline because it does not analyze the web engineering papers not related to the
software engineering discipline. The knowledge areas used to make the classification
match the knowledge areas presented in the Guide to the Software Engineering Body
of Knowledge (SWEBOK) [Abran et al. 2004]. This approach follows the trend
proposed by Kappel et al., who suggest the classification of the web engineering
discipline according SWEBOK’s knowledge areas [Kappel, 04].

The Guide to the SWEBOK is an IEEE-led project that provides an explicit
characterization of the boundaries of software engineering [Abran, 04]. Although the
SWEBOK is not unanimously recognized as an unquestionable body of knowledge in
software engineering [ACM, 00; Saiedian, 02], in practice, it has encountered
reasonable acceptance [Callahan, 02; Carrington, 05].

The SWEBOK body of knowledge is subdivided into ten software engineering
knowledge areas plus an additional chapter that provides an overview of the
knowledge areas of closely related disciplines. The descriptions of knowledge areas
are designed to discriminate between the various important concepts, thereby
allowing readers to find their way to subjects of interest quickly. SWEBOK
knowledge areas are: software requirements, software design, software construction,
software testing, software maintenance, software configuration management, software
engineering management, software engineering process, software engineering tools
and methods, software quality and related disciplines.

The objectives of the Guide to the SWEBOK are: (i) to promote a consistent view
of software engineering worldwide; (ii) to clarify the place (and set the boundaries) of
software engineering in relation to other disciplines; (iii) to characterize the contents
of the software engineering discipline; and (iv) to provide a foundation for curriculum
development and for individual certification and licensing material.

The objectives of this paper for the web engineering discipline are not as
ambitious as the objectives of the Guide to the SWEBOK for the software engineering
discipline, but to some extent, this paper can help to achieve them.

This paper aims to provide a software engineering-based view of part of the web
engineering discipline through a set of commented references. Thus, in this paper a
person with a background in software engineering can find a guide to a significant
part of the web engineering body of knowledge in the context of a software
engineering body of knowledge. To obtain an in-depth view of any area, the
references specified in the area should be analyzed. To obtain a view midway
between the descriptions provided by this paper, and the analysis of a complete
knowledge area, valuable books about web engineering discipline can be analyzed
[Casteleyn, 09; Kappel, 06; Mendes, 05; Murugesan, 01a; Rossi, 07; Suh, 05]. The
main advantage of this paper over these books is its size. These contain hundreds of

3170 Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

pages on the web engineering discipline. On the other hand, this paper provides a
software engineering-oriented view of the web engineering discipline in just a few
pages. However, the main drawback of this paper in comparison to these books is the
less in-depth analysis provided for each knowledge area (although, this paper includes
a great amount of references per area). In addition, these books cover some topics
beyond software engineering discipline, although, in our opinion, they are also
strongly focused on software engineering topics.

Considering the different disciplines that make up the web engineering discipline,
and according to Ginige, Murugesan and Pressman [Ginige, 01; Pressman, 04], web
engineering can be considered as a new emerging discipline in its own right, rather
than subsumed under software engineering. Following this trend, different authors
[Kappel, 04; Navarro, 05] suggest that it would be interesting to analyze the need for
developing a Web Engineering Body of Knowledge (WEBOK), inspired by
SWEBOK, but taking those disciplines not included in software engineering. In spite
of our previous position [Navarro, 05], this paper does not attempt to state whether
web engineering material should be subsumed under bodies of knowledge of every
constituent discipline (e.g. the Guide to the SWEBOK in software engineering
discipline) or a new guide to the web engineering body of knowledge, encompassing
the different disciplines of which it is formed, should be developed. This is a
significant decision for the web engineering discipline that must be made in the
context of an international committee of researchers rather than by an individual. In
any case, this paper could be one of the items that could help to make such a decision.

Thus, if a new web engineering body of knowledge is developed, as long as this
body of knowledge includes software engineering knowledge areas, the knowledge
areas presented in the Guide to the SWEBOK could be updated and/or removed. On
the other hand, if the web engineering references are subsumed in existing bodies of
knowledge of every discipline, as long as the Guide to the SWEBOK can subsume the
software engineering references of the web engineering discipline, new knowledge
areas or topics could appear in this Guide to the SWEBOK. This paper follows a
policy of neutrality and the knowledge areas presented in the Guide to the SWEBOK
remain unchanged. Therefore, the web engineering literature more closely related to
software engineering is classified according to the taxonomy induced by the
SWEBOK.

In addition, as the software engineering discipline is a mature discipline
compared to web engineering discipline, the references used in the Guide to the
SWEBOK are mainly books and these references represent “generally accepted
research” [Abran, 04]. On the other hand, this paper includes several works regarding
key issues in web engineering, and at present, some of them are still not considered
generally accepted research. The selection criterion for the references included in this
paper has been kept as simple as possible: (i) where possible, books have been chosen
instead of journal papers. These books are flagship references in their area (e.g. [Alur,
03]), or they represent the latest state of the art in some technology (e.g. [Burke, 06]);
(ii) where possible, journal papers have been chosen instead of conference papers.
These papers have been selected by their suitability to the knowledge area (e.g.
[Lowe, 03]) or because their authors are outstanding figures in their area (e.g.
[Mendes, 01]); (iii) where no other references were available, conference papers were

3171Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

chosen. The selection criterion for these papers is the same as the criterion for journal
papers.

Thus, after providing a classification of the references, the following sections
analyze different SWEBOK knowledge areas. Each section briefly discusses the main
concepts of the selected area and provides some representative references in the
discipline of web engineering. As in the Guide to the SWEBOK, the references of
each knowledge area are classified according to their nature [Abran, 04]:
recommended references, list of further readings and list of standards. Likewise in the
Guide to the SWEBOK, quotes in square brackets “[]” ranging from section 3 to
section 7 identify recommended references, while those in parentheses “()” identify
the usual references used to write or justify the text1 [Abran, 04]. In the case of
recommended references, as far as possible, their main contribution to the web
engineering domain is made explicit. In addition, as in the case of the SWEBOK, they
are listed in matrixes of knowledge areas vs. referenced material [Abran, 04]
highlighting their contribution to every knowledge area. Regarding references outside
of the list of recommended references, as in the SWEBOK, they are only used as
support material [Abran, 04]. Finally, the conclusions are presented.

The work carried out in the development of this paper, and the opinions expressed
in it (except those extracted from the referenced material), are the result of the effort
of one individual. Therefore, neither IEEE, nor any other entity involved in the
development of the SWEBOK, has been involved in the development of this paper.

2 Classification of References

This section classifies more than seven hundred papers published in the International
Journal of Web Engineering and Technology (up to vol. 5, no.3) [IJWET, 09], the
Journal of Web Engineering (up to vol. 8, no.4) [JWE, 09], the International
Conference on Web Engineering (up to ICWE 2009) [ICWE, 2009], and the Web
Engineering Tracks of the World Wide Web Conference (up to WWW 2009) [WWW,
2009].

The following categories were used to classify the references: accessibility,
agents, document and text processing, e-commerce, e-learning, hypermedia and
hypertext, human-computer interaction, information systems, programming
languages, semantic web, software engineering, web engineering fundamentals,
security, and others. These categories were selected according to the disciplines
pointed out by [Deshpande, 02; Ginige, 01; Murugesan, 01b] as well as the topics
identified in the analyzed conferences and journals. In this paper, these categories are
considered as the constituent disciplines of the web engineering discipline.

Initially, in order to simplify this categorization, only one discipline was chosen
as the key indexing discipline. Full papers, short papers, posters and keynotes were
considered. In addition, because the categorization mechanisms used in these
conferences and journals were not homogeneous, such mechanisms were unified
during the categorization made in this paper. Thus, it is possible that a set of papers

1 In the remaining sections (i.e. Introduction and Conclusions) the regular reference format of this

journal is used.

3172 Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

included in a topic at a conference, may be split into different disciplines during the
analysis.

As a result of this classification, software engineering (including analysis and
design, requirements, testing and project management) seems to be one of the most
relevant constituents of the web engineering discipline. Thus, almost 39% of the
published papers were about software engineering topics. Information systems
(including indexing and retrieval) were identified as another important constituent of
the web engineering discipline. Thus, almost 14% of the published papers were about
information systems topics. The percentage of papers about the remaining constituent
disciplines range from 1% on programming languages to 10% on semantic web.
Finally, almost 11% of the analyzed papers were not classified into any specific
discipline.

Discipline Number of papers

(percentage) considering one
main indexing discipline

Number of papers
(percentage*) considering

up to three indexing
disciplines

Software
Engineering

279 (38.9%) 329 (45.8%)

Information
Systems

98 (13.6%) 211 (29.4%)

Semantic
web

68 (9.5%) 82 (11.4%)

HCI 31 (4.3%) 52 (7.2%)
Document
and text
processing

29 (4.0%) 64 (8.9%)

e-learning 29 (4.0%) 31 (4.3%)
Agents 22 (3.1%) 28 (3.9%)
Hypermedia
and hypertext

20 (2.8%) 33 (4.6%)

e-commerce 16 (2.2%) 21 (2.9%)
Security 16 (2.2%) 24 (3.3%)
Accessibility 13 (1.8%) 22 (3.1%)
Web
engineering
fundamentals

9 (1.3%) 9 (1.3%)

Programming
languages

6 (0.8%) 10 (1.4%)

Others 82 (11.4%) 82 (11.4%)
TOTAL 718 (100%) n/a

*percentage on 718 papers

Table I: Number of papers per constituent discipline of web engineering.

The previous analysis does not attempt to make an exhaustive classification and
indexing of web engineering literature. The analysis does not aim to make a precise

3173Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

ranking of importance of constituent disciplines of web engineering either. Its
principal aim is to obtain an approximated view of the importance of every
constituent discipline in web engineering. Thus, the analysis clearly indicates that
software engineering is a very important part of the web engineering discipline. In
addition, the analysis indicates that information systems are another important
discipline in web engineering. But of course, these are not the only constituent
disciplines in web engineering.

Secondly, a new categorization was made taking into account up to three different
classification disciplines. With this new classification, the number of papers of every
discipline was increased, but the overall impact of every discipline remained, up to
some extent, very similar. Thus, Table I (second column) depicts the number of
papers classified under the constituent disciplines, considering one main indexing
discipline, and two additional indexing disciplines. Note that the discipline of
information systems presents a bigger increase because almost 60 papers about web
services that were classified under other main disciplines (agents, e-commerce, e-
learning, document and text processing, software engineering and semantic web) have
been classified under the information systems discipline after considering it as an
additional classification discipline.

Following sections analyze web engineering references in terms of SWEBOK
knowledge areas.

3 Software Requirements

The Software Requirements Knowledge Area is concerned with the elicitation,
analysis, specification and validation of software requirements. Of the web
engineering papers classified under software engineering discipline, 6.81% of these
papers were related to software requirements.

The Guide to the SWEBOK identifies seven sub-areas in software requirements:
sw. requirements fundamentals, requirements process, requirements elicitation,
requirements analysis, requirements specification, requirements validation and
practical considerations.

Although requirements may appear to be the same conceptual element and
independent of the software domain, according to Escalona and Koch [Escalona 04]
some types of requirements differ between software and web engineering. These
differences arise due to the special characteristics of the web applications: the
presence of different kinds of stakeholders, and the significance of navigational
structure, user interface and navigation capabilities in these applications [Escalona
04]. The following sections analyze them.

3.1 Software Requirements Fundamentals

At its most basic, a software requirement is a property which must be exhibited in
order to solve some problem in the real world. Software requirements fundamentals is
focused on the basis of software requirements: definition of a software requirement,
product and process requirements, functional and non-functional requirements,
emerging properties, quantifiable requirements and system and software
requirements.

3174 Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

This sub-area does not greatly differ between software engineering and web
engineering. However, Lowe [Lowe 03] identifies several characteristics of web
systems that interfere with different knowledge areas, including software
requirements: sophisticated business architecture, distributed nature, visibility of web
systems to external stakeholders, uncertainty in the project domain, volatility of
customer needs and available technology, short time frames for initial delivery, highly
competitiveness, fine-grained evolution and maintenance, increased emphasis on user
interface, increased emphasis on quality attributes, open modularized architecture and
highly variable customer understanding of the situation.

Moreover, Escalona and Koch [Escalona 04] identify several requirements
classified as classic functional and non-functional requirements. Thus, functional
requirements are classified as: data requirements, user interface requirements,
navigational requirements, personalization requirements and transactional
requirements.

3.2 Requirements Process

The requirements process structures the mechanisms to obtain the software
requirements. This sub-area is focused on the requirements process itself: process
models, process actors, process support and management and process quality and
improvement.

Although, the requirements process in web engineering does not differ greatly
from software engineering, there are several differences between both disciplines. The
main difference is that requirements process models consider the finer-grained
classification of requirements that appear in the development of web applications (e.g.
navigation) [Escalona 04]. In addition, because web applications are used by the
general public, anonymous transient users can be considered as process actors.

In web engineering discipline, the presence of the requirements process varies
slightly from one approach to another. For example in the UML-Based Web
Engineering approach (Hennicker 01), the requirements process is included in the
whole approach. In Plumbing (Navarro 04), the cycle for conceptualization and
prototyping is one stage of the process model. In e-Prototyping (Bleek 04) frequent
releases of software versions based on short development cycles that help to identify
requirements are built. Finally, in Design-driven Requirements Elicitation (Lowe 02)
the requirements process is conceived as a part of the design stage. Therefore, in web
engineering discipline, there is no a clear consensus regarding to the requirements
process.

3.3 Requirements Analysis

Requirements analysis is concerned with the process of analyzing requirements to
detect and resolve conflicts between requirements, discover the software boundaries,
and elaborate systems requirements to derive software requirements. This sub-area is
focused on: requirements classification, conceptual modeling, architectural design and
requirements allocation and requirements negotiation.

Regarding requirements analysis, conceptual modeling is one of the most active
research areas. In web engineering classic notations intended to characterize

3175Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

conceptual models (e.g. UML (omg 09)) have been enriched with specific notations
that take into account the three dimensions of a web application (Fraternali 99):

• Conceptual structure of the contents and their semantic relationships.
• Navigation throughout the application content.
• Presentation of content and navigation to the user.
In this paper, these notations are analyzed in section 4.5 (software design

notations). In any case, Barry (Barry 01) states that new techniques that capture
requirements and integrate them within a systems development framework are
needed. On the contrary, (Conallen 02) and (Eeles 02) use UML-Web Architecture
Extension to deal with requirements analysis stage. Therefore, as in the previous
section, there is no a clear consensus about the requirements capture.

3.4 Remaining Sub-areas

We have not found specific references on the rest of the sub-areas (requirements
elicitation, requirements specification, requirements validation and practical
considerations) beyond [Escalona 04], which mainly compiles classic techniques.
However, it is important to point out that according to Escalona and Koch [Escalona
04] more research is needed in this direction. For example, requirements elicitation
and practical considerations should take into account that due to the presence of
transient anonymous users, several requisites may not be apparent until after the web
application is deployed, and may evolve rapidly if the web application is popular.

3.5 Software Requirements. Matrix of Knowledge Area vs. Reference
Material

 [Escalona 04] [Lowe 03]
Software Requirements Fundamentals * *
Requirements Process *
Requirements Elicitation *
Requirements Specification *
Requirements Validation *
Practical Considerations *

3.6 Recommended References for Software Requirements

[Escalona 04] Escalona, M.J., Koch, N. (2004) Requirements Engineering for Web
Applications - A Comparative Study. Journal of Web Engineering, 2, 193-212.

[Lowe 03] Lowe, D. (2003) Web system requirements: an overview. Requirements
Engineering, 8, 102-113

3.7 List of Further Readings

(Barry 01) Barry, C., Lang. M. (2001) A Survey of Multimedia and Web Development
Techniques and Methodology Usage. IEEE MultiMedia, 8, 52-60.

(Bleek 04) Bleek, W.-G., Jeenicke, M., Klischewski, R. (2004) e-Prototyping: Iterative
Analysis of Web User Requirements. Journal of Web Engineering, 3, 77-94.

(Conallen 02) Conallen, J. (2002) Building Web Applications with UML. Second Edition.
Addison-Wesley Object Technology Series, Boston, MA.

3176 Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

(Eeles 02) Eeles P., Houston K., Kozaczynski, W. (2002) Building J2EE Applications with the
Rational Unified Process. The Addison-Wesley Object Technology Series, Boston,
MA.

(Fraternali 99) Fraternali, P. (1999) Tools and Approaches for Developing Data-Intensive Web
Applications: A Survey. Section 2.2. ACM Computing Surveys, 31, 227-263.

(Hennicker 01) Hennicker, R., Koch, N. (2001) Systematic Design of Web Applications with
UML. In Siau, K. and Halpin, T.A. (eds). Unified Modeling Language: Systems
Analysis, Design and Development Issues. Idea Group, Hershey, PA.

(Lowe 02) Lowe, D., Eklund, J. (2002) Client Needs and the Design Process in Web Projects.
Journal of Web Engineering, 1, 23-36.

(Navarro 04) Navarro, A., Fernández-Manjón, B., Fernández-Valmayor, A., Sierra, J.L. (2004)
The PlumbingXJ Approach for Fast Prototyping of Web Applications. Journal of
Digital Information, 5, http://jodi.tamu.edu/Articles/v05/i02/Navarro/

(omg 09) Object Management Group (2009) Unified Modeling Language 2.2,
http://www.omg.org/spec/UML/2.2/Software design

4 Software Design

Design is defined in the IEEE Std. 610.12-1990 (ieee 90) as both the process of
defining the architecture, components, interfaces, and other characteristics of a system
or component as well as the result of that process. Of the web engineering papers
classified under software engineering discipline, 57% of these papers were related to
software design.

The SWEBOK Guide identifies six sub-areas in software design: software design
fundamentals, key issues in software design, software structure and architecture,
software design quality analysis and evaluation, software design notations, software
design strategies and methods.

4.1 Software Design Fundamentals

The concepts, notions, and terminology introduced in this sub-area form an
underlying basis for understanding the role and scope of software design. This sub-
area focuses on: general design concepts, the context of software design, the software
design process, and enabling techniques.

This sub-area does not greatly differ between software engineering and web
engineering (the main differences are derived from the characteristics of web
applications depicted in section 3.1 -software requirements fundamentals-). Therefore,
we have not found specific references in the web engineering discipline.

In any case, in web engineering, unlike general purpose software applications, it
is possible to find web applications without business logic, which could be named
websites [Conallen 02][Shklar 03](Winckler 03). These websites can be developed by
people without computer science skills using visual editors (see section 7.1 -software
engineering tools-). Obviously, these websites are out of the scope of most of the
software engineering and web engineering design techniques.

4.2 Key Issues in Software Design

A number of key issues must be dealt with when designing software. In particular,
this sub-area focuses on concurrency, control and handling of events, distribution of

3177Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

components, error and exception handling and fault tolerance, interaction and
presentation, and data persistence. These topics take on a special relevance in web
engineering discipline, since these applications exhibit the characteristics enumerated
in section 3.1 (software requirements fundamentals).

Concurrency focuses on how to decompose the software into processes, tasks and
threads and how to deal with related efficiency, atomicity, synchronization, and
scheduling issues. This is a key issue in web engineering because web applications
are inherently concurrent. To guarantee the correct execution of concurrent code in
business tier, the presence of stateless objects can be the easiest solution [Alur 03].
Regarding integration and data tier some type of data locking should be used to
guarantee the data consistence. This locking can be imposed over the data tier (e.g.
relational databases locking [Fowler 02]), or using object-oriented covers [Fowler
02](Keith 06). In any case, the database concept of transaction becomes very
important in web engineering applications (Bernstein 97)(Little 04). In addition, in
web engineering, designs have to take into account those problems derived from the
unpredictable rise in the number of users in the applications, as a result, for example,
of a slashdot phenomenon (WikiPedia 09) or a Denial of Service (DOS)/Distributed
DOS (DDOS) attack [Steel 06].

Control and handling of events focuses on how to organize data and control flow
and how to handle reactive and temporal events. If an anchor is considered as any
device able to start an HTTP request [Shklar 03] (e.g. an HTML anchor or a submit
button of a web form), in web engineering there is a key event produced in the
presentation tier that must be handled: the anchor selection. In static applications, the
anchor selection is equivalent to the request of content to a web server [Shklar 03]. If
some computational process is attached to this anchor on the client side (e.g. using
JavaScript (Flanagan 06)), the response to the anchor selection can include any
computational behavior. In the same way, any computational process can be invoked
on the server side using server-side technologies that provide support to the business
tier elements (e.g. Java servlets (Hall 03)). Because HTTP is a stateless protocol
[Shklar 03], these technologies use the concept of user session [Conallen 02] to keep
the user case state when clients are browsing. In addition, in web applications, the
control flow is enhanced with the routing of client requests [Shklar 03] through the
components of the web application (static and/or dynamic [Conallen 02]).

Distribution of components focuses on how to distribute the software throughout
the hardware, how the components communicate and how middleware can be used to
deal with heterogeneous software. The distribution of components has found one of
its most important fields of application in web development. Thus, the design of well-
defined architectures where every component has specific responsibilities assigned is
paramount in the design of web architectures [Alur 03][Fowler 02][Steel 06]. Finally,
in recent years, the concept of web service [Skonnard 02] has been one of the most
widely used terms in the web community. Web services dramatically enhance
software reusability using new communication methods [Newcomer 02]. In addition,
web services can be considered as a way of implementing a Service-Oriented
Architecture (SOA) (Erl 05)[Mahmud 05].

Error and exception handling and fault tolerance focus on how to prevent and
tolerate faults and deal with exceptional conditions. This topic affects every tier of a
web application. In web engineering this topic is more complicated than in software

3178 Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

engineering due to the networked nature of the applications (Schmidt 00)[Steel 06]. In
addition, in web applications and SOA applications, exception handling is affected by
privacy, security, and dynamic integration (Erl 05).

Interaction and presentation focus on how to structure and organize the
interactions with users and the presentation of information. This topic mainly affects
the presentation tier (Navarro 08), and it is a key issue in web engineering, which has
common boundaries with other areas such as Human Computer Interaction
(McCracken 03). Presentation is so important in web engineering that design
notations explicitly take it into account as is described in section 4.5 (software design
notations). In addition, usability becomes a key issue in web applications (Nielsen
06). Recently, the classic interaction pattern between browsers and servers [Shklar 03]
has been enhanced with the AJAX approach, which enables asynchronous
communication with the server (Asleson 05).

Finally, data persistence focuses on how long-lived data must be handled. In web
engineering, data presented to the user can include semantic metadata [Berners-Lee
01] to enhance its retrieval and accuracy. Data persistence, mainly affects the
integration and data tier. Web applications deal with data that are inherently
persistent. In static applications without business logic, the data presented to the user
is in a persistent format that is retrieved by the web server (e.g. HTML (w3c 99) or
XML (w3c 04) format). In dynamic applications, where there is a significant business
logic or dynamic data, the information managed by the web application, generally has
to be stored in a persistent format (e.g. relational databases [Fowler 02] or other type
of object-oriented covers [Fowler 02](Keith 06)). In addition, in contrast to traditional
software application, a new type of persistence appears in web application: the session
persistence. Sessions support different data needed during browsing (remember than
HTTP is a stateless protocol). According to Fowler [Fowler 02] there are three ways
to implement the session state: client session state (e.g. cookies), server session state,
and database session state. Regarding transient data elements, in web applications
these elements can last either throughout one HTTP request, throughout an entire
session, or the lifetime of the software component thread. They can also be scoped to
be available only to the current request execution thread, other threads associated with
the current session, all threads in the server context, or all threads in the entire server
[Alur 03][Conallen 02][Fowler 02].

4.3 Software Structure and Architecture

In its strictest sense, a software architecture is a description of the subsystems and
components of a software system, and the relationships between them. This sub-area
focuses on architectural structures and viewpoints, design patterns and families of
programs and frameworks.

An important source for web patterns [Alur 03], which conforms to
Christodoulou’s tiers (Christodoulou 01), has its root in the J2EE platform (Mukhar
05), although most of these patterns can be used in other platforms. According to this
categorization, web patterns can be classified in terms of the tier in which they are
used:

• Presentation tier patterns, focused on the presentation logic required to
service the clients that access the systems.

3179Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

• Business tier patterns, focused on the business services required by the
application clients.

• Integration tier patterns, focused on communication with external
resources and systems.

Fowler [Fowler 02] is another important source of design patterns that identifies
similar tiers. Steel [Steel 06] focuses on security patterns only.

Regarding families of programs and frameworks, there is a significant array of
these frameworks/technologies in the web engineering community. For example,
Active Server Pages (ASPs) (Esposito 08b), Java Server Pages (JSPs) and servlets
(Hall 03), or PHP: Hypertext Preprocessor (Lerdorf 06) are some of the more relevant
technologies that can be used to extend web servers with general-purpose
computational processes [Shklar 03]. These technologies can have additional
frameworks that help to implement some functionality, such as the implementation of
a model-view-controller architecture (e.g. Struts (Carnell 04)), the implementation of
the user interface (e.g. Java Server Faces -JSF- (Geary 04)), or the implementation of
a persistence framework (e.g. Hibernate (Bauer 06)). In addition, there are
technologies specifically designed to deal with the implementation of distributed
components such as Enterprise Java Beans (Burke 06) or Microsoft .NET (Esposito
08a).

The above-mentioned technologies are server-based technologies (i.e. their code
is executed in the server). As regards client-based technologies (i.e. their code is
executed in the client), JavaScript (Flanagan 06) and Java Applets (Cowell 00) are
two of the most famous client-side technologies. Recently, JavaScript has been
enhanced with AJAX (Asleson 05). At present, most technologies have incorporated
AJAX philosophy (Darie 06)(Jacoby 06)(Woolston 06).

Finally, because architectural structures and viewpoints talks about views of
software design (e.g. logical view vs. physical view, behavioural vs. data view) and
architectural styles (e.g. model-view-controller, three tier systems, etc.), there are no
great differences in this topic between software engineering and web engineering
beyond the underlying technological details.

4.4 Software Design Quality Analysis and Evaluation

This sub-area includes a number of quality and evaluation topics specifically related
to software design. Most of them are covered in a general manner in the Software
Quality knowledge area. This sub-area focuses on: quality attributes, quality analysis
and evaluation techniques and measures.

Typical software engineering quality attributes (e.g. maintainability, correctness,
etc.) are also applicable to the web engineering discipline. Regarding web
applications, Offutt [Offutt 02] identifies reliability, usability and security as the three
most important quality criteria for web software success. Other additional quality
criteria identified by Offutt are: availability, scalability, maintainability, and time to
market. In addition, accessibility is a key issue in the design of web applications
[Brewer 04](Burks 06). Note that, except for usability and accessibility, which mainly
affect the presentation tier, the remaining quality attributes affect every tier of a web
application.

Regarding measures, those collected in SWEBOK do not take into account the
specific characteristics of web applications (e.g. navigation). As there is no widely

3180 Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

used design notation in web engineering, available measures for design quality are
specific to design notations (Abrahão 02)(Lanzi 04).

Quality analysis and evaluation techniques in web engineering do not differ
greatly with regard to software engineering. Of course, web engineering discipline
includes some specific issues of this discipline (e.g. special measures have been
defined to evaluate the quality of a hypertext (Dhyani 02)).

Finally, the IEEE Std. 2001-2002 IEEE Recommended Practice for the Internet -
Web Site Engineering, Web Site Management, and Web Site Life Cycle (ieee 2002)
comprises a set of good practices to enhance the overall quality of the design of a web
application.

4.5 Software Design Notations

There are many notations and languages to represent software design artifacts. The
SWEBOK Guide splits them into structural descriptions (static view) and behavioral
descriptions (dynamic view).

Although this classification is still applicable to web engineering, and almost
every design notation mentioned in the Guide to the SWEBOK can be used to
characterize some aspect of web applications, in practice most of the web engineering
design notations take into consideration three main components in web design (Koch
03) (as identified in section 3.3 -requirements analysis-):

• Conceptual model. It expresses the main conceptual elements in web
applications and their semantic relationships. There are three groups of
notations focusing on: (i) classes (in an object-oriented sense) and their
relationships (Baresi 00)[Conallen 99](De Troyer 98)(Gómez 01)[Hennicker
01](Schwabe 01); (ii) entities (in a relational sense) and their relationships
[Ceri 00](Garzotto 93)[Isakowitz 95](Thalheim 01); and (iii) elements (or
nodes in a hypertext sense) and their relationships (Montero 04)[Navarro
07].

• Navigation model. It expresses how the elements of the conceptual model are
finally related in terms of links, and how these links are accessed by the user.
Those notations that use classes or entity diagrams at the conceptual level
use access primitives describing the navigation in terms of elements
(considering the relationships between classes or entities, of course). On the
other hand, those notations that use elements at the conceptual level, group
them into elements that are simultaneously browsed.

• Presentation model. It expresses the final appearance of the application. Here
the approaches differ from more evolved ones where the static and dynamic
behavior of the user interface is described (e.g. [Hennicker 01](Schwabe 01))
to others where this component is less evolved (e.g. (Garzotto 93)[Isakowitz
95]).

At present, and to some extent, most of these design notations have incorporated
the ability to describe general-purpose business logic explicitly [Brambilla 06][Koch
04](Rossi 03). Even, some of them have been updated to take into account the
characteristics of rich internet applications (Brambilla 08)(Meliá 08)(Preciado
08)(Rossi 08).

3181Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

4.6 Software Design Strategies and Methods

According to the SWEBOK Guide, there are various general strategies to help guide
the design process. In contrast with general strategies, methods are more specific as
they generally suggest and provide a set of notations to be used with the method, a
description of the process to be used when following the method and a set of
guidelines for using the method. This sub-area focuses on: general strategies,
function-oriented design, object-oriented design, data-structure centered design,
component-based design and other methods.

The general strategies used in SWEBOK can also be applied in web engineering:
stepwise refinement, patterns, incremental approach, etc.

Regarding specific methods, the new domain forces the application of new
methods, which can be classified in terms of the design notation (section 4.5 -software
design notations-) that they use: class-oriented, entity-oriented or element-oriented.

3182 Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

4.7
Softw

are D
esign. M

atrix of K
now

ledge A
rea vs. R

eference M
aterial

[Alur 03]

[Berners-Lee 01]

[Brambilla 06]

[Breuer 04]

[Ceri 00]

[Conallen 99]

[Conallen 02]

[Fowler 02]

[Hennicker 01]

[Isakowitz 95]

[Koch 04]

[Mahmud 05]

[Navarro 07]

[Newcomer 02]

[Offutt 02]

[Shklar 03]

[Skonnard 02]

[Steel 06]

Softw
are

D
esign

Fundam
entals

C
hapter

1

C

hapter
1

K
ey Issues in

Softw
are

D
esign

*
*

C
hapter

1,
C

hapter
2

*

*

*

*
*

*

Softw
are

Structure and
A

rchitecture

*

*

*

*

Softw
are

D
esign

Q
uality

A
nalysis and

Evaluation

*

*

Softw
are

D
esign

N
otations

*

*
*

*
*

*

*

3183Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

4.8 Recommended References for Software Design

[Alur 03] Alur, D., Crupi, J., Malks, D. (2003) Core J2EE Patterns. Best Practices and Design
Strategies. Sun Microsystems Press – Prentice Hall, Upper Saddle River, NJ..

[Berners-Lee 01] Berners-Lee, T., Hendler H., Lassila, O. (2001) The Semantic Web. Scientific
American, May 2001.

[Brambilla 06] Brambilla, M., Ceri, S., Fraternali, P. Manolescu, I. (2006) Process Modeling in
Web Applications. ACM Transactions on Software Engineering and Methodology, 15,
360-409.

[Brewer 04] Brewer, J. (2004) Web Accessibility Highlights and Trends. Proceedings of 2004
International Cross-Disciplinary Workshop on Web Accessibility (W4A), New York,
NY, May 17-22, pp. 51-56. ACM Press, New York, NY.

[Ceri 00] Ceri, S., Fraternali, F., Bongio, A. (2000) Web Modeling Language (WebML): a
modeling language for designing Web sites. Computer Networks, 33, 137-157.

[Conallen 99] Conallen, J. (1999) Modeling Web Application Architectures with UML.
Communications of the ACM, 42, 63-70.

[Conallen 02] Conallen, J. (2002) Building Web Applications with UML. Second Edition.
Addison-Wesley Object Technology Series, Boston, MA.

[Fowler 02] Fowler, M. (2002) Patterns of Enterprise Application Architecture. Addison-
Wesley Professional, Boston, MA.

[Hennicker 01] Hennicker, R., Koch, N. (2001) Systematic Design of Web Applications with
UML. In Siau, K., and Halpin, T.A. (eds) Unified Modeling Language: Systems
Analysis, Design and Development Issues, Idea Group, Hershey, PA.

[Isakowitz 95] Isakowitz, T., Stohr, E.A, Balasubramanian, P. (1995) RMM: A Methodology
for Structured Hypermedia Design. Communications of the ACM, 38, 34-44.

[Koch 04] Koch, N., Kraus, A., Cachero, C. and Meliá, S. (2004) Integration of Business
Processes in Web Application Models. Journal of Web Engineering, 3, 22-44.

[Mahmud 05] Mahmud, Q.H. (2005) Service-Oriented Architecture (SOA) and Web Services:
The Road to Enterprise Application Integration (EAI).

 http://java.sun.com/developer/technicalArticles/WebServices/soa/index.html
[Navarro 07] Navarro, A., Fernández-Valmayor, A. (2007) Conceptualization of Hybrid

Websites. Internet Research, 17, 207-228.
[Newcomer 02] Newcomer E. (2002) Understanding Web Services: XML, WSDL, SOAP, and

UDDI. Addison-Wesley Professional, Boston, MA.
[Offutt 02] Offutt, J. (2002) Quality attributes of web software applications. IEEE Software, 37,

25-32.
[Shklar 03] Shklar, L., Rosen, R. (2003) Web Application Architecture: Principles, Protocols

and Practices. John Wiley & Sons Inc., Chichester.
[Skonnard 02] Skonnard, A. (2002) The Birth of Web Services.
 http://msdn.microsoft.com/webservices/webservices/understanding/webservicebasics/d

efault.aspx
[Steel 06] Steel, C., Nagappan, R., Lai, R. (2006) Core Security Patterns. Best Practices and

Strategies for J2EE, Web Services, and Identity Management. Prentice Hall, Upper
Saddle River, NJ.

4.9 List of further readings

(Abrahão 02) Abrahão, S.M., Olsina, L., Pastor, O. (2002) Towards the Quality Evaluation of
Functional Aspects of Operative Web Applications. Revised Papers of Advanced
Conceptual Modeling Techniques, ER 2002 Workshops, Tampere, October 2002,
LNCS 2503, pp. 325-338. Springer-Verlag, Berlin.

(Aslesson 05) Aslesson, R., Schutta, N.T. (2005) Foundations of AJAX. Apress, Berkeley, CA.

3184 Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

(Baresi 00) Baresi, L., Garzotto, F., Paolini, P. (2000) From Web Sites to Web Applications:
New Issues for Conceptual Modeling. Proceedings of Conceptual Modeling for E-
Business and the Web, ER 2000 Workshops, Salt Lake City, October 2000, LNCS
1921, pp. 89-100. Springer-Verlag, Berlin,

(Bauer 06) Bauer, C., King, K. (2006) Hibernate in Action. Manning Publications, Greenwich,
CT.

(Bernstein 97) Bernstein, P.A., Newcomer, E. (1997) Principles of Transaction Processing.
Morgan Kaufmann, Silicon Valley, CA.

(Brambilla 08) Brambilla, M., Preciado, J.C., Linaje, M., Sanchez-Figueroa, F. Business
Process-Based Conceptual Design of Rich Internet Applications. Proceedings of ICWE
2008, pp. 155-161.

(Burke 06) Burke, B., Monson-Haefel, R. (2006) Enterprise JavaBeans 3.0. O’Reilly Media
Inc., Sebastopol, CA.

(Burks 06) Burks, M.R., et al. (2006) Web Accessibility: Web Standards and Regulatory
Compliance. Friends of ED, Berkeley, CA.

(Carnell 04) Carnell, J., Harrop, R. (2004) Pro Jakarta Struts, Second Edition. Apress,
Berkeley, CA.

(Christodoulou 01) Christodoulou, S.P., Zafiris, P.A., Papatheodorou, T.S. (2001) Web
Engineering: the Developer’s View and a Practitioner’s approach. Proceedings Web
Engineering 2000. Springer-Verlag, Berlin.

(Cowell 00) Cowell, J. (2000) Essential Java 2 fast: How to Develop Applications and Applets
with Java 2. Springer, Berlin.

(Darie 06) Darie, C. et al. (2006) AJAX And PHP: Building Responsive Web Applications.
Packt Publishing, Birmingham.

(De Troyer 98) De Troyer, O.M.F., Leune, C.J. (1998) WSDM: A User Centered Design
Method for Web Sites. Computer Networks, 30, 85-94.

(Dhyani 02) Dhyani, Keong Ng, W, Bhowmick, S.S. (2002) A Survey of Web Metrics. ACM
Computing Surveys, 34, 469-503.

(Erl 05) Erl, T. (2005) Service-Oriented Architecture (SOA): Concepts, Technology, and
Design. Prentice-Hall PTR, Upper Saddle River, NJ.

(Esposito 08a) Esposito, D., Saltarello, A. Microsoft .NET: Architecting Applications for the
Enterprise. Microsoft Press, 2008.

(Esposito 08b) Esposito, D. Programming Microsoft ASP.NET 3.5. Microsoft Press, 2008.
(Flanagan 06) Flanagan, D. (2006) JavaScript: The Definitive Guide. Fifth edition. O’Reilly

Media Inc., Sebastopol, CA.
(Garzotto 93) Garzotto, F., Paolini, P., Schwabe, D. (1993) HDM - A Model-Based Approach

to Hypertext Application Design. ACM Transactions on Information Systems, 11, 1-26.
(Geary 04) Geary, D., Horstmann, C. (2004) Core Java Server Faces. Prentice Hall PTR, Upper

Saddle River, CA.
(Gómez 01) Gómez, J., Cachero, C., Pastor, O. (2001) Conceptual Modeling of Device-

Independent Web Applications. IEEE MultiMedia, 8, 26-39.
(Hall 03) Hall, M, Brown, L. (2003) Core Servlets and Java Server Pages, Vol. 1: Core

Technologies, Second Edition. Prentice Hall PTR, Upper Saddle River, CA.
(ieee 90) IEEE Std. 610.12-1990. 1990. IEEE standard glossary of software engineering

terminology. The Institute of Electrical and Electronics Engineers, New York, NY.
(Jacoby 06) Jacobi, J., Fallows, J.R. (2006) Pro JSF and AJAX. Building Rich Internet

Components. Apress, Berkeley, CA.
(Keith 06) Keith, M., Schincariol, M. (2006) Pro EJB 3: Java Persistence API (Pro). Apress,

Berkeley, CA.
(Koch 03) Koch, N., Kraus, A. (2003) Towards a Common Metamodel for the Development of

Web Applications. Proceedings of the Third Conference on Web Engineering, Oviedo,
July 2003, LNCS 2722, pp. 497-506. Springer-Verlag, Berlin.

3185Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

(Lanzi 04) Lanzi, P.L., Matera, M., Maurino, A. (2004) A Framework for Exploiting
Conceptual Modeling in the Evaluation of Web Application Quality. Proceedings of
The Fourth International Conference on Web Engineering, Munich, July 2004, LNCS
3140, pp. 50-54. Springer-Verlag, Berlin.

(Lerdorf 06) Lerdorf, R., Tatroe, K., MacIntyre, P. (2006) Programming PHP. O’Reilly Media
Inc., Sebastopol, CA.

(Little 04) Little, M., Maron, J., Pavlik, G. (2004) Java Transaction Processing. Design and
Implementation. Prentice Hall PTR, Upper Saddle River, NJ.

(McCracken 03) McCracken, D., Wolfe, R.J., Spool J.M. (2003) User-Centered Website
Development: A Human-Computer Interaction Approach. Prentice Hall PTR, Upper
Saddle River, NJ.

(Meliá 08) Meliá, S., Gómez, J., Pérez, S., Díaz, O. A Model-Driven Development for GWT-
Based Rich Internet Applications with OOH4RIA. Proceedings of ICWE 2008, pp. 13-
23.

(Montero 04) Montero, S., Díaz, P., Aedo, I. (2004) AriadneTool: A Design Toolkit for
Hypermedia Applications. Journal of Digital Information, 5,

 http://jodi.tamu.edu/Articles/v05/i02/Montero/
(Mukhar 05) Mukhar, K. et al. (2005) Beginning Java EE 5: From Novice to Professional.

Apress, Berkeley, CA.
(Navarro 08) Navarro, A., Fernández-Valmayor, A., Fernández-Manjón, B., Sierra, J.L. (2008).

Characterizing Navigation Maps for Web Application with the NMM Approach.
Science of Computer Programming, 71, 1, 1-16.

(Nielsen 06) Nielsen, J., Loranger, H. (2005) Prioritizing web usability. New Riders Press,
Berkeley, CA.

(Preciado 08) Preciado, J.C.; Linaje, M.; Morales-Chaparro, R.; Sanchez-Figueroa, F.; Gefei
Zhang; Kroiss, C.; Koch, N. Designing Rich Internet Applications Combining UWE
and RUX-Method. Proceedings of ICWE 2008, pp. 148-154.

(Rossi 03) Rossi, G., Schmid, H.A., Lyardet, F. (2003) Customizing Business Processes in Web
Applications. Proceedings of EC-Web 2003, pp. 359-368.

(Rossi 08) Rossi, G., Urbieta, M., Ginzburg, J., Distante, D., Garrido, A. Refactoring to Rich
Internet Applications. A Model-Driven Approach. Proceedings of ICWE 2008, pp. 1-
12.

(Schmidt 00) Schmidt, D., Stal, M., Rohnert, H., Buschmann, F. (2000) Pattern-Oriented
Software Architecture, Volume 2, Patterns for Concurrent and Networked Objects.
John Wiley & Sons Inc., Chichester.

(Schwabe 01) Schwabe, D., Esmeraldo, L., Rossi, G., Lyardet, F. (2001) Engineering Web
Applications for Reuse. IEEE MultiMedia, 8, 20-31.

(Thalheim 01) Thalheim, B., Düsterhöft, A. (2001) SiteLang: Conceptual Modeling of Internet
Sites. Proceedings of Conceptual Modeling - ER 2001, 20th International Conference
on Conceptual Modeling, Yokohama, November 2001, LNCS 2224, pp. 179-192.
Springer-Verlag, Berlin.

(Wikipedia 09) Wikipedia, Slashdot, (2009) http://en.wikipedia.org/wiki/Slashdot
(Winckler 03) Winckler, P. Palanque, P. (2003) StateWebCharts: A Formal Description

Technique Dedicated to Navigation Modeling of Web Applications. Proceedings of
Interactive Systems. Design, Specification, and Verification, 10th International
Workshop, DSV-IS 2003, pp. 61-76. http://virtual.inesc.pt/dsvis03/papers/27.pdf

(Woolston 06) Woolston, D. (2006) Pro AJAX and the .NET 2.0 Platform. Apress, Berkeley,
CA.

(w3c 99) World Wide Web Consortium. HTML 4.01 Specification (1999)
http://www.w3.org/TR/html4/

(w3c 04) World Wide Web Consortium. Extensible Markup Language (XML) 1.0 (Third
Edition) (2004) http://www.w3.org/TR/2004/REC-xml-20040204/

3186 Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

4.10 List of standards

(ieee 2002) IEEE Std. 2001-2002 (2002). IEEE Recommended Practice for the Internet - Web
Site Engineering, Web Site Management, and Web Site Life Cycle (2002). The Institute
of Electrical and Electronics Engineers, New York, NY.

5 Software Testing

Software testing consists of the dynamic verification of the behavior of a program on
a finite set of test cases, suitably selected from the usually infinite executions domain,
against the expected behavior. Of the web engineering papers classified under
software engineering discipline, 6.45% of these papers were related to software
testing.

The SWEBOK Guide identifies five sub-areas in this knowledge area: software
testing fundamentals, test levels, test techniques, test related measures, test process.

5.1 Test Levels

Test levels focus on both the target of the test and the objectives of testing. The target
of the test identifies three test stages: unit, integration, and system testing. In web
engineering applications, these stages are also applicable, but they must take into
account the issues identified in section 4.2 (key issues in software design) (Ash 03).

The objectives of testing identify the properties being tested. Classic software
engineering objectives of testing (e.g. functional, installation, regression,
performance, stress, etc.), can also be applied to web software (Ash 03)(Menasce
02)[Nguyen03](Subraya 06). In addition, Nguyen [Nguyen 03] identifies additional
types of tests: user interface, server-side, database, help, and security testing. Ash
(Ash 03) identifies two additional types of test: client-side and server-side testing.
Finally, security is an essential issue in web applications [Andrews 06](Splaine 02).
Andrews [Andrews 06] identifies different concerns in the security of web
applications: attacks to the client, state-based attacks, attacks to the user-supplied
input data, language-based attacks, attacks to the server, authentication, privacy, and
web services-related attacks.

5.2 Remaining sub-areas

Regarding the remaining sub-areas (software testing fundamentals, test techniques,
test related measures and test process), in our opinion, there are no significant
differences between these areas in software engineering and web engineering
disciplines. For example, [Hao 06] includes an analysis about web software testing
methods, and Alalfi [Alalfi 07] analyzes different modeling methods used in website
verification and testing. Of course, web applications require special testing tools,
which are depicted in section 7.1 (software engineering tools).

5.3 Software Testing. Matrix of Knowledge Area vs. Reference Material

 [Alalfi 07] [Andrews 06] [Hao 06] [Nguyen 03]
Test Levels * *
Test Techniques * *

3187Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

5.4 Recommended References for Software Testing

[Alalfi 07] Alalfi, M.H., Cordy, J.R., Dean, T.R. (2007) A Survey of Analysis Models and
Methods in Website Verification and Testing. Proceedings of International Conference
on Web Engineering 2007, Como, July 16-20, pp. 306-311.

[Andrews 06] Andrews, M., Whittaker, J.A. (2006) How to Break Web Software: Functional
and Security Testing of Web Applications and Web Services. Addison-Wesley
Professional, Boston, MA.

[Hao 06] Hao, J., Mendes, E. (2006) Usage-based statistical testing of web applications.
Proceedings of International Conference on Web Engineering 2006. Menlo Park, CA,
July 12-14, pp. 17-24. ACM Press, New York, NY.

[Nguyen 03] Nguyen, H.Q., Johnson, R., Hackett, M. (2003) Testing Applications on the Web:
Test Planning for Mobile and Internet-based Systems. John Wiley & Sons Inc.,
Chichester.

5.5 List of Further Readings

(Ash 03) Ash, L. (2003) The Web Testing Companion: The Insider's Guide to Efficient and
Effective Tests. John Wiley & Sons Inc., Chichester.

(Menasce 02) Menasce, D.A. (2002) Load Testing of Websites. IEEE Internet Computing, 6,
2002.

(Splaine 02) Splaine, S. (2002) Testing Web Security: Assessing the Security of Web Sites and
Applications. John Wiley & Sons Inc., Chichester.

(Subraya 06) Subraya, B.M (ed) Integrated Approach to Web Performance Testing: A
Practitioner's Guide. IRM Press US, Hershey, PA.

6 Software Engineering Process

The Software Engineering Process knowledge area is concerned with the definition,
implementation, assessment, measurement, management, change and improvement of
the software life cycle processes themselves. Of the web engineering papers classified
under software engineering discipline, 21.50% of these papers were related to
software engineering process.

The SWEBOK Guide identifies four sub-areas in this knowledge area: process
implementation and change, process definition, process assessment, process and
product measurement.

6.1 Process Definition

A process definition can be a procedure, a policy, or a standard. Software life cycle
processes are defined for a number of reasons that include increasing the quality of
the product, facilitating human understanding and communication, supporting process
improvement, supporting process management, providing automated process
guidance and providing automated execution support. This sub-area focuses on
software life cycle models and processes, notations for process definitions, process
adaptation and automation.

According to the SWEBOK Guide, Software life cycle models serve as a high-
level definition of the phases that occur during development. In this sub-area, we have
identified several approaches. Hall and Lowe present the classic process models (e.g.
spiral) adapted for web development [Hall 98]. As in the case of general-purpose

3188 Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

software, waterfall development presents more problems than prototyping and
incremental development. Eeeles et al. [Eeeles 02] adapt The Unified Software
Development Process (Jacobson 99) using the ideas put forward by Conallen in his
UML-Web Application Extension (Conallen 02). Thus, a web version of the classic
UML-based process model is obtained. Fraternali, Ginige, and Lowe define process
models with two development loops focused on conceptualization/prototyping and
design/development [Fraternali 99][Wills 98]2. These process models are very similar
to those depicted in [Hall 98], but they separate the loop focused on conceptualization
from the loop focused on design. Díaz (Díaz 01) and Navarro (Navarro 04) present
two iterative process models (similar to the one proposed by [Fraternali 99]), while
others present models not explicitly iterative (De Troyer 98)[Isakowitz 95][Koch
01](Schwabe 95). Finally, Maurer, Martel and McDonald use lightweight techniques
focused on coding and testing [Maurer 02](McDonald 03). These processes are the
web version of their Extreme Programming-based counterparts in software
engineering (Beck 00). As in software engineering, the use of one model or another is
determined by several factors such as the nature of the project, or the customer’s
needs (Pressman 04).

Regarding remaining topics (software life cycle models, software life cycle
processes, notations for software definitions, process adaptation and automation), in
our opinion, they can be directly assimilated into web engineering.

6.2 Process and Product Measurement

The term process measurement means that quantitative information about the process
is collected, analyzed, and interpreted. Measurement is used to identify the strengths
and weaknesses of processes, and to evaluate processes after they have been
implemented and/or changed. Software product measurement notably includes the
measurement of product size, product structure, and product quality.

According to Mendes et al. [Mendes 01], by using measurement principles to
evaluate the quality and development of existing web applications, we can obtain
feedback that will help us understand, control, improve, and make predictions about
these products and their development processes.

There are several approaches in the literature regarding product measurement.
Some approaches focus on the development of measures3 and tools for the evaluation
of web applications [Chang 02][Ivory 02][Mendes 01][Olsina 02b]. Other approaches
are centered on measures classification. For example, Dhyani et al. [Dhyani 02]
identify several web measures grouped by: (i) web graph properties; (ii) usage
characterization; (iii) web page similarity; (iv) web page search and retrieval; and (v)
information theoretic. Mendes et al. (Mendes 05) provide a taxonomy of hypermedia
and web application size measures. Another identification of web measures is made
by Calero et al. (Calero 04). Finally, Olsina et al. (Olsina 02a) propose the
development of a repository for web measures, providing a conceptual model for the
domain of measures.

2 [Wills 98] is used as reference because no other sources that described the Ginige-Lowe process model

were found.
3 Measure or metric is sometimes used without distinction [Abran et al. 2004]. This paper uses the term

measures in accordance with the SWEBOK.

3189Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

6.3 Remaining sub-areas

Regarding the remaining sub-areas (i.e. process implementation and change, and
process assessment), in our opinion, there are no significant differences between these
areas in software engineering and web engineering disciplines.

6.4 Software Engineering Process. Matrix of Knowledge Area vs. Reference
Material

 [C
ha

ng
 0

2]

[D
hy

an
i 0

2]

[E
el

es
 0

2]

[F
ra

te
rn

al
i 9

9]

[H
al

l 9
8]

[I
sa

ko
w

itz
 9

5]

[I
vo

ry
 0

2]

[K
oc

h
01

]

[M
au

re
r 0

2]

[M
en

de
s 0

1]

[O
ls

in
a

02
b]

[W
ill

s 9
8]

Process
Definition

 * Sect.
2.1

Chap.
7-8

* * * *

Process and
Product
Measurement

* * * * *

6.5 Recommended References for Software Engineering Process

[Chang 02] Chang, W.-K., Hon, S.-K. (2002) Assessing the Quality of Web-Based
Applications via Navigational Structures. IEEE MultiMedia, 9, 22-30.

[Dhyani 02] Dhyani, Keong Ng, W., Bhowmick, S.S. (2002) A survey of Web metrics. ACM
Computing Surveys, 34, 469-503.

[Eeles 02] Eeles P., Houston K., Kozaczynski, W. (2002) Building J2EE Applications with the
Rational Unified Process. The Addison-Wesley Object Technology Series, Boston,
MA.

[Fraternali 99] Fraternali, P. (1999) Tools and Approaches for Developing Data-Intensive Web
Applications: A Survey. ACM Computing Surveys, 31, 227-263.

[Hall 98] Hall, W., Lowe, D. (1998) Hypermedia and the Web: An Engineering Approach.
John Wiley and Sons Inc., Chichester.

[Isakowitz 95] Isakowitz, T., Stohr, E.A, Balasubramanian, P. (1995) RMM: A Methodology
for Structured Hypermedia Design. Communications of the ACM, 38, 34-44.

[Ivory 02] Ivory, M.Y. Hearst, M.A. (2002) Improving Web Site Design. IEEE Internet
Computing, 6, 56-63.

[Koch 01] Koch, N., Kraus, A., Hennicker R. (2001) The Authoring Process of the UML-based
Web Engineering Approach. Proceedings of First International Workshop on Web-
oriented Software Technology (IWWOST01), Valencia, 18-20 June.
http://www.dsic.upv.es/~west/iwwost01/

[Maurer 02] Maurer, F., Martel, S. (2002) Extreme Programming: Rapid Development for
Web-Based Applications. IEEE Internet Computing, 6, 86-90.

[Mendes 01] Mendes, E., Mosley, N., Counsell. S. (2001) Web Metrics-Estimating Design and
Authoring Effort. IEEE MultiMedia, 8, 50-57.

[Olsina 02b] Olsina, L., Rossi, G. (2002) Measuring Web Application Quality with WebQEM.
IEEE MultiMedia, 9, 20-29.

[Wills 98] Wills, G.B., Crowder, R.M., Heath, I. Hall, W. (1998) Industrial Hypermedia
Design. University of Southampton.M98-2, 4.

3190 Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

6.6 List of Further Readings

(Beck 00) Beck, K. (2000) Extreme Programming Explained: Embrace Change. Addison
Wesley Longman, Boston, MA.

(Calero 04) Calero, C., Ruiz, J., Piattini, M. (2004) A Web Metrics Survey Using WQM.
Proceedings of The Fourth International Conference on Web Engineering, Munich, July
2004, LNCS 3140, pp. 147-160. Springer-Verlag, Berlin.

(Conallen 02) Conallen, J. (2002) Building Web Applications with UML, 2nd Edition. The
Addison-Wesley Object Technology Series, Boston, MA.

(De Troyer 98) De Troyer, O.M.F., Leune, C.J. (1998) WSDM: A User Centered Design
Method for Web Sites. Computer Networks, 30, 85-94.

(Díaz 01) Díaz, P., Aedo, I., Montero, S. (2001) Ariadne, a Development Method for
Hypermedia. Proceedings of Database and Expert Systems Applications, 12th
International Conference, Munich, September 2001, LNCS 2113, pp. 764-774.
Springer-Verlag, Berlin.

(Jacobson 99) Jacobson, I., Booch, G., Rumbaugh, J. (1999) The Unified Software
Development Process. The Addison-Wesley Object Technology Series, Boston, MA.

(McDonald 03) McDonald, A., Welland, R. (2003) Agile Web Engineering (AWE) Process:
Multidisciplinary Stakeholders and Team Communication. Proceedings of the Third
Conference on Web Engineering, Oviedo, July 2003, LNCS 2722, pp. 515-518.
Springer-Verlag, Berlin.

(Mendes 05) Mendes, E., Counsell, S., Mosley, N. (2005) Towards a Taxonomy of Hypermedia
and Web Application Size Metrics. Proceedings of The Fifth International Conference
on Web Engineering, Sydney, July-August 2005, LNCS 3579, pp. 110-123. Springer-
Verlag, Berlin.

(Navarro 04) Navarro, A. Fernández-Valmayor, A., Fernández-Manjón, B., Sierra, J.L. (2004)
Conceptualization, Prototyping and Process of Hypermedia Applications. International
Journal of Software Engineering and Knowledge Engineering, 14, 565-602.

(Olsina 02a) Olsina, L., Lafuente, G., Pastor, O. (2002) Towards a Reusable Repository for
Web Metrics. Journal of Web Engineering, 1, 61-73.

(Pressman 04) Pressman, R.S. (2004) Software Engineering: A Practitioner’s Approach. 6th
edition. McGraw-Hill, New York, NY.

(Schwabe 95) Schwabe, D., Rossi, G. (1995) The Object-Oriented Hypermedia Design Model.
Communications of the ACM, 38, 45-46.

7 Software Engineering Tools and Methods

Software development tools are computer-based tools that are intended to assist the
software life cycle processes. Software engineering methods impose structure on the
software engineering activity with the aim of making the activity systematic and
ultimately more likely to be successful. Of the web engineering papers classified
under software engineering discipline, 5.02% of these papers were related to software
engineering tools and methods.

The SWEBOK Guide identifies two sub-areas in this knowledge area: software
engineering tools and software engineering methods.

7.1 Software Engineering Tools

Software engineering tools allow repetitive, well-defined actions to be automated,
reducing the cognitive load on their user who is then free to concentrate on the
creative aspects of the process. This sub-area focuses on tools for dealing with

3191Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

software requirements, software design, software construction, software testing,
software maintenance, software configuration management, software engineering
management, the software engineering process, software quality and miscellaneous.

Software design tools is one of the more prolific segments in web engineering.
Most design notations have a specific tool that facilitates the development of visual
models and, in some cases, the development of a prototype or the final application
(Gómez 04)(Knapp 04)(Montero 04)(Paiano 04)(Thalheim 04)(WebRatio 09).
Furthermore, commercial UML CASE tools nowadays incorporate web facilities to
make web modeling easier (Borland 09)(ibm 09c).

Software construction tools is another segment where web engineering tools have
had great success. Fraternali [Fraternali 99] classifies them into six categories: (i)
visual editors and site managers (e.g. (Adobe 09b)(Microsoft 09)(NetObjects 09)); (ii)
web-enabled hypermedia authoring tools (e.g. (fg 09)); (iii) web-DBPL integrators
(e.g. (Adobe 09a)(Oracle 09b)(Sun 09)); (iv) web form editors, report, writers, and
database publishing wizards (e.g. (Apple 09)(ibm 09d)(Recrystallize 09)); (v)
multiparadigm tools (e.g. (ibm 09a)); and (vi) model-driven application generators
(e.g. (Oracle 09a)).

Software testing tools have found great applicability in the web engineering
discipline [Ash 03][Nguyeng 03]. These tools vary from those based on model-driven
testing (Baresi 05) to those focused on the container testing of web portal applications
(Xiong 05). An informal classification of these tools can be found in (Hower 09): load
and performance test tools (e.g. (hp 09a)), link checkers (e.g. (w3c 09a)), HTML
validators (e.g. (w3c 09b)), web functional regression tools (e.g. (ibm 09b)), web site
security (e.g. (McAfee 09)), external site monitoring services (e.g. (webmetrics 09)),
web site management tools (e.g. (hp 09b)(Vanderdonckt 01)), log analysis tools (httpd
09) (e.g. (Webtrax 09)), and other tools (e.g. (Eclipse 09)). Finally, (Rica 06) provides
a similar classification of web testing tools.

7.2 Software Engineering Methods

Software engineering methods usually provide a notation and vocabulary, procedures
for performing identifiable tasks, and guidelines for checking both the process and the
product. This sub-area focuses on: heuristic methods, formal methods, and
prototyping methods.

These topics are not disjointed because they represent different concerns. In our
opinion, most of these methods have been incorporated in web engineering, as
described in sections 4.5 (software design notations) and 6.1 (process definition).

7.3 Software Engineering Tools and Methods. Matrix of Knowledge Area vs.
Reference Material

 [Ash 03] [Fraternali 99] [Nguyen 03]
Software Engineering Tools Appendix J Sections 3-9 Chapter 21

7.4 Recommended References for Software Engineering Tools and Methods

[Ash 03] Ash, L. (2003) The Web Testing Companion: The Insider's Guide to Efficient and
Effective Tests. John Wiley & Sons Inc., Chichester.

3192 Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

[Fraternali 99] Fraternali, P. (1999) Tools and Approaches for Developing Data-Intensive Web
Applications: A Survey. ACM Computing Surveys, 31, 227-263.

[Nguyen 03] Nguyen, H.Q., Johnson, R., Hackett, M. (2003) Testing Applications on the Web:
Test Planning for Mobile and Internet-based Systems. John Wiley & Sons Inc.,
Chichester.

7.5 List of Further Readings

(Adobe 09a) Adobe Macromedia ColdFusion (2009)
http://www.adobe.com/products/coldfusion/

(Adobe 09b) Adobe Macromedia Dreamweaver (2009)
http://www.adobe.com/products/dreamweaver/

(Apple 09) Apple WebObjects (2009) http://www.apple.com/webobjects/
(Baresi 05) Baresi, L., Fraternali, P., Tisi, M. Morasca, S. (2005) Towards Model-Driven

Testing of a Web Application Generator. Proceedings of The Fifth International
Conference on Web Engineering, Sydney, July-August 2005, LNCS 3579, pp. 75-86.
Springer-Verlag, Berlin.

(Borland 09) Borland Together (2009)
http://www.borland.com/us/products/together/index.html

(Eclipse 09) Eclipse Test and Performance Tools Platform Project (TPTP) (2009)
http://www.eclipse.org/tptp/index.html

(fg 09) Formula Graphics Multimedia (2009) http://www.formulagraphics.com/
(Gómez 04) Gómez, J. (2004) Model-Driven Web Development with VisualWADE.

Proceedings of The Fourth International Conference on Web Engineering, Munich, July
2004, LNCS 3140, pp. 611-612. Springer-Verlag, Berlin.

(Hower 09) Hower, R. (2009) Software Q.A./ Test Resource Center, Web Site Test Tools and
Site Management Tools, http://www.softwareqatest.com/qatweb1.html

(hp 09a) HP httperf (2009) http://www.hpl.hp.com/research/linux/httperf/
(hp 09b) HP OpenView (2009) http://www.openview.hp.com/
(httpd 09) HTTPD 09 Log Analyzers (2009) http://www.uu.se/Software/Analyzers/
(ibm 09a) IBM Lotus Domino Designer (2009) http://www-142.ibm.com/software/sw-

lotus/products/product4.nsf/wdocs/dominodesignerhome (ibm 09b) IBM Rational
Functional Tester (2009)

 http://www-306.ibm.com/software/awdtools/tester/functional/index.html
(ibm 09c) IBM Rational Software Architect (2009) http://www-

306.ibm.com/software/awdtools/architect/swarchitect/index.html
(ibm 09d) IBM Rational Web Developer for WebSphere Software (2009) http://www-

306.ibm.com/software/awdtools/developer/web/index.html
(Knapp 04) Knapp, A., Koch, N., Zhang, G. (2004) Modeling the Structure of Web

Applications with ArgoUWE. Proceedings of The Fourth International Conference on
Web Engineering, Munich, July 2004, LNCS 3140, pp. 615-616. Springer-Verlag,
Berlin.

(McAfee 09) McAfee Foundstone Enterprise (2009)
http://www.mcafee.com/us/enterprise/products/vulnerability_management/foundstone_
enterprise.html

(Microsoft 09) Microsoft Office FrontPage (2009)
http://www.microsoft.com/products/info/default.aspx?view=22

(Montero 04) Montero, S., Díaz, P., Aedo, I. (2004) AriadneTool: A Design Toolkit for
Hypermedia Applications. Journal of Digital Information, 5,

 http://jodi.tamu.edu/Articles/v05/i02/Montero/
(NetObjects 09) NetObjects Fusion (2009) http://www.netobjects.com/
(Oracle 09a) Oracle Designer (2009)
 http://www.oracle.com/technology/products/designer/index.html

3193Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

(Oracle 09b) Oracle PL/SQL Web Toolkit (2009)
 http://www.oracle.com/technology/software/products/intermedia/htdocs/descriptions/w

eb_access.html
(Paiano 04) Paiano, R., Pandurino, A. (2004) WAPS: Web Application Prototyping System.

Proceedings of The Fourth International Conference on Web Engineering, Munich, July
2004, LNCS 3140, pp. 256-260. Springer-Verlag, Berlin.

(Recrystallize 09) Recrystallize Software Crystal Reports (2009)
 http://www.recrystallize.com/merchant/crystal-reports/crystal-reports-11.htm
(Rica 06) Ricca, F., Tonnela, P. (2006) Detecting anomaly and failure in Web applications.

IEEE MultiMedia, 13, 44-51.
(Sun 09) Sun JDBC (2009) http://java.sun.com/javase/technologies/database/index.jsp
(Thalheim 04) Thalheim, B., Schewe, K.-D., Romalis, I., Raak, T., Fiedler, G. (2004) Website

Modeling and Website Generation. Proceedings of The Fourth International Conference
on Web Engineering, Munich, July 2004, LNCS 3140, pp. 577-578. Springer-Verlag,
Berlin.

(Vanderdonckt 01) Vanderdonckt, J., Bouillon, L., Souchon, N. (2001) Flexible Reverse
Engineering of Web Pages with VAQUISTA. Proceedings of the Eighth Working
Conference on Reverse Engineering, Stuttgart, November 2001, pp. 241-248.

(webmetrics 09) WEBMETRICS AppMonitor (2009)
http://www.webmetrics.com/applicationmonitoring.html

(WebRatio 09) WebRatio Website (2009) http://www.webratio.com/
(Webtrax 09) Webtrax (2009) http://www.multicians.org/thvv/webtrax-help.html
(w3c 09a) World Wide Web Consortium Link Checker (2009) http://validator.w3.org/checklink
(w3c 09b) World Wide Web Consortium Markup Validation Service (2009)

http://validator.w3.org/
(Xiong 05) Xiong, W., Bajwa, H., Maurer, F. (2005) WIT: A Framework for In-container

Testing of Web- Portal Applications. Proceedings of The Fifth International Conference
on Web Engineering, Sydney, July-August 2005, LNCS 3579, pp. 87-97. Springer-
Verlag, Berlin.

8 Other Knowledge Areas

As previously described, there are still SWEBOK knowledge areas to be analyzed in
relation to web engineering: software construction, software maintenance, software
configuration management, software engineering management and software quality,
as well as disciplines related to software engineering.

As far as we have seen in literature there are no important differences between
these knowledge areas in software engineering and web engineering. Thus, the
percentage of web engineering papers classified under these knowledge areas is
almost negligible. Of course, in software construction, standards in construction is
related to section 4.2 (key issues in software design) and 4.3 (software structure and
architecture), but there are no noticeable differences in the remaining topics (note that
quality measurement has been analyzed in section 6.2 -process and product
measurement-). In the interest of conciseness, and as we have referenced some of the
more relevant standards for web development in section 4.3 (software structure and
architecture), we do not make an in-depth analysis of the software construction
knowledge area.

3194 Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

9 Conclusions

This section presents the conclusions grouped into different topics: (i) web
engineering; (ii) software engineering and web engineering; (iii) development or
updates of bodies of knowledge; and finally (iv) overall conclusions.

9.1 Conclusions on Web Engineering

First of all, we should conclude that web engineering is a heterogeneous discipline.
As Deshpande and Hansen state: “Web engineering is a discipline among disciplines,
cutting across computer science, information systems, and software engineering, as
well as benefiting from several non-information technology specializations”
[Deshpande, 01]. The papers analyzed during the development of the work presented
in this paper endorse this claim.

However, this heterogeneity does not imply that the work regarding web
engineering cannot be classified in existing disciplines. In this way, almost 89% of the
papers analyzed could be categorized under the following disciplines: accessibility,
agents, document and text processing, e-commerce, e-learning, hypermedia and
hypertext, human-computer interaction, information systems, programming
languages, semantic web, software engineering, web engineering fundamentals and
security.

In this classification, 16% of the papers analyzed where related to the topic of
web services. To define web services as a previously unidentified constituent
discipline of web engineering was considered but web services appear in the context
of agents, e-commerce, e-learning, document and text processing, information
systems, software engineering and semantic web. Therefore, these disciplines should
be defined as different constituents of web services. Thus, to avoid this double
classification, in this paper the web services-related papers were classified under the
constituent disciplines of web engineering.

Regarding the 11% of unclassified papers, in this category there are papers
belonging to heterogeneous categories such as multimedia issues, web server
performance analysis, domain-specific web applications, or domain-specific issues.
The small number of papers in every tentative category, the heterogeneity of their
nature, and the lack of any work regarding the need for recognizing them as belonging
to a new specific category, has led us to consider them as unclassified.

9.2 Conclusions on Software Engineering and Web Engineering

On analyzing the literature on software-engineering related papers of the web
engineering discipline we can conclude that software engineering and web
engineering are different disciplines with a non-empty intersection.

This intersection is non-empty because almost 46% of the papers analyzed were
related to the software engineering discipline. As this paper describes, the knowledge
areas of software requirements, design, testing, process and tools as well as software
construction have undergone a major evolution in the web engineering discipline in
relation to their software engineering counterparts. In particular, the design
knowledge area presents a significant evolution in the web engineering discipline.
Possibly, the need for more specific techniques in the web engineering discipline has

3195Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

promoted the evolution of these knowledge areas from the software engineering
discipline. Specifically, the main changes in web engineering per knowledge area are:

• Software requirements:
o Several characteristics of web applications that interfere with

different knowledge areas are identified in web engineering (section
3.1).

o New types of requirements arise in web engineering (section 3.1).
o There is no clear consensus regarding the requirement process in

web engineering (section 3.2).
o There is no clear consensus regarding the requirements capture in

web engineering (section 3.3).
• Software design:

o Simple websites and complex web applications are distinguished in
web engineering (section 4.1).

o The software engineering key issues in software design take on a
great relevance in web engineering. Therefore, these issues are
specialized and developed further in web engineering (section 4.2).

o New design patterns arise in web engineering. These patterns are
also applicable to non web-based software (section 4.3).

o New programming frameworks have been developed in web
engineering to make the development of web applications easier
(section 4.3).

o New quality attributes arise in web engineering (section 4.4).
o Accessibility is a key issue in the design of web applications

(section 4.4).
o Specialized design notations are needed in order to characterize the

complete design of web applications (section 4.5).
• Software testing:

o New types of tests arise in web engineering (section 5.1).
o Security, and its testing, become a key issue in web engineering

(section 5.1).
• Software engineering process:

o Specialized process models are defined in web engineering (section
6.1).

o New specific product measures are defined in web engineering
(section 6.2).

• Software engineering tools and methods:
o New design, development and testing tools are developed in web

engineering (section 7.1).
Of course, there are web-specific works that can hardly be classified under the

software engineering discipline. In fact, due to the multidisciplinary nature of the web
engineering discipline, almost 54% of the papers analyzed were not related to
software engineering. Thus, we can find papers on accessibility, agents, document and
text processing, e-commerce, e-learning, hypermedia and hypertext, human-computer
interaction, information systems, programming languages, semantic web, web
engineering fundamentals, security, and others, which are not related to the software
engineering discipline.

3196 Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

On the other hand, we can also find software engineering papers not related to the
web engineering domain. It is another matter whether those papers can be applied to
web engineering projects or not. For example, a software engineering book about
software project management can hardly be classified under the web engineering
discipline, notwithstanding project management can be very useful in web
engineering projects. This feature is not specific to web engineering. For example,
project management can also be very useful during the development of information
systems, but project management is not classified under the information systems
discipline either. Thus, the knowledge areas of software maintenance, configuration
management, engineering management and quality have suffered a minor evolution in
the web engineering discipline in relation to their software engineering counterparts.
The minor evolution of these knowledge areas on the web engineering discipline can
be explained by the fact that: (i) these are generic knowledge areas directly applicable
to almost every type of software; or (ii) more research in the web engineering
discipline is needed in these areas.

9.3 Conclusions on the Development or Updating of Bodies of Knowledge

The development of a body of knowledge in an engineering discipline is a complex
issue that has to be carefully analyzed.

Once the different disciplines that make up the web engineering discipline have
been identified, there are no particular problems with classifying the software
engineering-related references in the web engineering discipline under the
SWEBOK’s knowledge areas. Thus, most topics in every knowledge area can be
maintained, and the need for other topics should be carefully analyzed.

On the other hand, due to the presence of constituent disciplines of web
engineering different from software engineering, there are knowledge areas that could
be updated in the Guide to the SWEBOK. For example, the software design
knowledge area could contain a sub-area on the web information system design.
Including web information systems as another branch of web engineering discipline,
independent of software engineering, may be another choice.

Thus, two approaches emerge: (i) considering bodies of knowledge of every
constituent discipline of web engineering and enriching them with the web
engineering specific literature and/or specific knowledge areas; or (ii) creating a
specific web engineering body of knowledge comprising the constituent disciplines of
web engineering identified in this paper as its main knowledge areas. Of course, other
knowledge areas could be added if needed.

The choice between both of these approaches is an important decision that could
have significant consequences in both web engineering and its constituent disciplines.
Therefore, in our opinion, this work could be addressed by an international working
group of multidisciplinary researchers. Indeed, this paper could be one of the items
that could help make such a decision. In any case, if a new web engineering body of
knowledge is made and this new body of knowledge makes references to other
disciplines (e.g. software engineering or information systems), readers should have
some knowledge of these disciplines in order to understand the web engineering
discipline.

Regarding the software engineering discipline, in our opinion, it is a fact that if
this discipline is required to be able to characterize the design and development of

3197Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

present multi-tier, distributed, and service-oriented web applications, several web
engineering references have to be included in the Guide to the SWEBOK in order to
update it. In this case, the significant amount of references in some knowledge areas
(e.g. software design) makes it impossible to stay within the limitation of the Guide to
the SWEBOK of five hundred pages of reference material per knowledge area.
Otherwise, if software engineering is required to remain a generic discipline,
independent of any deployment platform, the web engineering community should
analyze the advantages of developing a web engineering body of knowledge.

9.4 Overall Conclusions and Future Work

In conclusion, we should state that web engineering is a multidisciplinary discipline
strongly influenced by software engineering. Both disciplines are different, but have a
non-empty intersection. Thus, this paper tries to characterize the nature of this non-
empty intersection, reviewing a significant part of the web engineering literature
related to software engineering. This literature has been classified according to the
knowledge areas defined in the Guide to the SWEBOK, and after analyzing this
classification, we can conclude that software engineering is one of the main
constituent disciplines of web engineering.

Regarding the remaining constituent disciplines, as well as the unclassified
material, similar work to the one presented in this paper could be done in order to
characterize the remaining web engineering literature. Thus, the web engineering
discipline could be entirely characterized by its discrete constituent disciplines. After
the comparison of web engineering versus its constituent disciplines is made, the
decision to develop a web engineering body of knowledge could take into account
important background work that may help to make such a decision.

Acknowledgements

El Ministerio de Educación y Ciencia (TIN2008-06708-C03-01/TSI, TIN2009-
14317-C03-01/TSI), La Comunidad Autónoma de Madrid (4155/2005) and La
Universidad Complutense de Madrid (Group 921340) have supported this work.

References

[Abran, 04] Abran, J.W. Moore, P. Bourque, and R. Dupuis.: Guide to the Software
Engineering Book of Knowledge: 2004 Edition-SWEBOK. http://www.swebok.org 2004.

[Alur, 03] Alur, D., Crupi, J., and Malks, D.: Core J2EE Patterns. Best Practices and Design
Strategies. Sun Microsystems Press – Prentice Hall, Upper Saddle River, NJ, 2003.

[ACM, 00] Association for Computing Machinery. A Summary of the ACM Position on
Software Engineering as a Licensed Engineering Profession, 2000,
http://www.acm.org/serving/se_policy/selep_main.html.

[Barta, 98] Barta, R.A., and Schranz, M.W. (1998). JESSICA: an Object-Oriented Hypermedia
Publishing Processor. Computer Networks, 30: 281-290.

3198 Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

[Burke, 06] Burke, B., and Monson-Haefel, R. Enterprise JavaBeans 3.0. O’Reilly Media Inc.,
Sebastopol, CA, 2006.

[Callahan, 02] Callahan, D., and Pedigo, B. (2002). Educating Experienced IT Professionals by
Addressing Industry's Needs. IEEE Software 19: 57-62.

[Carrington, 05] Carrington, D., Strooper, P., Newby, S., and Stevenson, T. (2005). An
Industry/University Collaboration to Upgrade Software Engineering Knowledge and Skills in
Industry. Journal of Systems and Software 75: 29-39.

[Casteleyn, 09] Casteleyn, S., Daniel, F., Dolog, P., Matera, M. Engineering Web Applications.
Springer, 2009.

[Deshpande, 01] Deshpande, Y., And Hansen, S. (2001). Web Engineering: Creating a
Discipline among Disciplines. IEEE MultiMedia 8: 82-87.

[Deshpande, 02] Deshpande, Y. Murugesan, S., Ginige, A., Hansen, S., Schwabe, D., Gaedke,
M., and White, B. (2002). Web Engineering. Journal of Web Engineering 1: 3-17.

[Gellersen, 97] Gellersen, H.-W., Wicke, R., and Gaedke, M. (1997). WebComposition: An
Object-Oriented Support System for the Web Engineering Lifecycle. Computer Networks 29:
1429-1437.

[Ginige, 01] Ginige, A., and Murugesan, S. (2001). Guest Editors' Introduction: The Essence of
Web Engineering-Managing the Diversity and Complexity of Web Application Development.
IEEE MultiMedia 8: 22-25.

[IEEE, 90] IEEE Std. 610.12-1990. IEEE standard glossary of software engineering
terminology. The Institute of Electrical and Electronics Engineers, New York, NY, 1990

[ICWE, 09] International Conference on Web Engineering 2009,
http://icwe2009.webengineering.org/

[IJWET, 09] International Journal of Web Engineering and Technology,
http://www.inderscience.com/browse/index.php?journalID=48#board

[JWE, 09] Journal of Web Engineering, http://www.rintonpress.com/journals/jwe/

[Kappel, 04] Kappel, G., Michlmayr, E., Pröll, B., Reich, S., and Retschitzegger, W. 2004.
Web Engineering, Old Wine in New Bottles? In International Conference on Web Engineering
2004 (ICWE 2004), LNCS 3140, 6-12.

[Kappel, 06] Kappel, G., Pröll, B., Reich, S., and Retschitzegger W. (Eds.). Web Engineering:
The Discipline of Systematic Development. John Wiley & Sons Inc., Chichester, 2006.

[Lowe, 03] Lowe, D. (2003). Web system requirements: an overview. Requirements
Engineering 8: 102-113.

[Mendes, 01] Mendes, E., Mosley, N., and Counsell, S. (2001). Web Metrics-Estimating
Design and Authoring Effort. IEEE MultiMedia 8: 50-57.

[Mendes, 05] Mendes, E., and Mosley, N. (Eds.). Web engineering. Springer-Verlag, Berlin,
2005.

[Murugesan, 01a] Murugesan, S., and Deshpande, Y. (Eds.) Web Engineering: Managing
Diversity and Complexity of Web Application Development. LNCS 2016, Springer-Verlag,
Berlin, 2001.

[Murugesan, 01b] Murugesan, S., Deshpande, Y., Hansen, S., and Ginige, A. Web Engineering:
A New Discipline for Development of Web-Based Systems. In Web Engineering: Managing

3199Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

Diversity and Complexity of Web Application Development, S. Murugesan, and Y. Deshpande,
Eds. LNCS 2016, Springer-Verlag, Berlin, 2001.

[Navarro, 05] Navarro, A., Sierra, J.L., Fernández-Valmayor, A., and Fernández-Manjón, B. A
First Step Towards the Web Engineering Body of Knowledge. In Proceedings of Fifth
International Conference on Web Engineering, LNCS 3579, 2005, 585-587.

[Pressman, 04] Pressman, R.S. Software Engineering: A Practitioner’s Approach. 6th edition.
McGraw-Hill, New York, NY, 2004

[Rossi, 07] Rossi, G., Pastor, O., Schwabe, d. and Olsina, L. (Eds.) Web Engineering:
Modelling and Implementing Web Applications. Springer. 2007.

[Saiedian, 02] Saiedian, H., Bagert, D.J., and Mead, N.R. (2002). Software Engineering
Programs: Dispelling the Myths and Misconceptions. IEEE Software 19: 35-41.

[Suh, 05] Suh, W. (Ed.). Web Engineering Principles and Techniques. Idea Group Publishing,
Hershey, PA, 2005.

[White, 96] White, B. Web Document Engineering. Stanford Linear Accelerator Publication,
SLAC-PUB. 7150, 1996.

[WWW, 09] World Wide Web Conference 2009, http://www2009.org/

3200 Navarro A.: A SWEBOK-based Viewpoint of the Web Engineering Discipline

