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Abstract: This paper focuses on the use of support vector machines on a typical
context-dependent classification task, splice site prediction. For this type of problems,
it has been shown that a context-based approach should be preferred over a transfor-
mation approach because the former approach can easily incorporate statistical mea-
sures or directly plug sensitivity information into distance functions. In this paper,
we designed three types of context-sensitive kernel functions: polynomial-based, radial
basis function-based and negative distance-based kernels. From the experimental re-
sults it becomes clear that the radial basis function-based kernel with information gain
weighting gets the best accuracies and can always outperform their simple non-sensitive
counterparts both in accuracy and in model complexity. And with well designed fea-
tures and carefully chosen context sizes, our system can predict splice sites with fairly
high accuracy, which can achieve the FP95% rate, 3.94 for donor sites and 5.98 for
acceptor sites, an approximate state of the art performance for the moment.
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1 Introduction

An important task in bio-informatics is the analysis of genome sequences for the
location and structure of their genes, often referred to as gene finding. With-
out going into detail, we will consider the case of eukaryotic species which are
characterized by the fact that they have cells with visible nuclei surrounded by
a nuclear membrane. Humans for example are eukaryotic species. In general,
a gene can be defined as a region of DNA that controls a certain hereditary
characteristic, although other definitions exist. More precisely, the region of the
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Figure 1: Transcription and translation in eukaryotes species. First a RNA se-
quence is transcribed from the gene on the DNA, next the RNA is spliced to
form the mRNA which then travels to the cytoplasm where it is translated into
a protein.

DNA sequence corresponding to the gene is used in the production of a specific
protein. In an organism, each cell essentially has the same set of genes, but it can
have different functions by making certain genes active and other genes inactive.

The expression of genes as proteins occurs in two steps: i) making the gene
active by means of the transcription of DNA into RNA and ii) the translation
of RNA into proteins. Taken together these two steps form the central dogma of
biology. We will concentrate on the first step here and explain it in some more
details next.

Transcription itself occurs in three steps as outlined in [Fig. 1]. In the first
step the raw DNA is transcribed to RNA. Transcription starts when the enzyme
called RNA polymerase binds to the promoter region of the gene and from this
starting point RNA polymerase moves downstream continuously synthesizing
RNA until a terminator sequence, called the stop codon, is reached.

In the second step, the RNA is transformed into messenger RNA or mRNA
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for short. It is called this way because it is the role of the mRNA to move the
information contained in DNA to the translation machinery, this is actually the
last step in the transcription process and is shown as step three in [Fig. 1]. But
now back to step two, i.e. the transformation of RNA into mRNA. One necessary
step in the process of obtaining mature mRNA is called splicing.

In many genes, the DNA sequence coding for proteins, or exons, may be
interrupted by stretches of non-coding DNA, called introns. A gene starts with
an exon, is then interrupted by an intron, followed by another exon, intron
and so on, until it ends in an exon. Splicing is the process by which the non-
coding sequences (i.e. the introns) are subtracted from the coding sequences (i.e.
the exons). In the light of the previous we can make a distinction between two
different splice sites: i) the exon-intron boundary which is referred to as the donor
site and ii) the intron-exon boundary which is referred to as the acceptor site.
Splice site prediction is the automatic identification of those regions in the DNA
sequence that are intron-exon or exon-intron boundaries. To see this it should
first be noted that DNA is essentially a sequence of nucleotides represented by
a four letter alphabet D = {A,C,G,T }. Next, an acceptor site is observed to
always contain the AG dinucleotide and the donor site is observed to always
contain the GT dinucleotide.

Because splice site prediction instances can be represented by a context of
a number of nucleotides before and after the AG/GT dinucleotides, it is called
a context-dependent classification task, which will be discussed in [Section 2] in
detail. Support vector machines (SVMs) are employed to do splice site prediction
in this paper. In practice a classifier is trained for each type of splice site, i.e.
the problem is split up into two binary classification problems: one classifier is
trained to distinguish acceptor sites from pseudo-acceptor sites and one classifier
is trained to distinguish donor sites from pseudo-donor sites.

More precisely, in SVM learning the data is mapped non-linearly from the
original input space X to a high-dimensional feature space F and subsequently
separated by a maximum-margin hyperplane in that space F . By making use of
the kernel trick, the mapping to F can stay implicit, and we can avoid working
in the high-dimensional space. Moreover, because the mapping to F is non-
linear, the decision boundary which is linear in F , corresponds to a non-linear
decision boundary in X . One of the most important design decisions in SVM
learning is the choice of kernel function K because the hyperplane is defined
completely by inner products between vectors in F and calculated through the
kernel function K. Moreover, K takes vectors from the input space X and di-
rectly calculates inner products in F without having to represent or even know
the exact form of these vectors, hence the implicit mapping and computational
benefit [Cristianini and Shawe-Taylor 2004]. In the light of the above it is not
hard to see that the way in which K is calculated is crucial for the success of
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the classification process.
Notice that an inner product is actually one of the most basic similar-

ity measures between vectors since it gives much information about the posi-
tion of these vectors in relation to each other. The learning process can ben-
efit a lot from the use of special purpose similarity or dissimilarity measures
in the calculation of K [Schölkopf 2000, Vanschoenwinkel and Manderick 2004,
Vanschoenwinkel et al. 2006]. However, incorporating such knowledge in a kernel
function is not trivial as a kernel function has to satisfy a number of properties
that result directly from the definition of the inner product.

Applying SVMs on contexts involves some issues that need to be addressed,
i.e. SVMs are defined on real vectors and not on contexts. Generally speaking two
approaches exist: i) the transformation approach, i.e. transform contexts to real
vectors, for example, bag-of-words approach [Joachims 2002] and orthonormal
vector approach [Vanschoenwinkel et al. 2005] and ii) the direct approach, i.e.
define kernel functions that work on contexts but calculate real inner products in
F . The transformation approach has been successfully applied to many classifi-
cation problems. Nevertheless, here we do not make use of the transformation ap-
proach but the direct approach. In previous work [Vanschoenwinkel et al. 2005,
Vanschoenwinkel et al. 2006], we have found that it is better to work directly on
contexts instead of on a transformed high-dimensional sparse format, because in
this way it is much easier to incorporate special purpose similarity measures into
the kernel function as such measures are defined on the contexts and not on a
high-dimensional representation of the contexts. Therefore these kernel functions
are called context-sensitive kernel functions.

The rest of this paper is organized as follows: [Section 2] shows what contexts
are and two popular distance functions defined on contexts, an overlap metric
and a modified value difference metric, which have already been introduced in
previous work and achieved good results [Vanschoenwinkel and Manderick 2004,
Vanschoenwinkel et al. 2005, Vanschoenwinkel et al. 2006]. Motivated by this, in
[Section 3], we introduce a number of kernel functions that make direct use of
the distance functions mentioned in [Section 2]. Next, [Section 4] shows some
experimental results on gene splice site prediction and finally, [Section 5] gives
a conclusion.

2 Context-Dependent Classification

In this paper we consider classification tasks where it is the purpose to classify
a focus string in a sequence of strings, based on a number of strings before and
after the focus string. The focus string, together with the strings before and
after it, is called a context and applications that rely on such contexts will be
called context-dependent. Splice site prediction is a typical example of a context-
dependent classification task.
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2.1 Context

We start with a definition of a context followed by an illustration in the frame-
work of splice site prediction.

Definition 1. A context s̄q
p is a sequence of strings si ∈ D with p strings before

and q strings after a focus string sp at position p as follows

s̄q
p = (s0, . . . , sp, . . . sp+q) (1)

with (p + q) + 1 the length of the context, with D the dictionary of all strings,
with |D| = m and with p the left context size and with q the right context size.

Example 1. Remind from the introduction that in splice site prediction it is the
purpose to automatically identify those regions in a DNA sequence to be donor
sites or acceptor sites. Splice site prediction instances can be represented by a
context of a number of nucleotides before and after the AG/GT dinucleotides.
More precisely, given a fragment of a DNA sequence, . . .CCATTGGTGGCAGCCAG . . .

the candidate donor site given by the dinucleotide GT can be represented by a
context in terms of [Definition 1] as

s̄q
p =

⎛
⎜⎝A, T, T, G︸ ︷︷ ︸

s0,...,sp−1

,GT︸︷︷︸
sp

, G, G, C︸ ︷︷ ︸
sp+1,...,sp+q

⎞
⎟⎠

with p = 4 the left context size and q = 3 the right context size and with
(p+ q)+1 = 8 the total length of the context. Notice that in this example single
characters are considered to be strings of length 1.

2.2 The Overlap Metric

The most basic distance function defined on contexts is called the overlap met-
ric, which simply counts the number of mismatching strings at corresponding
positions in two contexts.

Definition 2. Let S
n be a set with contexts s̄q

p and t̄q
p with n = (p + q) + 1

the length of the contexts, with strings si, ti ∈ D the dictionary of all distinct
strings with |D| = m and let w ∈ R

n be a context weight vector. Then the
overlap metric dOM : S

n × S
n → R

+ is defined as

S
n × S

n → R
+ : dOM (s̄, t̄) =

n−1∑
i=0

wi − δ(si, ti) (2)

with δ : S × S → {wi, 0} defined as

δ(si, ti) =
{

wi if si = ti

0 else
(3)

with wi ≥ 0 a context weight for the string at position i.
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Next, we make a distinction between two cases: i) for w = 1 no weighting
takes place and the metric is referred to as the simple overlap metric dSOM and
ii) for w �= 1 a position dependent weighting does take place and the metric is
referred to as the weighted overlap metric dWOM . A question that now naturally
rises is: What measures can be used to weigh the different context positions?

Information theory provides many useful tools for measuring statistics in the
way described above. In this work we made use of three measures known as
i) information gain [Quinlan 1986], ii) gain ratio [Quinlan 1993] and iii) shared
variance [White and Liu 1994]. For more details the reader is referred to the
related literature.

2.3 The Modified Value Difference Metric

The Modified Value Difference Metric (MVDM) [Cost and Salzberg 1993] is a
powerful method for measuring the distance between symbolic-valued vectors,
like the contexts considered here. The MVDM is based on the Stanfill-Waltz
Value Difference Metric [Stanfill and Waltz 1986] introduced in 1986. The MVDM
determines the similarity of all the possible strings at a particular context po-
sition by looking at co-occurrence of the strings with the target class. Consider
the following definition.

Definition 3. Let S
n be a set with contexts s̄q

p and t̄q
p with n = (p + q) + 1 the

length of the contexts as before, with components si and ti ∈ D the dictionary
of all distinct strings with |D| = m. Then the modified value difference metric
dMV DM : S

n × S
n → R

+ is defined as

S
n × S

n → R
+ : dMV DM (s̄, t̄) =

n−1∑
i=0

δ(si, ti)r (4)

with r a constant often equal to 1 or 2 and with δ : D × D → R the difference
of the conditional distribution of the classes as follows:

δ(si, ti)r =
M∑

j=1

|P (yj |si) − P (yj |ti)|r (5)

with yj the class labels and with M the number of classes in the classification
problem under consideration.

3 Context-Sensitive Kernel Functions

In this section we will introduce a number of kernel functions that make direct
use of the distance functions dSOM , dWOM and dMV DM defined in the previous
section. In the case of dWOM and dMV DM the kernels are called context-sensitive
as they take into account the amount of information that is present at different
context positions as discussed in the previous section.
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3.1 Theoretical Requirements

Remind that in the SVM framework classification is done by considering a kernel
induced feature mapping φ that maps the data from the input space X to a high
dimensional Hilbert space F and classification is done by means of a maximum-
margin hyperplane in that space F . This is done by making use of a special
function called a kernel.

Definition 4. A kernel is a symmetric function K : X × X → R so that for all
x and x′ in X , K(x,x′) = 〈φ(x), φ(x′)〉 where φ is a (non-linear) mapping from
the input space X into the Hilbert space F provided with the inner product
〈., .〉.

However, not all symmetric functions over X × X are kernels that can be
used in a SVM, because a kernel function needs to satisfy a number of conditions
imposed by the fact that it calculates an inner product in F . More precisely, in
the SVM framework we distinguish two classes of kernel functions: i) Positive
Semi-Definite kernels (PSD) and ii) Conditionally Positive Definite (CPD) ker-
nels.

Whereas a PSD kernel can be considered as one of the most simple general-
izations of one of the simplest similarity measures, i.e. the inner product, CPD
kernels can be considered as generalizations of the simplest dissimilarity mea-
sure, i.e. the distance ‖x − x′‖2 [Berg et al. 1984, Schölkopf 2000]. Consider the
following theorem.

Theorem 5. Let X be the input space, then the function K : X × X → R :

Knd

(
x,x′

)
= −‖x − x′‖β with 0 < β ≤ 2 (6)

is CPD. The kernel K defined in this way is referred to as the negative distance
kernel.

Another result that is of particular interest to us relates a CPD K to a PSD
kernel K̃ by plugging in K into the exponent of the standard radial basis function
kernel, this is expressed in the following theorem [Berg et al. 1984]:

Theorem 6. Let X be the input space and let K : X ×X → R be a kernel, then
K is CPD if and only if

Krbf

(
x,x′

)
= exp

(
γK (x,x′)

)
(7)

is PSD for all γ > 0. The kernel Krbf defined in this way is referred to as the
radial basis function kernel.
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For [Theorem 5] to work however, it was implicitly assumed that X ⊆ R
n,

because for non-vectorial data, like contexts, we can not define a norm or a
normed difference like in the RHS of [Equation 6]. More precisely, given the
results above, if we want to use an arbitrary distance dX , defined on the input
space X , in a kernel K, we should be able to express it as dX(x,x′) = ‖x − x′‖
from which it then automatically follows that −dX is CPD by application of
[Theorem 5].

In our case however, the input space is non-vectorial, i.e. X ⊆ S
n the set of all

contexts of length n and the distances dSOM , dWOM and dMV DM we would like
to use can therefore not be expressed in terms of [Theorem 5]. Nevertheless, in
previous work [Vanschoenwinkel et al. 2006, Liu et al. 2006] it has been shown
that −dSOM ,−dWOM and −dMV DM are CPD, which will be briefly explained
next. For more details the reader is referred to the related literature.

More precisely, for the overlap metric defined on the contexts it can be
shown that it corresponds to an orthonormal vector encoding of those con-
texts [Vanschoenwinkel et al. 2006]. In the orthonormal vector encoding every
string in the dictionary D is represented by a unique unit vector and complete
contexts are formed by concatenating these unit vectors. Notice that this is
actually the standard approach to context-dependent classification with SVMs
[Hua and Sun 2001] and in this light the non-sensitive linear, polynomial, radial
basis function and negative distance kernels employing the simple overlap metric
(i.e. the unweighted case) presented next, are actually equivalent to the standard
linear, polynomial, radial basis function and negative distance kernel applied to
the orthonormal vector encoding of the contexts.

Finally, for MVDM with r = 2, it can be shown that it corresponds to the
Euclidean distance in a transformed space, based on a probabilistic reformulation
of the MVDM presented in [Kasif et al. 1998, Liu et al. 2006]. However, it should
be noted that for MVDM with r = 1, −dMV DM is not CPD [Liu et al. 2006]
thus we can’t use it in our work.

3.2 A Weighted Polynomial Kernel

The first kernel defined here is based on [Equation 2] of the definition of the over-
lap metric from [Definition 2]. In the same way as before, we make a distinction
between the unweighted non-sensitive case and the weighted context-sensitive
case, for more details the reader is referred to [Vanschoenwinkel et al. 2006].

Definition 7. Let X ⊆ S
n be the input space with contexts s̄q

p and t̄q
p with

n = (p + q) + 1 the length of the contexts and si, ti ∈ D the strings at position
i in the contexts as before, and let w ∈ R

n be a context weight vector, then we
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define the simple overlap kernel KSOK : X × X → R as

KSOK

(
s̄, t̄

)
=

( n−1∑
i=0

δ(si, ti) + c
)d

(8)

with c ≥ 0, d > 0 and w = 1, the weighted overlap kernel KWOK : X × X → R

is defined in the same way but with a context weight vector w �= 1.

3.3 Negative Distance Kernels

Next, we give the definitions of three negative distance kernels employing the dis-
tances dSOM , dWOM and dMV DM , for more details we refer to [Liu et al. 2006].
We start with the definition of two negative distance kernels using the over-
lap metric from [Definition 2]. Similarly, we make a distinction between the
unweighted, non-sensitive case dSOM and the weighted, context-sensitive case
dWOM .

Definition 8. Let X ⊆ S
n be the input space with contexts s̄q

p and t̄q
p with

n = (p + q) + 1 the length of the contexts and si, ti ∈ D the strings at position
i in the contexts as before, and let w ∈ R

n be a context weight vector, then we
define the negative overlap distance kernel KNODK : X × X → R as

KNODK

(
s̄, t̄

)
= −dSOM (s̄, t̄)

1
2 β (9)

with 0 < β ≤ 2 and w = 1 as before, the negative weighted distance kernel
KNWDK : X × X → R is defined in the same way but substituting dWOM for
dSOM in the RHS of [Equation 9], i.e. with a context weight vector w �= 1.

Similarly, for the MVDM from [Definition 3] we can define a negative distance
type kernel as follows.

Definition 9. Let X ⊆ S
n be the input space with contexts s̄q

p and t̄q
p with

n = (p + q) + 1 the length of the contexts and si, ti ∈ D the strings at position
i in the contexts as before, then we define the negative modified distance kernel
KNMDK : X × X → R as

KNMDK

(
s̄, t̄

)
= −dMV DM (s̄, t̄)

1
2 β (10)

with 0 < β ≤ 2 as before.

3.4 Radial Basis Function Kernels

Next, we will give the definitions of three radial basis function kernels em-
ploying the distances dSOM , dWOM and dMV DM , for more details we refer to
[Vanschoenwinkel et al. 2006, Liu et al. 2006].
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We start with the definition of two radial basis function kernels employing
the overlap metric from [Definition 2]. In the same way as before, we make a
distinction between the unweighted non-sensitive case dSOM and the weighted
context-sensitive case dWOM .

Definition 10. Let X ⊆ S
n be the input space with contexts s̄q

p and t̄q
p with

n = (p + q) + 1 the length of the contexts and si, ti ∈ D the strings at position
i in the contexts as before, and let w ∈ R

n be a context weight vector, then we
define the overlap radial basis function kernel KORBF : X × X → R as

KORBF

(
s̄, t̄

)
= exp

(
− γdSOM (s̄, t̄)

)
(11)

with γ > 0 as before, with w = 1 and the weighted radial basis function kernel
KWRBF : X × X → R is defined in the same way but substituting dWOM for
dSOM in the RHS of [Equation 11], i.e. with a context weight vector w �= 1.

Similarly, for the MVDM from [Definition 3] we can define a radial basis
function type kernel as follows.

Definition 11. Let X ⊆ S
n be the input space with contexts s̄q

p and t̄q
p with

n = (p+ q)+1 the length of the contexts and si, ti ∈ D the strings at position i

in the contexts as before, then we define the modified radial basis function kernel
KMRBF : X × X → R as

KMRBF

(
s̄, t̄

)
= exp

(
− γdMV DM (s̄, t̄)

)
(12)

with γ > 0 as before.

4 Experiments

4.1 Overview

In this section, we will perform two series of experiments. The first series of ex-
periments are to see which context-sensitive kernel function is the most suitable
kernel for splice site prediction. Then in the second series of experiments, we will
explore more useful features to improve the performance further.

4.2 Software and Data

The experiments are conducted with LIBSVM [Chang and Lin 2001], which is
a Java/C++ library for SVM learning. The dataset we use in the experiments
is a set of human genes, which is referred to as HumGS [Degroeve 2004]. They
obtained the data set from [Pertea et al. 2001] who on their turn obtained it
from the GenBank, but checked it for errors and redundancy. In total, the data

2537Chen Y., Liu F., Vanschoenwinkel B., Manderick B.: Splice Site Prediction ...



data set genes GT+ GT− AG+ AG−
HumGS 1115 5733 484714 5733 655822
training / 4586 4586 4586 4586
testing / 1147 96943 1147 131165

Table 1: Overview of the data sets used for the splice site prediction experiments.

set contains 1115 genes which at the level of the splice sites comes down to
5733 donor sites (denoted by GT+) and 484714 pseudo-donor sites (denoted by
GT−) and 5733 acceptor sites (denoted by AG+) and 655822 pseudo-acceptor
sites (denoted by AG−). Because we train a classifier to predict donor sites
and another classifier to predict acceptor sites, separate training and test sets
are constructed for donor and acceptor sites. For the purpose of training the
classifiers, we constructed balanced training sets. For testing however we want a
reflection of the real situation and keep the same ratio as given in the original
set HumGS. This is shown in [Table 1].

Notice that we are limited by the number of actual splice sites as there are
only 5733, both for donor sites and acceptor sites, at our disposition. For this
reason, we do not construct a separate development set and parameter selection
is done through 5-fold cross validation on the training set.

4.3 Parameter Selection and Accuracy

Parameter selection is done by 5-fold cross validation on the training set. For
the ORBF, WRBF and MRBF, there are two free parameters that need to
be optimized: The SVM cost parameter C (which is a trade-off for the model
complexity and the model accuracy) and the radial basis function parameter γ.
We performed a fine grid search for values of C and γ between 2−16 and 25. For
the NODK, NWDK and NMDK only the cost parameter C has to be optimized
because we choose β fixed to 1 as this gives very good results, more precisely for
β = 2 results are not good at all, other values have not been tried. Again, values
for C between 2−16 and 25 have been considered.

For the SOK and the WOK we take d = 2 and c = 0 as previous work pointed
out that higher values for d actually led to bad results, while taking values for
c > 0 does not have a significant impact on the results.

As a weighting scheme for the weighted kernels, we used three different
weights: Information Gain (IG), Gain Ratio (GR) and Shared Variance (SV).

Splice site prediction systems are often evaluated by means of the percentage
of FP classifications at a particular recall rate. This measure is referred to as
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FP% [Degroeve 2004] and is calculated as follows:

FP% =
# false positives

# false positives + # true negatives
× 100

We used this evaluation measure for a recall rate of 95%, in this case the measure
is referred to as FP95%, i.e. the FP95% measure gives the percentage of the
predictions falsely classified as actual splice site at a level where the system has
found 95% of all actual splice sites in the test set. Note that it is the purpose to
have FP95% as low as possible.

4.4 Experiments 1: Find out the most suitable kernel function.

In the first step, our purpose is to try out all the kernel functions mentioned above
to see which one is the most suitable kernel. In order to keep the model simple,
here we only make use of one feature single nucleotide to represent the instance
and choose a fixed context size of 50 nucleotides before and 50 nucleotides after
the candidate splice site.

[Table 2] and [Table 3] give an overview of the final FP95% results and model
complexity in terms of the number of support vectors of the different kernels on
the splice site prediction task. Note that the confidence intervals have been
obtained by bootstrap resampling, at a confidence level α = 0.05 [Noreen 1989].
A FP95% rate outside of these intervals is assumed to be significantly different
from the related FP95% rate at a confidence level of α = 0.05.

From the results it can be easily seen that in all cases the context-sensitive
kernels making use of the WOM with IG, GR and SV weights and the MVDM
always outperform their simple non-sensitive counterparts both in accuracy and
in model complexity. Moreover in almost all cases this happens with a signifi-
cant difference. Another overall observation is that the difference in the results
between different context weights is not significant at all. Finally, it can be seen
that the best result for donor sites and acceptor sites is obtained by the WRBF
with IG weights. It should be noticed that WRBF with IG doesn’t outper-
form other context-sensitive kernels ,e.g., MRBF, NWDK, WOK, considering
a confidence level of α = 0.05. However, based on our knowledge on kernel
theory [Cristianini and Shawe-Taylor 2004] and previous study [Liu et al. 2006],
it shows that RBF kernel can always achieve the best performance. Hence we
choose WRBF with IG weights for the next experiments.

4.5 Experiments 2: Continue to improve performance further.

From the previous experiments, we know that the WRBF with IG can achieve
the best results. However, it is clearly not good enough. So for the next step, we
consider improving the performance further:
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Donor Site
Kernel and Weights Fixed Parameters FP95% #SV s

SOK c = 0, d = 2 7.19 ± 0.70 3414
WOK/GR c = 0, d = 2 6.51 ± 0.72 2126
WOK/IG c = 0, d = 2 6.38 ± 0.80 2151
WOK/SV c = 0, d = 2 6.43 ± 0.67 2156
NODK β = 1 7.97 ± 1.02 3372
NWDK/GR β = 1 6.43 ± 0.68 2803
NWDK/IG β = 1 6.40 ± 0.66 3009
NWDK/SV β = 1 6.38 ± 0.70 3169
NMDK β = 1, r = 2 6.38 ± 0.59 2625
ORBF / 7.46 ± 0.77 4327
WRBF/GR / 6.25 ± 0.72 2346
WRBF/IG / 6.21± 0.57 2348
WRBF/SV / 6.27 ± 0.75 2440
MRBF r = 2 6.40 ± 0.78 2364

Table 2: Splice site prediction, results for all kernels for donor sites.

Acceptor Site
Kernel and Weights Fixed Parameters FP95% #SV s

SOK c = 0, d = 2 10.00 ± 1.22 3635
WOK/GR c = 0, d = 2 9.06 ± 1.17 2698
WOK/IG c = 0, d = 2 9.04 ± 1.11 2647
WOK/SV c = 0, d = 2 9.07 ± 1.23 2695
NODK β = 1 11.36 ± 1.44 3696
NWDK/GR β = 1 9.71 ± 1.52 3143
NWDK/IG β = 1 9.66 ± 1.57 3380
NWDK/SV β = 1 9.76 ± 1.55 3252
NMDK β = 1, r = 2 12.63 ± 1.46 3146
ORBF / 10.50 ± 1.66 4927
WRBF/GR / 8.60 ± 1.65 2881
WRBF/IG / 8.49± 1.73 2906
WRBF/SV / 9.06 ± 1.43 2703
MRBF r = 2 12.19 ± 1.67 2836

Table 3: Splice site prediction, results for all kernels for acceptor sites.
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Figure 2: Feature sets extracted for splice site prediction.

Donor Site Acceptor Site

SN (left/right) 60/40 40/100
DN (left/right) 60/40 80/100
TN (left/right) 60/60 80/100

Table 4: Optimal left/right context sizes for donor sites and acceptor sites. Notice
that if two left/right context combinations can get the same result, we choose
one with smaller context sizes in order to reduce the computational complexity.

1. consider not only single nucleotide (SN), but also di-nucleotide (DN) and
tri-nucleotide (TN).

2. try the different left/right context size to get the optimal context size.

So far we only utilize single nucleotides. Inspired from our previous work,
sometimes the combinations of nucleotides also can contribute some useful in-
formation. Hence we extract not only SN, but also DN and TN as features to
represent the instance. The brief procedure is illustrated in [Fig. 2].

Then, for each feature set (SN, DN and TN), in order to find the optimal
combination of left/right context size, we do a grid search for left/right context
size between 20 and 100. [Table 4] lists the optimal left/right context size for
donor site and acceptor site. And [Table 5] and [Table 6] represents all the results
by doing a grid search to find the optimal left/right context size of SN, DN and
TN for both donor site and acceptor site, respectively.

Finally, we combine all the feature sets (SN, DN and TN) with their cor-
responding optimal context sizes to construct the final feature set. We choose
the WRBF kernel with IG weighting to perform 5-fold cross validation on the
training data to find the optimal parameters, C and γ (chosen from 2−16 to 25),
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Donor Site (FP95%)
��������������Left Context

Right Context
20 40 60 80 100

SN

20 7.82 7.54 7.67 7.80 7.84
40 7.28 6.89 7.23 7.04 7.37
60 6.97 6.54 6.56 6.82 6.82
80 7.04 6.67 6.97 6.62 6.99
100 6.99 6.86 6.75 6.93 6.97

DN

20 6.89 6.34 6.56 6.47 6.60
40 6.23 5.82 5.95 6.14 6.32
60 5.84 5.51 5.51 5.60 5.66
80 6.10 5.77 5.77 5.84 5.84
100 6.19 5.88 5.93 5.80 6.06

TN

20 6.99 6.67 6.78 6.91 7.06
40 6.49 6.19 6.17 6.36 6.54
60 6.47 5.93 5.86 6.04 5.99
80 6.27 6.04 5.88 5.99 6.14
100 6.14 6.04 5.97 5.95 6.04

Table 5: Results for a grid search to find the optimal left/right context sizes for
donor sites. All the results are obtained using the kernel WRBF with IG and for
the parameters, C is chosen from 2−16 to 25, γ is also chosen from 2−16 to 25.

build the model on the entire training data with the optimal parameters and
apply the obtained model on the test data to do the splice site predictions.

The final results are shown in [Fig. 3] compared with the result of Experi-
ments 1. It can seen clearly that the FP95% values of Experiments 2 are much
lower than those of Experiments 1, i.e., 2.27 lower for donor sites and 2.51 lower
for acceptor sites. The model built here can always outperform that built in
[Subsection 4.4]. This means that the DN and TN feature sets indeed have a
positive effect on the performance and hence it is worth incorporating them into
our prediction model.

4.6 Analyzing Experimental Results.

In this section, we will compare our final experimental results with other leading
systems, GeneSplicer[Pertea et al. 2001] and Maxentscan[Yeo and Burge 2003],
which have been already published in the literature. GeneSplicer uses a decision
tree method called maximal dependence decomposition (MDD) and enhances it
with Markov models that capture additional dependencies among neighboring
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Acceptor Site (FP95%)
��������������Left Context

Right Context
20 40 60 80 100

SN

20 10.75 10.36 9.40 9.49 9.42
40 10.31 10.05 9.33 8.92 8.78
60 10.68 9.70 9.35 8.87 8.92
80 10.53 9.79 9.15 9.07 8.98
100 10.55 9.92 9.02 9.03 8.98

DN

20 9.48 9.00 8.50 7.95 7.93
40 9.57 8.70 8.17 7.82 7.54
60 9.26 8.54 8.11 7.80 7.58
80 9.18 8.67 8.39 7.76 7.45
100 9.41 8.67 8.41 7.98 7.69

TN

20 11.55 10.81 9.92 9.24 9.11
40 11.27 10.24 9.44 8.59 8.61
60 11.14 10.00 9.07 8.78 8.52
80 10.90 10.16 9.31 8.94 8.46
100 10.70 10.35 9.46 8.94 8.50

Table 6: Results for a grid search to find the optimal left/right context sizes for
acceptor sites. All the results are obtained using the kernel WRBF with IG and
for the parameters, C is chosen from 2−16 to 25, γ is also chosen from 2−16 to
25.

Donor Site (FP95%) Acceptor Site (FP95%)

Our system 3.94 ± 0.49 5.98 ± 0.72
GeneSplicer 6.50 5.95
Maxentscan 7.80 11.00

Table 7: Evaluation results of our system compared with other systems.

bases in a region around the splice sites. And Maxentscan makes use of Maximum
Entropy principle. The detailed results are listed in [Table 7].

From [Table 7], it is clear that for donor site, our system can outperform
other two systems with confidence level of α = 0.05 while for acceptor site, it
can achieve the approximately same result as GeneSplicer and two times better
performance than Maxentscan does. Therefore the experimental results conform
to our expectation. SVMs can make use of kernel trick to avoid computing the
inner product in high-dimensional feature space so that SVMs won’t suffer from
local minimum problem. Moreover, by incorporating special purpose similarity or
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Figure 3: Comparison the FP95% results of between Experiments 1 and 2. It
can be shown that the difference is significant with 95% confidence interval.

dissimilarity measures in kernel functions, we can capture more essential domain
knowledge to increase the accuracy of our system.

5 Conclusions and Future Work

In this paper it has been shown how different statistical measures and distance
functions can be included into kernel functions for SVM learning in context-
dependent classification tasks. The purpose of this approach is to make the
kernels sensitive to the amount of information that is present in the contexts.
More precisely, the case of splice site prediction has been discussed and from
the experimental results it becomes clear that the sensitivity information has a
positive effect on the results. Moreover, with further well designed features and
carefully chosen context sizes, we can improve the overall performance more.
Through comparing our final experimental results with other leading splice site
prediction systems, it can be seen easily that our system can outperform them
significantly with 95% confidence interval.

In the future, we will consider applying our context-sensitive kernels on
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more complex features like combinational features, reading frame features, etc.
which have been investigated in [Degroeve 2004] to see whether the sensitiv-
ity information will still be significant in a system. And we will explore some
more complex distance functions into kernel functions, e.g., Levenshtein distance
[Levenshtein 1966], Jaro-Winkler distance [Winkler 1999] and etc.
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