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Abstract: Checkpointing tools may be typically implemented at two different abstrac-
tion levels: at the system level or at the application level. The latter has become a more
popular alternative due to its flexibility and the possibility of operating in different en-
vironments. However, application-level checkpointing tools often require the user to
manually insert checkpoints in order to ensure that certain requirements are met (e.g.
forcing checkpoints to be taken at the user code and not inside kernel routines). The
approach presented in this work is twofold. First, a spatial coordination protocol for
checkpointing parallel SPMD applications is proposed, based on forcing checkpoints to
be taken at the same places in the application code by all processes. Thus, global con-
sistency is achieved without adding any new runtime communications or piggybacked
data, and without the need to use specific fault-tolerant message-passing implemen-
tations. Second, the paper also introduces a compilation technique for the automatic
insertion of checkpoints using the spatial coordination protocol, based on a static anal-
ysis of communications and a heuristic analysis of computational load. These analyses
can also be used to achieve automatic checkpoint insertion in approaches based on
classical protocols, such as uncoordinated checkpointing or distributed snapshots.
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1 Introduction

The basic difference between sequential and parallel applications in terms of
failure recovery is the existence of dependencies imposed by interprocess com-
munications. If a checkpoint is placed in the code between two matching com-
munication statements, an inconsistency would occur upon recovery, since the
first one will not be executed. Several solutions have been proposed to en-
sure the consistency of the checkpointing scheme. Uncoordinated checkpoint-
ing [Elnozahy et al. 2002] presents a good failure-free performance, but is sus-
ceptible to the domino effect [Randell 1975] and, since processes checkpoint in-
dependently, there exists the possibility of creating useless checkpoints. Blocking
coordinated checkpointing [Tamir and Sequir 1984] avoids the domino effect, but
may lead to significant overheads. In order to reduce the effects of coordination,
non-blocking coordinated schemes were proposed, the most studied to date being
the distributed snapshots protocol [Chandy and Lamport 1985].

It would be desirable to retain the efficiency and scalability of uncoordinated
checkpointing while, at the same time, guaranteeing the execution progress in the
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presence of failures. One way to achieve this goal in SPMD codes is to ensure
that all checkpoints are created not at the same time, but at the same code
locations by all processes. This technique, which we call spatial coordination, is
further described in the next section.

This paper describes compilation techniques for the automatic insertion of
checkpoints in SPMD applications using the spatial coordination protocol, which
is formalized in [Section 2]. The process of checkpoint insertion is divided in two
fundamental steps: a static analysis of communications, required in order to de-
tect safe points, described in [Section 3]; and a heuristic approach to estimate the
computational load of codes, that determines which of the detected safe points
are adequate checkpoint locations, covered in [Section 4]. [Section 5] presents the
experimental results obtained by the implementation of the presented techniques,
evidencing the usability of spatial coordination for a wide range of applications.
The related work is discussed in [Section 6], and [Section 7] concludes the paper.

2 Spatial coordination protocol

The proposal of spatially coordinated checkpointing implies identifying, at com-
pile time, code locations in an SPMD message-passing program where it is guar-
anteed that neither in-transit nor inconsistent messages exist. These code loca-
tions are called safe points. An example is shown in [Fig. 1], where ci,x represents
the x-th checkpoint in process pi, and each mk represents a communication be-
tween two processes.

Given two checkpoints, ci,x and cj,y, let us define the consistency relation,
ci,x ∼ cj,y, as a binary relation that is true whenever there are neither in-transit,
nor inconsistent messages exchanged by processes pi and pj between their x-th
and y-th checkpoints, respectively.

Let us assume that:

– All checkpoints are placed at safe points.

– All processes take the same number of checkpoints at the same safe points
in the code.

Then, by the definition of safe point, the x-th checkpoint at process pi will
be consistent with the x-th checkpoint at process pj :

∀i, j, x : ci,x ∼ cj,x (1)

Let us define the set of all checkpoints taken by each process pi as Ω(pi). Finding
a valid recovery line is as simple as finding the checkpoint with index x that
verifies:

∀i : ci,x ∈ Ω(pi) ∧ �y/ (∀j : cj,y ∈ Ω(pj) ∧ (y > x)) (2)
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Figure 1: Spatially coordinated checkpointing

That is, a checkpoint with index x exists in the set of checkpoints available for
recovering all processes, and it is the greatest index that fulfills that condition. By
[Eq. (1)], the set {ci,x, i = 1, . . . , n} forms a valid recovery line for all processes,
being n the number of processes executing the parallel application. According to
[Eq. (2)], it is also the most recent one. The garbage collection algorithm used to
delete useless recovery information is equally simple. Processes can periodically
communicate, in an asynchronous way, their most recently created checkpoint
index. By simply storing the minimum received value for all processes, a process
pi may determine that any checkpoint with an index lower than the minimum
will not be part of any valid recovery line in the future.

This approach has several advantages: (1) it rules out both the possibility
of the domino effect, and the creation of useless checkpoints, without the need
for any specific protocol at runtime; (2) checkpoints are taken independently by
each process, without any added communications, thus in a completely scalable
way; and (3) no assumptions are made about the properties of the communica-
tions channel, which could be unreliable and/or non-FIFO without affecting the
protocol. In order to achieve point (3), approaches based on runtime coordina-
tion resort to techniques like piggybacking, which causes an unacceptably high
overhead in communication-intensive codes, as stated in [Schulz et al. 2008].

3 Communication analysis

In order to automatically find safe points in the code, communication statements
must be analyzed by means of a send-receive matching. The proposed approach
is similar to a static simulation of the program execution, and focuses on MPI
codes, although it would be easily adaptable for other message-passing libraries.
Two communications are considered to match if the following conditions hold:

2896 Rodriguez G., Martin M.J., Gonzalez P., Tourino J.: A Heuristic ...



1. Their sets of sources/destinations are the same: if process pi executes the
send statement using process pj as destination, then pj executes the receive
statement using pi as source.

2. Their tags are the same or the receive uses MPI ANY TAG.

In order to statically compare source/destination pairs and tags, constant
propagation and folding must be carried out to determine their literal values
during the execution. Since propagating and folding all application constants
may prove to be computationally intensive, this operation is restricted to the set
of variables that are involved in the computation of parameters affecting commu-
nications. This set of communication-relevant variables is recursively calculated
as:

1. Variables directly used in tags or source/destination parameters.

2. Variables on which a communication-relevant variable depends. Note that
this includes the set of variables appearing in conditional expressions that
control modifications to other communication-relevant variables.

In order to optimize this process, only statements that modify communica-
tion-relevant variables are analyzed for constant folding, since any other does
not affect communications. Some communication-relevant variables are multi-
valued, that is, they potentially have a different value for each process. Thus,
the number of processes involved in the execution of the code must be known
beforehand to perform the constant folding. For instance, many applications are
written in a scalable fashion, using code that dynamically calculates neighbor
processes in the communication topology. These calculations are affected by the
total number of processes involved in the parallel execution. Thus, values for
the variables that contain the number of processes and the rank of a process
may be calculated. Note that the latter is multivalued (0, . . . , n − 1). Expres-
sions derived from multivalued variables are, in the general case, multivalued
themselves. The constant folding and propagation may be performed together
with the communication matching in the same compiler pass.

For keeping track of the communications status, a buffer object is used, start-
ing out empty. The analysis begins at the application’s entry point. Statements
that are neither control flow- nor communication-related are ignored. Each time
a new communication is found, it is first matched against existing ones in the
buffer. If a compatible match is not found, the communication is added to the
buffer and the analysis continues. If a match is found, both statements are con-
sidered linked and removed from the buffer, except when matching non-blocking
sends and receives. In this case, they remain in the buffer in an “unwaited”
status until a matching wait is found.
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A statement in the application code will be considered a safe point if, and
only if, the buffer is completely empty when the analysis reaches that statement.
An empty buffer implies that no pending communications have been issued, and
therefore an in-transit or inconsistent message may not exist at that point.

The following subsections deal with particular aspects of the communication
analysis, such as analyzing conditional expressions, procedure calls, collective
communications and the limitations of this analysis.

3.1 Conditional statements

When a conditional statement is reached, each conditional branch is indepen-
dently analyzed using a newly created buffer. The reason for doing this is that
no correct partial order for the statements in conditional branches may be es-
tablished. Communications found inside the conditional construct are added to
their corresponding buffer as usual, with an important difference: each one is
marked as being executed only if the expression controlling the execution of its
conditional path holds. When both branches have been fully analyzed, there
will be three different buffers: one for each of the analyzed conditional branches
plus the original one (although this is generalizable to conditionals with multiple
branches). All three buffers need to be merged into a single one representing the
state of the communications buffer after executing the conditional construct.
For this purpose, a binary operation (�) for merging two buffers B1 and B2 is
defined, consisting of two fundamental phases:

1. Redundant communications are removed from B1 and B2. These are com-
munications that are executed in incompatible conditional paths (e.g. on
different branches of the same conditional statement), but match the same
set of statements according to their source/destination and tag. If these
redundant communications were not identified, the algorithm would yield
incorrect results, since only one of the equivalent communications would be
correctly matched. Redundant communications are substituted by a single
representative one, that will be matched at the same point in the code where
each of the redundant ones would during execution. This enables consistent
discovery of safe points in the presence of redundant communication state-
ments.

2. Communications in B2 are orderly injected into B1. Matches are dealt with
as when analyzing regular sections of code. Non-matching communications
are added to B1.

Using the merge operation thusly defined, the resulting buffer from the anal-
ysis of the conditional block is calculated as:

Bo � (Bt � Bf ) (3)
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where Bo represents the original communications buffer (i.e. before reaching
the conditional statement), while Bt and Bf are the buffers used for analyzing
the true and false clauses of the conditional, respectively. The reason for first
merging the buffers obtained from analyzing the conditional branches (according
to [Eq. (3)]) is that communications in different conditional paths often match
between themselves.

When this operation ends, the resulting buffer represents the communications
state of a process that, starting in a state represented by Bo, executes the block
of code associated with the conditional statement.

The identification of safe points while analyzing a conditional is deferred until
the merging of the buffers is complete. This avoids the identification of false safe
points caused by using different independent buffers to analyze each conditional
branch.

Note that for some conditionals the control expression may be statically
determined during the constant folding. In these cases, only the appropriate
conditional branch is analyzed. Situations in which the control expression is
multivalued are also detected, and dealt with accordingly.

3.2 Procedure calls

When a procedure call is found, the ongoing analysis is stopped while the code
of the called procedure is processed using the same communications buffer. How-
ever, communications issued inside the procedure are also cached separately for
optimization purposes. If the procedure does not modify any communication-
relevant variable, cached results can be reused when a new call to the same
procedure is found, without analyzing the procedure code, but just symbolically
analyzing their tags and source/destination parameters again.

This optimization is employed whenever possible, thus avoiding the repeated
analysis of a procedure each time a call to it is found. If the procedure modifies
any communication-relevant variable, then it is analyzed each time a call is
found, since these modifications have to be tracked and applied to guarantee
correct constant folding.

3.3 Collective communications

In SPMD applications, the usual way of coding collective communications is to
make all involved processes execute a single, non-conditional line of code. Before
and after the execution of that line the collective communication does not affect
the consistency of communications. However, in the general case, codes may
contain a collective communication spread across several conditional paths. In
this case, all its parts are detected as redundant and it is ensured that checkpoint
placement does not generate restart inconsistencies.

2899Rodriguez G., Martin M.J., Gonzalez P., Tourino J.: A Heuristic ...



3.4 Matching ambiguous communications

Some parallel applications present irregular communication patterns (those where
tags and/or source/destination parameters are derived from the input data) or
nondeterministic communications (which use wildcard receives). In these situa-
tions, the information available at compile time may not be enough to completely
determine how the communications will play out during runtime. To ensure the
correctness of the results, a conservative solution is used. This approach is based
on considering any of the potential matches, deferring the match to the latest
possible one in the code. The correctness of the results is guaranteed, although
some actual safe points may not be considered as such for the sake of consistency.

3.5 Limitations

When dealing with applications featuring ambiguous communications, as de-
scribed in the previous subsection, the proposed solution might be unable to
find suitable safe points. This makes it impossible to deploy checkpoints at all
the locations selected by the checkpoint insertion analysis described in the next
section. However, such situations are uncommon, as shown in the experimental
assessment of the approach in [Section 5]. Despite some of the analyzed applica-
tions featuring ambiguous communications, suitable safe points were found for
all proposed checkpoint locations, proving the usability of the approach for a
wide range of applications.

4 Heuristic computational load analysis

In order to guarantee execution progress in the presence of failures, checkpoints
need to be inserted at places in the code that perform the core of the compu-
tation, and thus take the longest time to execute. However, it is not possible to
accurately predict the execution time of a section of code without precise knowl-
edge of the hardware executing it. To overcome this issue heuristic analyses are
employed, using computational metrics to discover critical sections of code.

The first step is to discard any code that is not nested inside a loop. This
decision is supported by the fact that any block of code which takes enough time
to run as to grant checkpointing during its execution is necessarily a loop, with
possibly nested loops in its body. After the isolation of the loop nests in the code,
the compiler proceeds to rank all such nests in order of estimated computational
load. After this step, the compiler dynamically selects a load threshold. Loop
nests above the threshold are checkpointed, while those below it are deemed not
relevant enough to guarantee checkpoint insertion. The decision to dynamically
select the threshold, as opposed to defining it as a constant in the compiler code,

2900 Rodriguez G., Martin M.J., Gonzalez P., Tourino J.: A Heuristic ...



responds to a desire to take into account how the total computational load of the
application is divided into its loop nests before selecting checkpoint locations.

The actual heuristic computational metric used is derived from two simpler
ones: the number of statements inside the loop and the number of variables these
statements access. The combination of both approximates the associated com-
putational load better than any of them. For instance, a loop may have many
statements that access mostly constants. These are not good candidates for
checkpointing, since they typically perform variable initializations. Conversely,
a loop might execute a low number of statements which perform costly computa-
tions. These are typically characterized for accessing a large amount of variables.
Note that the obtention of both metrics must be done in an interprocedural way:
the call graph of the application must be navigated, and the characteristics of the
contained subroutine calls taken into account for the calculation of the number
of statements and variable accesses contained in the loop code.

Let l be a loop in L, the loop population of the application P , and s and a

two functions that give the number of statements and variable accesses in a given
block of code, respectively. Let us define S(l) = s(l)/s(P ) and A(l) = a(l)/a(P )
the total proportion of statements and accesses, in that order, that exist inside
a given loop l. The heuristic computational load value associated to each loop l

is calculated as:
h(l) = −log(S(l) · A(l)) (4)

[Eq. (4)] multiplies S(l) and A(l) to ensure that the product is bigger for loops
that are significant for both metrics. It applies a logarithm to make variations
smoother. Finally, it takes the negative of the value to make h(l) strictly pos-
itive. Thus, the lower the value the higher the computing time estimated for
that loop. In order to select the best candidates for checkpoint insertion, the
compiler ranks loops in L attending to h(l) and applies thresholding meth-
ods [Sezgin and Sankur 2004]. After exploring several possibilities, a two-step
method has been adopted. First, a “shape-based” approach is used to select
the subset of the time-consuming loop nests in the application. The second step
restricts this selection by means of a “cluster-based” technique.

[Fig. 2] shows the proposed method applied to the BT application of the MPI
version of the NAS Parallel Benchmarks (NPB) [NAS NPB]. The loops have
been arranged in an ascending order from left to right. In the lower left corner,
l0 corresponds to the loop in the application with the biggest estimated com-
putational load. The darker part on the left corresponds to the subset of loops
selected by the first thresholding step. The darker rectangle on the right graph-
ically depicts the processing of this subset by the second thresholding method.
In the first step, using the so-called “triangle method”, loops in L are divided
into two classes: time-consuming loops and negligible loops. Conceptually, the
triangle method consists in: (a) drawing a line between the first and last values
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Figure 2: Thresholding method for checkpoint insertion in the NPB BT applica-
tion. Loop nests in the loop population L are ordered in the x axis according to
their h(l) value, represented in the y axis. The darker section on the lower right
is a detail of the subset H of loops in L selected by the first thresholding step,
and represents both h(l) and h′′(l) in the y axis.

of h(l); (b) calculating the perpendicular distance d(l) to this line for all l ∈ L;
and (c) calculating a threshold value lt such that d(lt) = max{d(l)}. This first
step selects a subset of the loop population, referred to as H , as time-consuming
loops candidates for checkpoint insertion. The triangle method was originally
developed in the context of image processing [Zack et al. 1977], and appears to
be especially effective when there is a narrow peak in the histogram, which is
often the case for the proposed h(l) function in real applications.

However, this first threshold selects more loops than would be desirable for
checkpoint insertion. The second step of the proposed algorithm refines this
selection using a cluster-based thresholding algorithm. Loops in H with simi-
lar associated costs are grouped into clusters, Ci, built by selecting the local
maximums of the second derivative of h(l) as partitioning limits. Since h(l) is
monotonically increasing, local maximums in h′′(l) represent inflection points at
which h(l) begins to change more smoothly. For an application with k clusters,
the method calculates a threshold value t such that:

t∑

i=0

h(l0i+1) − h(l0i ) >
k−1∑

i=t+1

h(l0i+1) − h(l0i ) (5)
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Loop # File Line Statements Accesses h(l) runtime (s)

1 bt.f 179 2075 5547 0.7755 143.12
2 exact rhs.f 24 107 490 3.1149 0.14
3 initialize.f 44 30 132 4.2368 8.44 · 10−2

4 error.f 25 19 47 4.8837 1.70 · 10−2

Total program statements 5084
Total variable accesses 13502

Table 1: Loops selected by the shape-based threshold for NPB BT

where l0i denotes the first loop in Ci. This method selects for checkpoint insertion
all the loops inside the clusters Ci such that i ≤ t. In the example, the first step
of the thresholding process selects a subset of four loop nests, out of the total
25 in the application, as candidates for checkpoint insertion. The values of h(l)
for these loops are detailed in [Tab. 1], as well as the total number of statements
and variable accesses in the application, shown for reference, and the real time
it takes for an execution of this application to run each of the considered loops.
These times were measured executing the BT class A code on 32 Itanium 2
cores. As can be seen, significant differences in h(l) for different loops respond
to significant differences in loop runtimes. Thus, the heuristic works reasonably
well for estimating computational load differences. The second thresholding step
groups all loops into two clusters, delimited by the single maximum in h′′(l).
Applying [Eq. (5)], the algorithm determines that the loops in C0 are responsible
for 56.94% of the total variation of h(l) in the H subset, and therefore selects
only loop #1 for checkpoint insertion. This loop is the main computational loop
in BT, and is the place where a manual checkpoint should be inserted.

Once identified the loops in which checkpoints are to be inserted, the re-
sults of the communication analysis described in the previous section are used
to insert a checkpoint at the first available safe point in each selected loop nest.
This approach can be also used to detect adequate checkpoint locations when
using other application-level checkpointing approaches (e.g. uncoordinated, dis-
tributed snapshots, etc.). Experimental results assessing the effectiveness of the
proposed method are detailed in the next section.

5 Experimental results

The communication analysis and the checkpoint insertion algorithm described in
the previous sections have been implemented into CPPC [Rodŕıguez et al. 2010],
an application-level checkpointing framework. CPPC focuses on achieving the
portability of the generated state files, making it possible to restart applica-
tions on architectures and/or OS different from those which originally gener-
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Application LOCs #L Manual checkpoints (file:line)

BT 3650 25 1 bt.f:179
CG 1044 13 1 cg.f:441
EP 180 4 1 ep.f:189
FT 1269 20 1 ft.f:159
IS 672 6 1 is.c:976
LU 3086 35 1 ssor.f:78
MG 1618 12 1 mg.f:245
SP 3148 25 1 sp.f::150

CalcuNetw 810 14 1 lee.c:320
Fekete 182 6 1 fekete.f:98

DBEM 12533 92
1 frmtrx.f:130
2 solver.f:240

STEM-II 6506 24 1 main.f:437

Table 2: Summary of test applications

ated the files. In order to improve efficiency, it only stores live variables and
uses a spatially coordinated approach. The framework is made up of a library
and a compiler. The CPPC library contains checkpointing routines. The CPPC
source-to-source compiler helps achieve transparency by relieving the user from
time-consuming tasks, such as data flow analyses and adding instrumentation
code. When extended with the automatic insertion of checkpoints presented in
this paper, the CPPC compiler provides a fully transparent approach to check-
pointing.

In order to conduct the experimental evaluation of the automatic insertion
of checkpoints, twelve applications were selected. The eight applications in the
NPB-MPI v3.1 benchmarks [NAS NPB]; two scientific applications in use in the
Supercomputing Center of Galicia (CESGA), CalcuNetw [Mouriño et al. 2003]
and Fekete [Bendito et al. 2007]; and two additional applications called DBEM
[González et al. 2000] and STEM-II [Mart́ın et al. 2003], included to test the
tool with large codes. The NPB are well-known and widespread applications
that provide a de-facto test suite. CalcuNetw computes some characterization
measurements in a given network, consisting of a set of nodes or vertices joined
together in pairs by links or edges, and compares it with a number of random
networks specified by the user. This is the only sequential application, and thus
no communication analysis is necessary. It is included to assess the behavior
of the analyses in this type of programs. Fekete determines the position of a
certain number of points on a 2-dimensional sphere such that the potential en-
ergy produced by the interaction of these points is minimum. This is the 7th

2904 Rodriguez G., Martin M.J., Gonzalez P., Tourino J.: A Heuristic ...



Application Automatic chkpts.
(file:line)

Communication
analysis time

Checkpoint inser-
tion time

BT 1 bt.f:179 2.449 s. 0.851 s.
CG 1 cg.f:441 0.636 s. 0.080 s.
EP 1 ep.f:189 0.078 s. 0.011 s.
FT 1 ft.f:159 0.837 s. 0.273 s.

IS
1 is.c:425

1.679 s. 0.048 s.2 is.c:976
3 is.c:396

LU 1 ssor.f:78 1.304 s. 0.388 s.
MG 1 mg.f:245 7.707 s. 0.317 s.

SP

1 sp.f:150

1.756 s. 0.783 s.
2 exact rhs.f:23
3 initialize.f:45
4 error.f:26

CalcuNetw 1 lee.c:320 0 s. 0.198 s.
Fekete 1 fekete.f:98 0.070 s. 0.015 s.

DBEM

1 frmtrx.f:130

15.233 s. 20.334 s.
2 solver.f:240
3 stress.f:37
4 gausspt.f:25

STEM-II 1 main.f:437 3.553 s. 1.448 s.

Table 3: Compilation techniques results

Loop # File Line Statements Accesses h(l)

*1 is.c 425 90 154 0.6570
*2 is.c 976 56 39 1.4595
*3 is.c 396 36 59 1.4716
4 is.c 387 23 38 1.8573
5 is.c 882 16 10 2.5947

Total program statements 242
Total variable accesses 260

Table 4: Loops selected by the shape-based threshold for NPB IS

of the Smale’s problems [Smale 1998]. DBEM performs a crack growth analysis
that leads to a large number of discretized equations. It solves the resulting dense
linear system using the GMRES iterative method. STEM-II is an air quality sim-
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Loop # File Line Statements Accesses h(l)

*1 sp.f 150 927 1783 1.0077
*2 exact rhs.f 23 107 490 2.5044
*3 initialize.f 45 30 132 3.6262
*4 error.f 26 19 47 4.2731
5 initialize.f 103 12 40 4.5427

Total program statements 2801
Total variable accesses 6009

Table 5: Loops selected by the shape-based threshold for NPB SP

Loop # File Line Statements Accesses h(l)

*1 frmtrx.f 130 1924 2869 0.5017
*2 solver.f 240 333 438 2.0797
*3 stress.f 37 214 426 2.2838
*4 gausspt.f 25 182 457 2.3236
5 bcs.f 123 135 237 2.7385
6 prpdir.f 34 84 180 3.0640
7 prpgtn.f 273 89 66 3.4747
8 sif.f 43 52 95 3.5499
9 linsyslp.f 473 60 69 3.6266
10 prpgtn.f 82 53 41 3.9065

Total program statements 3330
Total variable accesses 5262

Table 6: Loops selected by the shape-based threshold for DBEM

ulation, used to know in advance how the meteorological conditions, obtained
from a meteorological prediction model, would affect the emissions of pollutants
by the power plant of As Pontes (A Coruña, Spain) in order to fulfill EU regu-
lations. [Tab. 2] shows a summary of the characteristics of the test applications,
including lines of code (LOCs), the number of loop nests in the code (#L), and
the place (file and line number of the source code) where each checkpoint was
manually inserted by the authors during the assessment of the test applications.

Qualitatively, the results of the communication analysis for the test applica-
tions were always correct. Even for NPB IS, which presents an irregular commu-
nication pattern, the analysis classified lines in the code as safe or unsafe points
appropriately. Regarding the automatic checkpoint insertion, [Tab. 3] details the
places selected by the proposed heuristic. It can be observed that, compared to
the manually inserted checkpoints in [Tab. 2], some extra checkpoints are in-

2906 Rodriguez G., Martin M.J., Gonzalez P., Tourino J.: A Heuristic ...



serted in applications with similar heuristic values for both time-consuming loops
and negligible ones, but a time-consuming loop is never left uncheckpointed.
Thus, the proposed approach avoids significant loss of work. The table also de-
tails processing times, measured in a desktop computer, with an Intel Core2 Duo
at 3 GHz and 1 MB of RAM. Although the number of applications is insufficient
to develop a complete mathematical model of execution times, tendencies can
be inferred. The communication analysis tends to O(LOCs2). The checkpoint
insertion analysis does not depend on the LOCs of the application, but rather on
the number of loop nests, being O(#L2). As shown in [Tab. 3], the time spent
in the analyses is acceptably low for all test applications.

Analyzing the inserted checkpoints, for three out of the total twelve applica-
tions (IS, SP and DBEM) the compiler behavior does not match the manually
inserted checkpoints. In the NPB IS application, it selects two loops in addition
to the main computational loop. This conservative behavior is caused by the
small size of the application together with the fact that its loops have very simi-
lar sizes. In fact, this is the application with the smallest total variation in h(l),
and the one in which h(l) most closely resembles a straight line. This causes the
first step of the thresholding process to select a high number of loop nests as
candidates for checkpoint insertion, five out of the total six in IS. [Tab. 4] details
the loops selected by the shape-based thresholding step, being marked with an
asterisk those ultimately selected for checkpointing by the cluster-based thresh-
olding step. In NPB SP, the algorithm inserts four checkpoints, three of them
conservatively selected, as can be seen in [Tab. 5]. Conservative checkpoints are
also added for DBEM, as detailed in [Tab. 6]. Loop #1 has such a high associated
cost that it equalizes the h(l) range for the other loops. Thus, the cost function
associated to loop #2 is very similar to other non-time-consuming ones. This
results in two extra loops being checkpointed. For comparison purposes, [Tab. 7]
and [Tab. 8] present the loops in the H subset for NPB FT and NPB LU, respec-
tively, two of the applications for which the automatically inserted checkpoints
match the manually inserted ones.

6 Related work

Many checkpointing approaches in the literature perform structural analyses
and source code modifications to instrument checkpointing insertion. Most of
them, however, leave the insertion of checkpoints to be manually done by the
user, while automatically performing the remaining instrumentation (variable
storage, recovery, control flow, etc.). Porch [Ramkumar and Strumpen 1997] and
C3 [Bronevetsky et al. 2003] require that the user inserts checkpoint calls in the
code. These calls will only trigger an actual checkpoint according to a frequency
timer. These “potential checkpoints” were originally introduced by CATCH
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Loop # File Line Statements Accesses h(l)

*1 ft.f 159 189 337 1.2005
2 ft.f 676 9 24 3.5398
3 ft.f 689 9 24 3.5398
4 ft.f 702 9 24 3.5398
5 ft.f 1016 7 9 4.0750
6 ft.f 271 3 7 4.5521

Total program statements 743
Total variable accesses 1261

Table 7: Loops selected by the shape-based threshold for NPB FT

Loop # File Line Statements Accesses h(l)

*1 ssor.f 78 452 2251 1.0466
2 erhs.f 383 43 151 3.4828
3 erhs.f 118 33 116 3.7122

Total program statements 1961
Total variable accesses 7415

Table 8: Loops selected by the shape-based threshold for NPB LU

GCC [Li et al. 1994]. This tool for sequential applications also automated their
insertion by introducing a potential checkpoint at the beginning of subroutines
and at the first line inside a loop. This checkpoint placement guaranteed, in the
general case, that potential checkpoint calls would be executed often enough
so as to provide a checkpointing frequency reasonably close to the desired one.
This approach cannot be followed when using a spatial coordination protocol.
In this situation, checkpointing frequencies are not defined in temporal terms,
due to the need to statically coordinate all processes independently of how long
they take to progress through the application’s execution. Instead of statically
detecting safe points, C3 employs a coordinated protocol based on piggyback-
ing information into sent messages. Thus, every message being sent has to be
intercepted and modified. This introduces significant overheads when dealing
with applications with intensive collective communications, since each collective
message is translated to several point-to-point ones.

For checkpointing schemes that do not use runtime coordination, such as
our proposal, checkpoints have to be inserted at places where the global con-
sistency of the approach is guaranteed. When working with implicitly parallel
languages, the compiler is able to use the native constructions for parallelism
to extract information about safe points for checkpointing. Such is the case
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in [Choi and Deitz 2002], a work for the ZPL language where safe communication-
free checkpoint ranges are detected, and a checkpoint is inserted at the single
location in the range with the fewest live variables.

When working with explicit communication interfaces, such as MPI, the com-
munication pattern is user-defined. The compiler has to interpret the communi-
cation statements inserted in the code, and perform a communication matching
to find safe locations for checkpointing. Some analysis models have been devel-
oped with the goal of testing the correctness of the communication pattern in an
application. However, pursuing correctness verification is a tougher problem than
finding safe regions in the code, and these models typically present strong limita-
tions, such as not being able to deal with non-blocking communications or wild-
card receives (MPI ANY SOURCE and MPI ANY TAG) [Siegel and Avrunin 2005].

Performing static communication analyses typically involves the use of con-
trol flow graphs. For instance, in [Shires et al. 1999] this concept is extended for
MPI with the introduction of communication edges that connect communica-
tion nodes. Since correctness tests are not one of their goals, they assume that
the communications are correct and conservatively represent indeterminacies by
drawing all possible communication edges between the nodes involved. Using
this approach, safe points could be located by identifying nodes that have no
communication edges connecting one of its ancestors with one of its successors.
Since our goal is not to obtain a representation of the communication pattern
in the application, but rather to simply categorize points in the code as either
safe or non-safe, the graph may be omitted, using instead the communication
buffer object described in [Section 3] to represent pending communications at
each point in the code. Not building the graph has several advantages in terms
of efficiency. Mainly, it minimizes memory consumption and does not require the
analysis of the graph resulting from the compiler pass.

With regards to the automatic checkpoint insertion, some theoretical ap-
proaches calculating the optimal mathematical solution to the checkpoint place-
ment problem exist [Toueg and Babaog̃lu 1984, Vaidya 1997]. However, these
works assume that involved parameters such as underlying hardware, execu-
tion time, etc. are known in advance. This is not the case under the CPPC
framework, where the execution environment is not assumed to be fixed due to
its inherent characteristic of portability.

7 Concluding remarks and future work

The main contributions of this work are the introduction of the spatial coordina-
tion protocol for checkpointing message-passing applications, and the develop-
ment of an algorithm to automate checkpoint insertion using this protocol. This
technique consists in the automatic identification of safe points by means of a
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communication analysis, followed by the recognition of computation-intensive
loops based on the analysis of computational load metrics.

The heuristic algorithm has been experimentally tested, demonstrating the
validity of the approach for SPMD codes. It correctly selected adequate check-
points for all test applications, in places that guaranteed the progress of the
execution in the presence of failures. We are currently exploring ways to improve
the computational load metrics in order to enhance the efficiency of the resulting
codes by reducing the amount of conservatively-inserted checkpoints.

This algorithm has been integrated into the CPPC checkpointing framework
since version 0.7, where it helps achieve a completely transparent application-
level operation. CPPC is publicly available at http://cppc.des.udc.es under
GPL license.

The checkpoint insertion phase of the presented algorithm can be straightfor-
wardly used to insert checkpoints when working with other consistency schemes,
such as uncoordinated checkpointing, the distributed snapshots algorithm or in
message-logging approaches.
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