Journal of Universal Computer Science, vol. 15, no. 14 (2009), 2765-2785
submitted: 28/6/09, accepted: 29/7/09, appeared: 1/8/09 © J.UCS

Realtime LEGO Brick Image Retrieval with Cellular
Automata

Leendert Botha
(Stellenbosch University, South Africa
Ibotha@cs.sun.ac.za)

Lynette van Zijl
(Stellenbosch University, South Africa
lvzijl@sun.ac.za)

McElory Hoffmann
(Stellenbosch University, South Africa
mcelory@cs.sun.ac.za)

Abstract: We consider the realtime content-based image retrieval of LEGO bricks
from a database of images of LEGO bricks. This seemingly simple problem contains a
number of surprisingly the image signature, and corresponding feature set, and illus-
trate cellular automaton-based methods for the whole feature extraction phase.

Key Words: Content-based image retrieval
Category: H.2.8 Image databases 1.5 Pattern recognition

1 Introduction

Content-based image retrieval (CBIR) has received renewed attention over the
past decade [Datta et al. 2008]. Real-world image retrieval systems for specific
domains have been investigated for diverse domains, such as photo album man-
agement, medical imaging, astronomy, and many others. Datta et al point out the
importance of such studies [Datta et al. 2008], and remarks that specific tech-
niques can often be generalized to other domains.

In this work, we consider the domain of images of LEGO bricks. We imple-
mented a content-based image retrieval (CBIR) system where a user submits an
image of a given LEGO brick, and the set of closest-matching bricks is retrieved
in realtime from a database of images of LEGO bricks. The practical applica-
tion here is for a user to identify an unknown LEGO piece and obtain metadata
about it.

This seemingly frivolous problem poses some interesting challenges. For ex-
ample, the images in the database must be identified by means of form rather
than primarily by color, as the same type of brick can have many different colors.
As the form of a brick is a three-dimensional feature, this requirement increases

2766 Botha L., van Zijl L., Hoffman M.: Realtime LEGO Brick Image Retrieval ...

the difficulty of the problem. Moreover, the images in the database and the user-
supplied input image can have different sizes, colors, perspectives and lighting
conditions. For example, in figure 1, the brick on the left-hand side is a so-called
2x4 brick, and is semantically the same as the brick on the right-hand side. The
next challenge in this problem is the fact that realtime recognition is required,
which means that the matching process must be fast.

Figure 1: Two semantically equivalent LEGO bricks.

The focus of our work was to find a ‘good enough’ solution that would accu-
rately recognize semantically equivalent LEGO bricks in realtime. We designed
a novel solution to the realtime LEGO brick matching problem, where the whole
feature extraction phase is solved with the use of cellular automata, while the
feature matching phase is solved mostly with known CBIR algorithms. We note
that this allows us to execute the feature extraction in total on a GPU, or alter-
natively, at least in parallel on several CPUs.

We describe our solution in section 2, and then analyse our results in sec-
tion 3. We conclude in section 4.

2 The LEGO domain CBIR system

The major components of our LEGO CBIR system are modules for edge detec-
tion, for feature extraction, for database operations and queries, and for the user
interface and results viewer.

The edge detection module takes as input the original image, and then per-
forms background elimination and edge detection on the image. The results are
returned as a binary image (see figure 6) with the non-zero pixels corresponding
to the edges of the LEGO brick.

The feature extraction module extracts the color, shape and stud formation of
the LEGO brick. It takes as input the background eliminated image (see figure 5)
and the binary edge detected image (see figure 6) and gives as output three
histograms containing the color information of the brick, two integers describing
the stud formation, and a feature vector encoding the shape of the LEGO brick.

Botha L., van Zijl L., Hoffman M.: Realtime LEGO Brick Image Retrieval ... 2767

The database module performs all database transactions, such as storing
images to and retrieving images from the database. Every search query effectively
browses through existing images, eliminating and sorting them according to the
specified search criteria.

2.1 Edge detection

The edge detection algorithm for the LEGO brick problem needs to isolate the
inside and outside edges of the brick, as well as the pattern of studs on the top of
the brick. The need for realtime analysis of the image effectively eliminated gen-
eral edge detectors such as the SUSAN edge detector [Smith and Brady 1997]
and the Canny edge detector [Canny 1986]. Instead, we investigated other sim-
pler and less accurate edge detectors which could provide realtime analysis. This
included the Sobel operator [Ballard and Brown 1981], the Roberts cross oper-
ator [Roberts 1965], the Prewitt operator [Prewitt 1994] and the Marr-Hildreth
algorithm [Marr and Hildreth 1980]. Each of these had its own problems for this
specific domain. For example, the Marr-Hildreth algorithm has problems with
the localization of curved edges, which occurs frequently in our data set.

Our final solution implements a method proposed independently by Popovici
et al [Popovici and Popovici 2002] and Chang et al [Chan et al. 2004], based on
cellular automata (CA). A CA is a k-dimensional array of cells. Given a cell in
a CA, one considers its neighbouring cells to decide its next state. All cells are
evaluated simultaneously (in parallel). In our case, the CA is 2-dimensional, and
each cell represents one color pixel in the image plane.

Following [Popovici and Popovici 2002], we define the next state of the CA
based on a transition function § : S° — 3, with

0, if o(s,8) <ei=1,...,4
s, otherwise

5(517 52,5,S83, 54) - {

Here, the states s; represent the Von Neumann neighbourhood of the current
cell s (see figure 2). Also, ¢(s,s;) is a similarity measure between the pixels
s and s; which decreases as the similarity increases, so that ¢(s,s) = 0. The
simplest method is to define ¢ as the Euclidean distance in RGB-space, thus
o(s,5:) = [|s — sq|.

It is important to note here that CA typically evolve over several time steps
to a stable configuration. In Popovici et al’s method, the CA performs one time
step only, which makes the use of a CA apparently superfluous. However, the
important point is that the evaluation of the new state of each pixel is done in
parallel as with all CA, and this parallel evaluation gives results superior to a
standard sequential traversal of the 2D array of pixels.

The CA was implemented so as to use either the vector angle or the Euclidean
measure as a distance measure, and it also offers the option of performing the

2768 Botha L., van Zijl L., Hoffman M.: Realtime LEGO Brick Image Retrieval ...

Figure 2: The Von Neumann neighbourhood of cell s in a CA.

edge detection in either the YIQ or RGB color space '. Sample output is shown
in figure 3.

Figure 3: The edge detected images using cellular automata (left) and the Canny
edge detector (right).

2.2 Background elimination

To be able to calculate accurate feature vectors for the image of the LEGO brick,
all of the pixels that correspond to the background need to be eliminated. The
problem of identifying the background is quite specific to this project, and we
designed custom algorithms to solve the problem. We again made use of CA.

2.2.1 Elimination based on color

All the images in the database are composed of objects photographed on a
background of a LEGO baseboard. The color of the baseboard is generally dis-
tinguishable from the color of the object. However, the studs on the baseboard
! Using the YIQ color space can increase search accuracy[Patel and Tonkelowitz 2003],

since the histogram distance measures in this color space corresponds more to human
perception.

Botha L., van Zijl L., Hoffman M.: Realtime LEGO Brick Image Retrieval ... 2769

form shaded areas which are much darker and are hence harder to recognise.
The first part of the background elimination process identifies the color of the
baseboard by taking the colors at the edge of the image (see figure 4). All pixels
which have approximately the same color are then removed. After this process,
the only background pixels that remain are the pixels that correspond to the
shaded regions under the studs. To eliminate the shaded regions, we used two
CA (described below). An example of the result from this phase is shown in
figure 4.

Figure 4: The original image on the left and the image after removing background
pixels, based on their color. The small border around the picture indicates which
pixels were used to determine the background color.

The first CA effectively eliminates pixels which are surrounded on all four
sides by background pixels. This CA uses a neighborhood distance of dy, in all
four directions of the grid. If background pixels are encountered within the dy,
distance in all of the four directions, then the objective pixel is identified to be
a background pixel. After a few iterations of this CA, most of the background is
eliminated, with the exception of straight lines that could occur in some lighting
situations. Note that the transition rule of this CA cannot remove straight lines
since no neighboring background pixels will be encountered in the direction of
the line.

A second CA is used to ‘break’ the straight lines. This CA uses a smaller
distance, dg, to look in all four directions, but this time, a pixel is identified as
background if either the horizontal or the vertical directions contain background
pixels within the distance dg.

Combining the above three steps yields the desired results as all of the back-
ground pixels are removed, except for those immediately adjacent to the object,
as can be seen in Figure 5. This is no problem, however, since no false edges
occur in that region and the desired result can be obtained by subtracting all
of the identified background pixels from the edge-detected image. An example
result is shown in figure 6.

The reader may note that there are indeed other algorithms to eliminate

2770 Botha L., van Zijl L., Hoffman M.: Realtime LEGO Brick Image Retrieval ...

Figure 5: The image after applying the two CA.

Figure 6: The final output after edge detection and background elimination.

background color. However, as noted earlier, we want to use only CA in the
feature extraction phase for potential GPU implementation.

2.3 Feature extraction

A LEGO brick is semantically defined by its form, studs and to a lesser extent its
color. Both the number of studs and the arrangement of the studs is significant.
For example, in figure 13, the top left brick is a rectangular 2 by 4 brick. It has
eight studs, arranged in a pattern of two rows of four studs each in straight lines.
Other brick forms include rounded bricks (top right), ‘macaroni’ bricks (bottom
right), and L-shaped bricks (bottom row, third from left). Note that the 2 x 2
brick (top row, second from left) has the same number of studs as the 1 x 4 brick
(bottom row, second from left), but these two bricks are clearly semantically
different.

The feature vector describing a LEGO brick therefore has to mathematically
describe its form, number of studs, stud arrangement, and color. Below, we
describe how we extract each of these different features into a single feature
vector for any given brick.

2.3.1 Stud location

The reader may notice that the edges of a stud has a distinctive shape due to the
projection of the images, and hence standard shape detection methods (such as

Botha L., van Zijl L., Hoffman M.: Realtime LEGO Brick Image Retrieval ... 2771

ellipse-detection) cannot be used here. Finding such non-standard shapes within
an image is typically done using template matching.

A template is a subimage which is itself a picture. Template matching is
the process of moving this template around the image until a location is found
which maximizes some match function. A popular match function is the squared
error [Snyder and Qi 2003]:

N N
SE(z.y) =Y. > (I(z—a,y—p)—T(a,p))?
a=14=1

where I is the image and T is the NV x N template.

Since we are (possibly) looking for more than one stud, we will be searching
for local maxima of the match function. A major problem with template match-
ing is that although the size of the template is constant, the size of the studs
in the image depend on the scale of the image. We therefore use a set of tem-
plates, as a dynamic resizing of the template to fit the scale of the image is time
intensive and an inaccurate resizing of the template could cause the algorithm
to fail.

Figure 7: Four edge detected bricks showing similarity in the shape of the studs.

The first requirement for the template matching algorithm is to create a
template. Figure 7 shows four edge detected LEGO bricks. Notice the similarity
in the shape of the studs, and also the invariance to slight rotation. Based on
these similarities, we finally developed the set of templates in figure 8.

Figure 8: The set of templates used in the template matching process.

Since the sizes of the individual templates differ, the score of the matching

2772 Botha L., van Zijl L., Hoffman M.: Realtime LEGO Brick Image Retrieval ...

function is scaled relative to the size of the template, in order to prevent large
templates from accumulating large scores in images of small scale. In order to
decrease the runtime, the centre point of the template is chosen in a way that
allows us to calculate the match function only for pixels that lie on edges, without
affecting the accuracy of the procedure. This reduces the runtime by up to a
factor of 20. This approach is valid, since we know that any pixel on the template
that is surrounded by a large number of white pixels (edges) is highly likely to
correspond to a white pixel (edges) on the image, when a stud is found.
The template matching process employs the following steps:

1. For each of the 12 templates:

— Place the template with its centre on each of the pixels corresponding
to the edges.

— Calculate the value of the match function (squared error) at every one
of these locations.

— Identify the highest score (most likely stud location).

2. Pick the template with the highest high score. This template will be used to
identify the studs.

3. Re-calculate the match values for the chosen template.

4. All of the pixels with a match value smaller than the threshold, are identified
as locations for studs.

5. Examine the chosen locations and eliminate multiple detections of the same
stud (two locations close to each other).

Notice that in step 3 above, the match is re-calculated. The alternative is to
store all of the 12 calculated match values for each pixel, but this could require
excessive memory for large images.

2.3.2 Stud formation

Given the locations of the centre points of all of the studs, the objective is to
determine in what formation they lie. Recall that we assume that all of the studs
lie on a grid, and the formation refers to the number of rows and the number of
columns in this grid. A brick with a total of eight studs divided into two rows
of four studs each, has a formation of 2 x 4.

This problem reduces to finding the set of straight lines £ = {l1,l2,...,1,}
of minimum cardinality such that each stud lies on exactly one [;. Note that,
since the exact positions of the studs cannot be determined, a stud is judged to
“lie on” a line if it is within a certain perpendicular distance from the line. This

Botha L., van Zijl L., Hoffman M.: Realtime LEGO Brick Image Retrieval ... 2773

problem has been shown to be APX-hard [Kumar et al. 2000], which means that
there exists polynomial-time approximation algorithms with approximation ratio
bounded by a constant. However, the number of studs is always small (typically
less than 24), so the performance gain of using an approximation algorithm over
an exact approach is not large enough to warrant the possible loss in accuracy.

Our algorithm starts off by choosing all possible combinations of two studs

and constructing lines between them. Assuming there are n studs, this step

n(n—1)
2

that lie on the line is calculated. Since there are O(n?) lines, and for each line
O(n) calculations are made, this has a complexity of O(n?). A greedy approach
is then used, repeatedly removing the line which covers the most studs and

constructs lines and is thus O(n?). For each line, the number of studs

eliminating the studs it covers, until no studs are left.

The algorithm for determining the stud location is presented below (see Al-
gorithm 1). Note that the output of the algorithm is the number of studs and
the number of lines needed to cover them. These two values are stored in the
database.

Given the stud locations and the stud arrangement, we need to find the form
of the brick. This is a three-dimensional problem, as the form is defined not
only by the outlying edges, but also the inside edges of the brick. Since we do
not have a calibrated setup, a three-dimensional matching based on standard
methods would be prohibitively expensive from a computational point of view.
Our solution was to simplify the problem to a two-dimensional problem, based on
the symmetry of the LEGO brick shapes. That is, all the standard LEGO bricks
are protruded shapes of the top surface of the brick. Therefore, if it is possible to
identify the top surface of the brick, the problem reduces to a two-dimensional
problem.

2.3.3 Identifying the top surface

The top surface is identified by flooding in all directions, starting at the stud
locations. Again, we implement this as a CA, which in essence floods from stud
locations to the nearest edge. Since the output from this phase will be encoded
into a feature vector, the flooded pixels themselves are not given as output but
rather the pixels that directly surround the flooded area.

Before the flooding can start, the edges that correspond to the studs need
to be removed. This is done by removing all edges that are covered by the
template at the identified locations. This typically leaves random noise on the
top surface, which is eliminated using a CA similar to the one used to eliminate
the background. An example of this whole process is shown in figure 9.

The final information needed to construct the feature vector of a given brick,
is its color information. We simply used the standard way of summarizing color

2774 Botha L., van Zijl L., Hoffman M.: Realtime LEGO Brick Image Retrieval ...

Algorithm 1 Determining the formation of the studs
procedure GET_FORMATION(Set of studs S)
L0 > Initialize the set holding the lines
for i — 1 to size(S) do > Add all possible lines
for j — i+ 1 to size(S) do
L — L + new Line{S.get(i), S.get(j)}
end for

end for

for each line [in £ do > Determine how many studs covered by each line
for each stud s in S do

if distance(l,s) < § then > If s lies very close to [
l.coveredStuds.add(s) > Add s to set covered by [
end if
end for
end for
count — 0 > The cardinality of the covering set
while size(S) > 0 do
I — L.removeMazx() > Remove line that covers most studs

S «— S — l.coveredStuds
count+ =1
end while

size(S)
count

return count, size(S) > The formation is count by
end procedure

values, namely, color historgrams [Siggelkow 2002, Deselaers et al. 2004]. To cre-
ate a color histogram, one constructs a separate 256-bin histogram for every color
channel [Kotoulas and Andreadis 2003]. We note that, in the LEGO brick ap-
plication, the color histograms are calculated on an object which has mostly
uniform color as compared to a whole image containing a wide variety of objects
and colors. For this reason, the RGB-color space may offer accurate enough re-
trieval and avoid the conversions between color spaces. We leave the choice of
color space (RGB vs YIQ) as an option to the user. Note that we normalize
the histograms, so that every bin indicates the percentage of values that fall in
that region, rather than the total number of values that fall in that region. The
normalized color histograms, in the RGB space, for the LEGO brick of figure 6
is shown in figure 10.

We are now finally able to encode the feature vector of a given LEGO brick,

Botha L., van Zijl L., Hoffman M.: Realtime LEGO Brick Image Retrieval ... 2775

e

Figure 9: The output of the flooding process for the brick of figure 6. The top left
picture shows the edges after the studs have been removed. A CA is applied to
remove the noise and the output is shown in the top right picture. The flooded
region is shown on the bottom left and the boundary of this region, which is to
be encoded into a feature vector, is shown on the bottom right.

Frequency
Freauency
Frequency

Bin (0-255) Bin (0-253) Bin {0-255)
Figure 10: The normalized color histograms, in the RGB space, for the LEGO
brick of figure 6.

based on its number of studs, stud locations, form, and color.

There are standards methods for encoding shape feature vectors, such as
chain codes, t-s curves, Fourier descriptors, and geometrical or spatial mo-
ments [Davies 2004]. In our case, we settled on using the Hu-set of invariant mo-
ments [Hu 1962, as it is computationally inexpensive, and invariant to changes

in rotation, scale and translation.

2.4 Feature matching

An interesting design choice made for the feature matching was the handling
of multiple search criteria. Searching for studs with the same stud formation
is straightforward since the database can clearly be divided into two mutually
exclusive groups: those that have the exact same stud formation, and those
that do not. However, for the color and shape comparison, the similarity is
given by a continuous match score (we implemented both bin-to-bin and cross-
bin quadratic color comparison algorithms). A threshold can be applied to this
match score, to determine which images are “close enough” to the query image.

2776 Botha L., van Zijl L., Hoffman M.: Realtime LEGO Brick Image Retrieval ...

A relatively accurate threshold can be determined for the color matching, but for
the shape matching the match score can assume a rather wide range of values,
and thresholding may eliminate shapes that are similar. To achieve the best
possible search results, the matching process is handled as follows:

— If color is the only search criterion, then the entries in the databases is sorted
according to the color match, and the n best entries are displayed.

— If shape is the only search criterion, then the entries in the databases is
sorted according to the shape match, and the n best entries are displayed.

— If both color and shape are search criteria, then thresholding is applied on the
color match score, eliminating the entries with a significant color difference
from the query image. The remaining entries are sorted according to the
shape match score and the n best entries are displayed.

— If stud formation is one of the search criteria, the entries without the re-
quired stud formation is eliminated and the remaining entries are processed
as above.

3 Analysis

The analysis of our system served to test each of our design decisions, and
compares different approaches to achieve the best result for this specific CBIR
application.

3.1 Edge detection

Recall that we used Euclidean distance in the similarity measure for our CA. As
vector angle [Davies 2004] is another standard measure, we implemented both
and compared the results (see figure 11). The Euclidean distance was computa-
tionally faster, and resulted in less noise in the top surface of the bricks, where
correct stud location is critical in later phases.

The next point in edge detection was to compare other standard edge detec-
tors to Popovici’s CA approach. When using the optimal parameters, both the
Canny edge detector and the CA edge detector deliver good results. However, we
found the Canny edge detector to be more sensitive to noise than the CA edge
detector (see again figure 3). The edges generated by the Canny edge detector
are much thinner than those generated by the CA. This can cause the template
matching phase to fail, as it is difficult to define a template that overlap with
the stud shape in all cases. The CA edge detector also requires substantially less
processing. Figure 12 shows the runtimes of the two methods for various image
sizes. By default, the system now uses the CA edge detector.

Botha L., van Zijl L., Hoffman M.: Realtime LEGO Brick Image Retrieval ... 2777

Figure 11: Edge detection using Euclidean distance (left) and vector angle (right)
as similarity measures.

Runtime (ms)
-
-

a - - - . - !
20 1890 W00 300 A0 440380 SO0w 44D BOORBOH To0xhs0

Image dimension

Figure 12: A graph showing the runtimes of the two edge detection methods, for
various images sizes.

3.2 Background elimination

The background elimination phase is clearly successful, leaving only minor traces
of the baseboard where it makes contact with the brick. It accurately removes
the background and it does so in minimal time. Figure 13 shows more sample
output from this phase.

3.3 Feature extraction

3.3.1 Color histogram

The successful construction of the color histogram only depends on the accuracy
of the background elimination phase and as such, is deemed to be an accurate
color descriptor. Test results for the retrieval based on color is given and discussed
in section 3.4.1.

2778 Botha L., van Zijl L., Hoffman M.: Realtime LEGO Brick Image Retrieval ...

.

Figure 13: Sample output from the background elimination phase.

3.3.2 Stud formation

The success of this phase depends to a large extent on the quality and lighting
conditions of the image. For high quality images with good uniform lighting, the
studs are accurately located using the template matching approach. Reflections,
noise and blur in the images can influence the process and may result in falsely
detected studs or studs that go undetected. Figure 14 shows a blurry image and
its edge detected variant, with the location of the detected studs marked with
red crosses. The template that was used for the matching is shown on the right
hand side. In this case, the failure is due to the blur in the original image, which
causes false edges to be detected. The two studs that went undetected were
particularly influenced by these false edges, to such an extent that the template
did not match.

Figure 14: A blurry image for which the stud detection process failed. The tem-
plate used in the process is shown on the right.

The reader may note that the stud detection process is crucial in the sub-
sequent correct identification of matching bricks. Our experiments show that
our stud detection is correct in more than 80% of cases, even for such difficult
situations as depicted in figure 15.

Botha L., van Zijl L., Hoffman M.: Realtime LEGO Brick Image Retrieval ... 2779

Figure 15: Difficult studs that are correctly detected.

3.3.3 Shape descriptor

The extraction of the shape feature vector depends on the accurate location of
the studs. As described in the previous section, the results of this phase is in
general satisfactory. The only other requirement for the successful completion of
this phase is that the boundary of the top surface must be continuous on the sides
where it is not in direct contact with the baseboard. Recall that the flooding
process stops when an edge or a background pixel is encountered. Figure 16
shows an example of a brick which does not have a continuous edge separating
the top surface from the rest of the brick. The result is that the whole brick is
flooded, resulting in an inaccurate feature vector.

Figure 16: An illustration of how the shape extraction process fails for a brick
that does not have a continuous edge separating the top surface from the rest of
the brick.

This problem is solved by simply adjusting the threshold of the edge detector,
which is a user adjustable option in the software. Figure 17 shows the same brick,
but with a better threshold used in the edge detection process.

3.4 Color-based retrieval
3.4.1 Bin-to-bin matching versus cross-bin matching

In general, the color matching was found to be accurate. The best results are
obtained using cross-bin matching, but this comes at a cost (see the runtime

2780 Botha L., van Zijl L., Hoffman M.: Realtime LEGO Brick Image Retrieval ...

Figure 17: The same brick from figure 16, using a better threshold, and resulting
in a perfect identification of the top surface.

analysis in section 3.6.2). To illustrate the difference in accuracy between the bin-
to-bin approach and the cross-bin-approach, a search query was performed on a
small set of images containing two red bricks, two green bricks and one blue brick.
A semi-transparent red brick was used as the query image. The search results
for bin-to-bin matching and cross-bin matching is shown in figures 18 and 19
respectively. From these figures, two major advantages of cross-bin matching
can be identified. Firstly, the good matches (according to human perspective)
generally tend to have lower color difference than the bad matches. Notice the
huge difference between the second and third bar in figure 19, whereas for bin-to-
bin matching the values are much closer, making it difficult to identify a suitable
threshold to separate the ‘good’ matches from the ‘bad’ matches. Secondly,

Bin-to-bin comparison Query image =

Nl
(EXd A

Brick in database

Color difference with
query image

Figure 18: The color differences between a query image (top right) and five of
the images in the database. The values indicate the Euclidean distance measure
between the two histograms.

notice the order of the search results. The last three search results in the case
of bin-to-bin matching are green, blue, green which is not quite intuitive, since

Botha L., van Zijl L., Hoffman M.: Realtime LEGO Brick Image Retrieval ... 2781

Cross-Bin comparison Query image =
8000
6000

24000
22000
20000 -
18000
16000
14000
12000
10000
a000
H000
4000
2000
o

Ky .l]

Brick in database

Color difference with
query image

Figure 19: The color differences between a query image (top right) and five of
the images in the database. The cross-bin distance measure is calculated using
the quadratic form.

human perspective would rate the two green bricks as equally close to a red
brick. No human would rate the one green brick as a better match than the blue
brick and the other green brick as a worse match than the blue brick.

3.4.2 RGB space versus YIQ space

The experiment in the previous section was done using the RGB color space.
In general, the RGB space was found to be more accurate than the YIQ space.
When performing the same search query in the YIQ space, the blue brick is
identified as a better match than one of the red bricks, as is indicated in figure 20.
As noted earlier, the color histograms in this application differ from standard
applications, since they describe objects of approximately uniform color. This
is, in our opinion, the reason why the RGB space outperforms the YIQ space in
this specific application. In its final version, the system has been configured to
use the RGB color space by default.

3.5 Shape-based retrieval

The shape-based retrieval is highly dependent on the quality of the shape fea-
tures extracted. If the top surface was identified correctly, then the shape-based
retrieval is accurate. An example is shown in figure 21, where a shape query was
made in a database containing five different shapes. The results are in the order
of best match, with the match score (lowest being best match) indicated under-
neath each brick. An identical brick with totally different orientation came up as

2782 Botha L., van Zijl L., Hoffman M.: Realtime LEGO Brick Image Retrieval ...

Query image = '
-~ PV O®

Figure 20: The inaccurate search results when searching by color using the YIQ
color space.

the best match by far, followed by two more curved bricks with the rectangular
bricks being the worst matches. The top surface that was used to construct the
feature vectors for each brick is also shown.

Query: Results:

RN =
14 191 194 247

191

Figure 21: A sample shape retrieval query. Note that the match scores are pre-
sented in thousands. The match score for the best match is actually 14,000.

3.6 Runtime analysis
3.6.1 Runtime for each phase

Figure 22 shows a complete profile of the processing time required for every
phase in our system. From the graph it is clear that no phase totally dominates
the processing resources. Note the interesting memory /processing trade-off in
the feature extraction phase: although minimal processing is required to con-
struct the color histograms, they require approximately 100 times more storage
space than the invariant shape features phase, which takes considerably longer
to calculate.

3.6.2 Database query speed

Figure 23 shows the time required to query the database for both cross-bin and
bin-to-bin color matching. Clearly, bin-to-bin matching is faster than cross-bin

Botha L., van Zijl L., Hoffman M.: Realtime LEGO Brick Image Retrieval ... 2783

B Edge Detection

B Background elimination
Creating Histograms

B Termplate Matehing

B Flooding
Caleulating memenls

Image size: 450 x 320
Total time: 1563 ms

Figure 22: An analysis of the proportion of time spent within each phase.

comparison, as is to be expected.

Runtime (ms)
H

3 6 9 12 15 I8 1 2 27 30 33 M 39 4 45 4
Size of database

Figure 23: The amount of time needed to query the database using cross-bin and
bin-to-bin comparison respectively.

3.7 Comparison with existing systems

A valuable measure of performance is comparison with existing systems. In this
case, however, there are no directly comparable systems available. Most systems,
such as the FIRE search engine [Deselaers et al. 2004], operate on a wide variety
of images and focus on clustering the images into broad groups. Specifying an
image of a LEGO brick as search criteria will in most cases return a wide variety
of toys and, at best, a few LEGO bricks, regardless of whether their shapes/colors
are similar to that of the query image.

2784 Botha L., van Zijl L., Hoffman M.: Realtime LEGO Brick Image Retrieval ...

4 Conclusion

We successfully implemented a CBIR system for the realtime retrieval of LEGO
images, based on cellular automata. We compared different approaches, and in
particular considered the use of CA. It was determined that the widely-used
YIQ color space, does not perform well for this application. The expensive,
optimal Canny edge detector was replaced by an inexpensive and simple CA
edge detector, which gave a solid foundation on which the later stages were built
successfully. It was also determined that the Euclidean distance measure is a
sufficient similarity measure between pixels and using the more complex vector
angle measure decreased the performance of the edge detector.

For the feature extraction, it was found that three 256-bin color histograms
are sufficient to provide accurate retrieval based on color. The locations of the
studs have been successfully determined using template matching with a set of
12 templates of various sizes. From this, the minimum number of lines that cover
the studs are determined, since this reveals the formation in which the studs lie.

The feature vector to describe the shape of the LEGO brick was obtained
by a semantic simplification from the 3D shape into a 2D shape. The optimal
‘signature’ for a LEGO brick was defined as the outline of the surface that
contains the studs. This feature was calculated and encoded using the Hu set of
invariant moments. The retrieval based on these invariant features are successful
and the time needed to match the shape feature to the database is minimal.

We conclude that the use of cellular automata for feature extraction is pos-
sible and allows for realtime retrieval for this application. Future work could
include the porting of the CA implementation to the GPU to measure perfor-
mance improvements. In addition, other applications where feature extraction
can be fully implemented with CA, could be investigated.

References

[Ballard and Brown 1981] Ballard, D. H., Brown, C. M.: Computer Vision; Prentice-
Hall Inc., Cliffs,E., 1981.

[Canny 1986] Canny, J.: “A computational approach to edge detection”; IEEE Trans.
Pattern Anal. Mach. Intell.; 8 (1986), 6, 679-698.

[Chan et al. 2004] Chan, C., Zhang, Y., Gdong, Y.: “Cellular automata for edge de-
tection of images”; Proceedings of the Third International Conference on Machine
Learning and Cybernetics; 3830-3834; 2004.

[Datta et al. 2008] Datta, R., Joshi, D., Li, J., Wang, J.: “Image retrieval: ideas, influ-
ences, and trends of the new age”; ACM Computing Surveys; 40 (2008), 2.

[Davies 2004] Davies, E.: Machine Vision: Theory, Algorithms, Practicalities; Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[Deselaers et al. 2004] Deselaers, T., Keysers, D., Ney, H.: “Features for image retrieval
— a quantitative comparison”; In DAGM 2004, Pattern Recognition, 26th DAGM
Symposium, number 3175 in LNCS; 228-236; 2004.

[Hu 1962] Hu, K.: “Visual pattern recognition by moment invariants”; IRE Transac-
tions on Information Theory; I'T-8 (1962), 179-187.

Botha L., van Zijl L., Hoffman M.: Realtime LEGO Brick Image Retrieval ... 2785

[Kotoulas and Andreadis 2003] Kotoulas, L., Andreadis, I.: “Colour histogram
content-based image retrieval and hardware implementation”; Circuits, Devices
and Systems, IEE Proceedings -; 150 (2003), 5, 387-93+.

[Kumar et al. 2000] Kumar, V., Arya, S., Ramesh, H.: “Hardness of set cover with
intersection 17; ICALP ’00: Proceedings of the 27th International Colloquium on
Automata, Languages and Programming; 624-635; Springer-Verlag, London, UK,
2000.

[Marr and Hildreth 1980] Marr, D., Hildreth, E.: “Theory of edge detection”; Proceed-
ings of the Royal Society of London. Series B, Biological Sciences; 207 (1980), 1167,
187-217.

[Patel and Tonkelowitz 2003] Patel, A., Tonkelowitz, I.: “Whassupp: A novel approach
to query-by-sketch using wavelet coefficients and color histograms”; Harvard Uni-
versity; (2003).

[Popovici and Popovici 2002] Popovici, A., Popovici, D.: “Cellular automata in image
processing”; Proceedings of the 15th International Symposium on Mathematical
Theory of Networks and Systems; University of Notre Dame, 2002.

[Prewitt 1994] Prewitt, J.: “Object enhancement and extraction”; Picture Processing
and Psychopictorics; 3 (1994), 231-262.

[Roberts 1965] Roberts, L.: “Machine perception of three-dimensional solids”; Optical
and Electro-optical Information Processing; (1965).

[Siggelkow 2002] Siggelkow, S.: Feature Histograms for Content-Based Image Re-
trieval; Ph.D. thesis; Albert-Ludwigs-Universitdt Freiburg, Fakultdt fiir Ange-
wandte Wissenschaften, Germany (2002).

[Smith and Brady 1997] Smith, S., Brady, J.: “Susan — a new approach to low level
image processing”; International Journal of Computer Vision; 23 (1997), 45-78.

[Snyder and Qi 2003] Snyder, W., Qi, H.: Machine Vision; Cambridge University
Press, New York, NY, USA, 2003.

