
Online Detecting and Predicting Special Patterns over

Financial Data Streams

Tao Jiang, Yucai Feng
(College of Computer Science and Technology, Huazhong University of Science

& Technology, PR. China
jiangtao guido@yahoo.com.cn, fyc@dameng.com)

Bin Zhang
(Department of Computer Science, Hengyang Normal University, PR. China

zhangbin selina@yahoo.com.cn)

Abstract: Online detecting special patterns over financial data streams is an interest-
ing and significant work. Existing many algorithms take it as a subsequence similarity
matching problem. However, pattern detection on streaming time series is naturally ex-
pensive by this means. An efficient segmenting algorithm ONSP (ONline Segmenting
and Pruning) is proposed, which is used to find the end points of special patterns.
Moreover, a novel metric distance function is introduced which more agrees with hu-
man perceptions of pattern similarity. During the process, our system presents a pat-
tern matching algorithm to efficiently match possible emerging patterns among data
streams, and a probability prediction approach to predict the possible patterns which
have not emerged in the system. Experimental results show that these approaches are
effective and efficient for online pattern detecting and predicting over thousands of
financial data streams.

Key Words: special patterns, detecting, predicting, financial data streams

Category: H.2.8, I.5, I.2

1 Introduction

Finding special patterns over financial data streams is a very interesting and
valuable work. We can make use of these patterns to help us forecast the price
trend of finance time series and make correct decision. A special pattern in
financial time series is a set of sequential data items collected in discrete time
points, describing a meaningful price tendency of evolving data items during a
period of time. Fig. 1 shows a typical pattern of Up Triangle. We can observe
that the price of the end point D is higher than B ’s price and the prices of the
end points A, C and E have a nearly same level. In other words, these end points
form an Up Triangle pattern.

How to find these special patterns? A kind of technique is subsequence
similarity matching. However, the technology generally use Euclidean distance
(L2-norm) [Agrawal et al. 1993] and DTW [Berndt and Clifford 1996] (Dynamic
Time Warping) to measure the similarity between stream subsequence and query

Journal of Universal Computer Science, vol. 15, no. 13 (2009), 2566-2585
submitted: 31/10/08, accepted: 13/6/09, appeared: 1/7/09 © J.UCS

0 10 20 30 40 50 60
3

4

5

6

7

8

9

10

11

12

trade time (60 weeks)

st
oc

k
pr

ic
e

A

B

C

D

E

Figure 1: An Up Triangle pattern of financial data stream

subsequence. When using L2-norm, it requires two sub sequences to keep the
same length. However, for two same patterns from different financial data streams,
the subsequences often keep different in length. In addition, it is well-known that
Euclidean measure is very sensitive to distortion and noise [Keogh 2002]. So the
effectiveness of using Euclidean distance will be very poorly. When using DTW,
it often has a larger computing cost in a direct implementation and doesn’t suit
data stream environment in real time. Although DTW can handle local time
shifting and scaling, it is still sensitive to amplitude shifting. In fact, Perng et
al. (2000) refered to existing six transformations and it is especially obvious in
financial data streams. So, using such methods can not obtain a good effect in
detecting special patterns of financial time series.

Although existing some models can be used to detect special patterns exist-
ing in financial data streams, for example, Landmarks [Perng et al. 2000], SpADe
(Spatial Assembling Distance) [Chen et al. 2007]. Landmarks model uses Land-
mark which can be conceived of some important data points such as extreme
points to represent a data stream. The model can monitor some special pat-
terns, for example, Double Bottom. However, its approximated function (i.e.,
y = ax3+bx2+cx+d) has less fidelity than linear representation (i.e., y = ax+b)
so that the method has a lower efficiency; on the other hand, their model needs
to spend much time in computing and it is difficult to adapt to the high speed
data streams. Recently, Chen et al. (2007) presented SpADe model which can be
used to find the patterns based-on shape for whole time series or sub sequences
and define the distance of two local patterns as a weighted sum of the differences
in amplitude and shape features of two local patterns. However, it is a uniform
model and didn’t consider the pattern features of the financial data streams.

Wu et al. (2004) pointed out that the online piecewise linear representa-
tion of financial stream data should be an up-down-up-down repetitive pattern,
that is zigzag shape. Moreover, he also proposed an online event-driven subse-

2567Jiang T., Feng Y., Zhang B.: Online Detecting and Predicting...

quence matching algorithm over the financial data streams. They use a financial
indicator %b, namely Bollinger Band Percent, to afford a piecewise linear repre-
sentation for the stream time series. However, we observe that using %b to prune
a financial stream sequence can not acquire better accuracy. Fig. 2 illustrates
the problem, because the left curve and the right curve have a different trend
in the graph. In addition, they define an own subsequence similarity matching
function which does not suit shape pattern discovery. Because the data values
of different financial streams have a very greater difference, for example, Intel
stock price is 23.8$ in August 1, 2007, however IBM stock price is 112.04$ in
August 1, 2007 and people generally pay more attention to the shape of stream
data in pattern recognition domain.

5 10 15
0

5

10

15

Trade time (18 weeks)

St
oc

k
pr

ic
e

5 10 15
0.8

1.0

1.2

1.4

1.6

Trade time (18 weeks)

%
b

Figure 2: Left) Week close price of raw financial stream data; Right) The corre-
sponding %b values of stream

In pattern detection on streaming time series, although we have no priori
knowledge on the positions and lengths of the possible matching patterns, we
can obtain feature information of some fixed pattern shape which can be uti-
lized to segment financial stream sequence. In our paper, we make use of PLA
(Piecewise Linear Approximation) [Keogh and Pazzani 1998] to segment the fi-
nancial streams into a series of segments with different lengths. In the process of
segmenting, we also utilize some other important feature information, for exam-
ple, local extreme points and Err(S) which is defined by the squared Euclidean
distance between the approximated time series and the actual time series. We
use a sliding window to scan financial stream and identify some critical points
(namely, end points) of recent subsequences from streaming time series. When-
ever a new end point is identified, we store it into a B+-tree index and update
the index. Moreover, we propose a pattern matching algorithm and a probabilis-
tic predicting approach, and a new distance metric function which takes into
account the time span and the proportion of amplitude change. Our method can
efficiently identify and predict the most existing patterns of the financial time
series, for example, Double Bottom, Up Triangle and Head and Shoulders, etc.

The rest of the paper is organized as follows. Section 2 briefly introduces
the related works on data stream processing and pattern detecting. Section 3
describes our strategy of pre-processing over incoming streams. The algorithms of

2568 Jiang T., Feng Y., Zhang B.: Online Detecting and Predicting...

pattern matching and pattern prediction are discussed in section 4, including the
pattern similarity measurement function. Section 5 is our experiment evaluation
and Section 6 concludes the paper.

2 Related Work

In the literature, many research works have been proposed for stream pattern
discovery. Zhu et al. (2003) studied burst detection in streams and proposed a
new data structure SWT (Shifted Wavelet Tree). Bulut et al. (2005) presented
a universal framework which actually is a multi-resolution indexing scheme. Y.
Sakurai et al. (2007) used DTW to monitor stream patterns. C. Aggarwal (2003)
proposed the concept of velocity density estimation and discussed the tech-
nique to understand, visualize and determine trends in the evolution of fast
data streams. Papadimitriou and Yu (2006) introduced a method to discover
optimal local patterns, which concisely describe the main trends in a time series.

However, above-mentioned works are mainly focused on a single data stream.
Monitoring multiple streams is also interesting. Zhu et al. implemented a finan-
cial stream monitoring system StatStream [Zhu and Shasha 2002] which can be
used to monitor thousands of data streams by correlation coefficients in real
time. Sakurai et al. introduced BRAID [Sakurai et al 2005], which efficiently de-
tects lag correlations between data streams. SPIRIT [Papadimitriou et al 2005]
addressed the problem of capturing correlations and finding hidden variables
corresponding to trends in collections of data streams. Lian et al. (2007) made
use of multi-resolution approach to match data stream with a given query pat-
tern. Recently, Zhang et al. (2007) proposed an Boolean representation based
data-adaptive method for correlation analysis among a large number of streams.

To our best knowledge, there is a little of study on detecting pattern over
the financial data streams, especially online monitoring special patterns, such as
Double Bottom, Double Top, Bottom Triangle and UP Triangle, etc. Our work
differs from previous research in several aspects. Firstly, we take a different seg-
menting and pruning strategy which is more suit to detect a special pattern.
Secondly, a new distance metric function is used in our pattern matching ap-
proach and it takes into account not only shifting and scaling in temporal and
amplitude, but also the difference of data values from different stream time series.
At last, we present a probabilistic prediction which can forecast possible pattern
by previous end points and historical information stored in main memory.

3 Online Stream Processing

3.1 Adjustment and smoothing

In financial market, sometimes stock price may be dramatically changed by a
stock split or stock merge. So, we need to adjust the data values so that they

2569Jiang T., Feng Y., Zhang B.: Online Detecting and Predicting...

keep on the same ratio for the change. From [Fig. 3], we can see the stock price
have a sharp decrease on the position of broken line. In fact, this is caused by a
stock split. For example, the close price of one stock is 20.0$ in August 17, 2007,
and each share is split two shares in August 18, 2007. So, its actual price will be
changed into 20.0$/2=10.0$, since then. For the case of merge, the computation
is a reverse process. In our paper, we make dynamic adjustment for the financial
data streams so as to keep the continuity of their data values by above method.

Figure 3: Stock price dramatically decreases owing to stock split

In real stock market, streaming time series often are affected by many factors
which make a lot of noises existing in them. However, a pattern indicates a longer-
time trend. So, smoothing is a necessary and indispensable means. An important
and available way is moving average which is widely used in the financial market.
In the paper, we use the method to smooth a financial data stream.

3.2 Segmenting and pruning

Before pattern matching, we need to segment financial data stream into different
length segments. It actually is a process of identifying the critical points of stream
sequences. A critical point is a local uppermost point or a local lowermost point.
In our paper, a critical point also takes on the following characteristics: (i) it
can be approximated with line curve with a smaller approximation error; (ii) it
needs to undergo a longer time.

Our segmenting algorithm is based on the k-period moving average value.
Similarly to the segmenting algorithm [Wu et al. 2004], we use a sliding window
with varying size to arrive at the goal. But, it is not based on %b indicator. The
sliding window contain at least m points and at most n points so as to guarantee
the length of segment changing from m to n. It begins after the last identified
end point and end right before the current point. If there are more than n points
between the last end point and the current point, only the last n points are
contained in the sliding window. After segmenting, a stream time series becomes
an end point sequence. The following is the definition of end point.

2570 Jiang T., Feng Y., Zhang B.: Online Detecting and Predicting...

Definition 1 End Point: given a sliding window W (= {s1, s2, . . . , sw}) which
consists of w data points from stream time series S, m ≤ w ≤ n, a threshold μ
(μ ∈ N and μ < w), if si ∈ W (1 < i ≤ w) satisfies the following conditions: (i)
si is the maximum of W , (ii) si also is the maximum of set {sw+1, . . . , sw+µ}.
(iii) si is the last one satisfying the above two condition, we call Ei = (si, ti)
upper end point where ti denotes the offset of current datum si relative to s1.
Similarly, a lower end point can be defined by a symmetric method. An upper
end point or lower end point is called an end point.

In above definition, the parameter μ is a delay time so as to confirm the local
extreme value.

Pruning is a necessary refining process and it can further eliminate some
shorter segments. From [Fig. 4], we can observe that there exist some shorter
segments and too many end points before pruning. However, there are only five
end points after pruning and the pattern of Double Bottom is more explicit.

E2

E1

E3

E4

E5

Pressure line

Supporting line

E12

E4

E1

E8
E11E2

E3

E5

E6
E7

E10

E9

Figure 4: Left) a pattern before pruning. Right) the pattern after pruning

In the process of segmenting and pruning, we also take consideration of the
following observations:

1. If the length of one segment (we denote the number of data points as the
length) is less than a threshold minLenseg, the segment would be safely removed
by the segmenting and pruning process.

2. When the approximation error Err(Li) is larger, where Li denotes a seg-
ment, we also can safely remove those line segments. As, for the sequence seg-
ments of a special pattern, Err(Li) often is very smaller and it will be introduced
in next subsection.

3. When some conditions of a given pattern can not satisfy, we may imme-
diately filter the pattern from the candidates and then select its next pattern to
match with current pattern. For example, if end point D is small than end point
B in Fig. 1, we filter the pattern from Up Triangle.

2571Jiang T., Feng Y., Zhang B.: Online Detecting and Predicting...

3.3 ONSP algorithm

We use linear a polynomial curve to approximate each segment of a special
pattern of financial data stream by taking advantage of PLA (Piecewise Linear
Approximation) technology [Keogh and Pazzani 1998]. Formally, for a given se-
quence segment S = (s1, s2, . . . , sn) of length n, PLA can use one line segment,
yt = a · t + b (t ∈ [1, n]), to approximate S, where a and b are two coefficients
in a linear function such that the approximation error, Errlinear(S), of S is
minimized. Errlinear(S) is defined as follows.

Errlinear(S) = min(
n∑

t=1

(st − (a · t+ b))2) (1)

When segmenting stream time series, PLA is also computed. We approximate
segment S with PLA if the relative approximation error RErrlinear(S) (defined
asErrlinear(S)/

∑n
i=1 s

2
i) is less than the user-defined threshold δ (i.e., δ = 0.02);

otherwise, we throw away the segment. Thus, we may approximate a pattern
P = (L1, L2, . . . , LN) with N linear segments, where Li is the corresponding
segment. However, not all segments can become the segment of a pattern. We
call the segment with smaller relative approximation error pattern segment,
whose formal definition is as follows.

Definition 2 Pattern segment: Given a subsequence L(= {s1, s2, . . . , sn}) of
data stream S, L is pattern segment if RErrlinear(L) ≤ δ and n ≥ minLenseg

are satisfied, where δ is user defined threshold, for example, δ = 0.01, and
minLenseg is the shortest length of a pattern segment.

Now, we can get the algorithm of segmenting and pruning, namely, ONSP
(algorithm 1), which uses a sliding window policy and a data-driven mechanism
to segment data streams. ONSP uses two B+-tree indexes idxseg and idxpat to
store current segment (from last End Point EPlast to current datum datVS) and
current End Point EPcur, respectively. The detail discussion about the indexes
will be introduced in [Section 4.3]. In ONSP, there are three array variables
offFS , offseg, offµ, which are used to store the offset of all streams FS (the
set of all input streams), the offset of current segment, the offset of current da-
tum datVS relative to the local extreme value LoExV (maximum or minimum),
respectively. The temporary variable posLoExV denotes the position of LoExV .

In the algorithm of Calculating Err (algorithm 2), the efficiency is very
important over high speed data streams. In order to decrease the computational
cost, we use a buffer BufMAk to store the last k raw data item value si (i is time
stamp) and a variable lastMAk to store the last k-periods moving average when
computing the current k-periods moving average curMAk at time stamp t. Thus,
we can compute curMAk by the equation curMAk = (lastMAk−BufMAk(t−

2572 Jiang T., Feng Y., Zhang B.: Online Detecting and Predicting...

Algorithm 1: ONSP (FS, μ, δ, minLenseg)
1. Initialize Array offFS [], offseg[], offµ[] with 1,2,0,

and idxseg with first datums from all streams;
2. while (segmentation is not finished)
3. Receive a new datum datVS of stream S ∈ FS;
4. Update idxseg with datVS ;
5. if (offseg[S] < minLenseg) {offseg[S]++;continue;}
6. Get subsequence subS of S from idxseg ;

//subS = S(offFS [S] : offFS [S] + offseg[S])
7. if (Calculating Err(subS) < δ)
8. if (datVS is the extreme value of subS) {
9. offµ=1, LoExV=datVS , posLoExV=offseg[S];
10. offseg[S]++, continue;}
11. if (1 ≤ offµ < μ) offµ = offµ + 1;
12. if (offµ == μ) {
13. offµ = 0, offFS[S]=offFS[S]+posLoExV -1;
14. Update index idxpat with current End Point EPcur;
15. posLoExV=offseg[S]=2;} //to next segment
16. offseg[S] = offseg[S] + 1; //to next point
17. } else {//RErr ≥ δ
18. if (offµ > 0) offFS [S]=offFS[S]+posLoExV -1;
19. if (offµ==0) offFS [S]=offFS[S]+offseg[S]-2;
20. Update index idxpat with current End Point EPcur;
21. offµ=0, posLoExV =offseg[S]=2;}

k + 1) + st)/k. When computing the coefficients a, b and RErrlinear reflected
at line 2-15, we make use of an accumulative method which only needs three
variables, lastSumts, lastSums and lastSumss to store last the corresponding
aggregation values, and we can obtain the current aggregation value only by a
addition operation. Then, a, b and RErrlinear can be quickly computed by the
following equation (2), (3), (4), (5), respectively,

a =
12 ∗ (lastSumts − (t+1)

2 ∗ lastSums)
t ∗ (t+ 1)(t− 1)

(2)

b =
6 ∗ (2t+1

3 ∗ lastSums − lastSumts)
t ∗ (t− 1)

(3)

Errlinear = lastSumss + a2 ∗ t ∗ (t+ 1)(2t+ 1)
6

+ a ∗ b ∗ t ∗ (t+ 1)

+b2 ∗ t− 2a ∗ lastSumts − 2b ∗ lastSums, (4)

RErrlinear = Errlinear/lastSumss (5)

2573Jiang T., Feng Y., Zhang B.: Online Detecting and Predicting...

Algorithm 2: Calculating Err (lastSumts, lastSums,
lastSumss, st, t)

1. Compute moving average Ak(S) for current datum st;
2. if (offseg == minLenseg) {
3. lastSumts = lastSums = lastSumss = 0;
4. for i=1 to offseg do
5. lastSumts = lastSumts + i ∗ si;
6. lastSums = lastSums + si;
7. lastSumss = lastSumss + s2i ;
8. end for
9. else

10. lastSumts = lastSumts + t ∗ st;
11. lastSums = lastSums + st;
12. lastSumss = lastSumss + s2t ;
13. endif
14. Compute coefficients a and b by Eq. (2), (3);
15. Compute Err and RErr by Eq. (4), (5);

where 1 ≤ t ≤ n.
Through the analysis of ONSP, we can easily understand that the parameter

μ and δ have a strong impact on ONSP. When using a smaller δ, all data points of
pattern segment Lps have a smaller random oscillation nearby the approximation
segment LPLA of Lps; however, if the parameter δ is bigger, LPLA will allow all
data points of Lps with a bigger random oscillation. Further, we also understand
that the parameter μ will compact the length of Lps and the number of Lps. In
actual processing, these limitations of ONSP lie on user choice.

4 Pattern Matching and Prediction

4.1 Pattern similarity

Our online pattern similarity matching is based on the similarity between the
end points of two patterns. Although, many distance metric function have been
proposed in previous years, for example, LCSS [Vlachos et al. 2002], Lp-norm
and DTW, which are not suit the measurement of a financial data stream, espe-
cially in pattern detecting. Therefore, we define a novel pattern similarity metric
function. Firstly, we give the definition of a pattern. Formally, a pattern is a se-
quence P (= {E1, E2, . . . , Eh}), where Ei is the end points (upper end point or
lower end point), 1 ≤ i ≤ h, and h (h ∈ N) is the number of end points. Not all
patterns need to match. It is not significant to match a Head and Shoulders pat-
tern and a Double Bottom pattern. Therefore, we must guarantee two patterns
are matchable before measuring the similarity of two patterns.

2574 Jiang T., Feng Y., Zhang B.: Online Detecting and Predicting...

Definition 3 Matchable Pattern: For pattern P1 = {E11, E12, . . . , E1n} and
pattern P2 = {E21, E22, . . . , E2n}, n ∈ N , P1 and P2 are matchable patterns
if they satisfy: (i) E1i and E2i are the same type end points (upper end point or
lower end point), 1 ≤ i ≤ n. (ii) E1j and E1(j+1) (or E2j and E2(j+1)) are the
end points of one pattern segment, 1 ≤ j ≤ n− 1. (iii) E1j and E1(j+1) (or E2j

and E2(j+1)) are the continuous end points identified by the procedure of pattern
segmenting and pruning, 1 ≤ j ≤ n− 1.

Through above definition, we can see that if P1 and P2 are matchable pat-
terns, P2 and P3 are matchable patterns, then P1, P2 and P3 are matchable
patterns mutually. After giving the definition of matchable pattern, we define
the distance metric function of pattern similarity as the following:

Definition 4 Pattern Similarity: Given two patterns P = {E1, E2, . . . , Eh} and
P̃ = {Ẽ1, Ẽ2, . . . , Ẽh), P and P̃ are similar if the distance between pattern P

and P̃ , that is, d(P, P̃), satisfies the inequality d(P, P̃) ≤ ε, where d(P, P̃) =
1

h−1 (λ1.
∑h−1

i=1 |Ai/Bi − Ãi/B̃i| + λ2.
∑h−1

i=1 |Ci − C̃i|), Ai = |si+1 − si|, Bi =
(si+1+si)/2, Ci = (ti+1−ti), Ãi = |s̃i+1−s̃i|, B̃i = (s̃i+1+s̃i)/2, C̃i = (t̃i+1− t̃i)
and λ1, λ2 and ε ≥ 0 are user-defined parameters.

Wu et al. (2004) defined a distance metric function which can be used to mea-
sure subsequence similarity over the financial time series. We call their function
DistWu. Intuitively, DistWu also can be used in pattern detecting. However, we
should note that DistWu only uses absolute amplitude shifting, but not relative
amplitude shifting. This makes it not suit the measurement of pattern similar-
ity. We will explain the problem by [Fig. 5]. The prices of the corresponding end
points are listed in [Tab. 1] from real stocks A, B, and C.

0 5 10 15 20 25 30 36
50

60

70

80

90

100

A
 s

to
ck

 p
ri

ce

0 5 10 15 20 25 30 36
9

11

13

15

B
 s

to
ck

 p
ri

ce

0 5 10 15 20 25 30 36
6

7

8

9

C
 s

to
ck

 p
ri

ce

E1

E2

E3

E4

E5
E1

E2

E3

E4

E5

E1

E2

E3

E4

E5

Figure 5: Three Double Bottom pattern from stock A, stock B and stock C

Now, let us to compare Wu’s method and our method by computing the
distance between two patterns. For simple illumination, we regard stock B as
query pattern and make the parameter β in DistWu and the parameter λ2 of
d(P, P̃) 0. By computing, the results of d(B,A) and d(B,C) are 23.165 and
1.345, respectively, using DistWu. Using our approach, the results of d(B,A)
and d(B,C) are 0.104 and 0.034, respectively. Then, we begin to compute the

2575Jiang T., Feng Y., Zhang B.: Online Detecting and Predicting...

Table 1: The prices of the corresponding end points from real stock A, stock B,
and stock C

Stock E1 E2 E3 E4 E5

A 92.36 54.31 79.77 57.74 77.47
B 14.19 9.89 12.53 9.91 12.96
C 8.89 6.59 8.32 6.69 8.26

ratio of d(B,A)/d(B,C). The ratio is 23.165/1.345=17.22 for the method of
DistWu. However, our method shows that the ratio is 0.104/0.034=3.06. This
sufficiently shows our method is more adapt to pattern matching than the Wu’s
method.

Theorem 1. Given two matchable patterns P1 and P2, the distance d(P1, P2) is
metric.

Proof. To prove d(P1, P2) is metric, we only need to prove it is symmetric and
reflexive, and it satisfies the triangle inequality. From Definition 4, we can ob-
viously observe that d(P1, P2) ≥ 0 and d(P1, P2) = d(P2, P1). So d(P1, P2) is
symmetric. Moreover, we also can find d(P, P) = 0. Thus, it also is reflexive. We
will prove it satisfies triangle inequality as follows.

Assuming there are any three mutual matchable patterns P1, P2 and P3, now
we will prove the following inequality is correct:

d(P1, P3) ≤ d(P1, P2) + d(P2, P3) (6)

From Definition 4, it is obvious that the distance of two patterns are the sum-
marization of the distances from all h− 1 segments. Therefore, it is sufficient to
give the proof on one segment. In other words, we only need to prove inequality
(6) on one segment. In particular, we define the distance on the first segment as
d1(P, P̃) = 1/(h− 1).(λ1.|A1/B1 − Ã1/B̃1|+ λ2.|C1 − C̃1|). Thus, we only need
to prove the following inequality is correct:

d1(P1, P3) ≤ d1(P1, P2) + d1(P2, P3) (7)

From inequality (7), we can find that d1(P, P̃) is consisted of two parts, that is, an
amplitude component and a time component. According to inequality property,
we have that if a ≤ b and c ≤ d (a, b, c, d ≥ 0), then a+ c ≤ b+ d. Therefore, we
only need to prove inequality (7) on each component. However, we know that
if a, b, c ≥ 0, the inequality of |a − b| ≤ |a − c| + |c − b| is correct. So, it will
certainly be true for the following two inequalities, that is, |A1/B1 − Â1/B̂1| ≤
|A1/B1 − Ã1/B̃1| + |Ã1/B̃1 − Â1/B̂1| and |C1 − Ĉ1| ≤ |C1 − C̃1| + |C̃1 − Ĉ1|.
Since 1/(h − 1), λ1 and λ2 are non-negative. Therefore, the inequality (7) is

2576 Jiang T., Feng Y., Zhang B.: Online Detecting and Predicting...

correct. Based on the inequality (7), we have the inequality (6) is correct. Now,
we complete our proof.

Theorem 1 is very important because it guarantees that we can build an index
to fast the similarity search and use triangular inequality filtering method.

4.2 Pattern feature

In fact, many special pattern features are be used in our algorithms. We will
discuss how to make use of these special pattern features in the section. Firstly,
we give the definition of a special pattern.

Definition 5 Special Pattern: A special pattern in financial data stream espe-
cially denotes a pattern which has an explicit shape feature and a special signif-
icance, is more likely to appear again and generally need a longer-time to come
into being, for example, Head and Shoulders Bottom, Double Bottom, etc.

Given a pattern P (= {E1, E2, . . . , Eh}), we can define as many features as
possible. Specially, we define the pattern feature function as FP =(P.h, P.trend,
P.max, P.min, ψ1, ψ2, ψ3, ψ4), which includes the main pattern features, where
P.h represents the number of end points, P.trend denotes the whole trend (up
trend and down trend), P.max is the maximum of end points, P.min is the
minimum of end points, and ψ1, ψ2, ψ3 and ψ4 represent time shifting of two
adjacent end points (that is, ti+1 − ti), the radio of amplitude shifting (that is,
|si+1 − si|/((si+1 + si)/2)), the supporting line function and the pressure line
function, respectively. An example about ψ3 and ψ4 is shown in Fig. 4, from
which we can observe that for Double Bottom pattern, the supporting line is
connected two points E2 and E4, and the pressure line is a parallel line through
E3.

We use a feature matrix FM to store the feature information of all patterns.
An example of FM is shown in [Tab. 2], where each row corresponds to a pattern,
ID is identifier of a special pattern, for example, we map Double Bottom pattern
to integers 1, and Pattern denotes the corresponding standard sequence (=
{E1, E2, . . . , Eh}). FM is loaded in main memory during processing.

4.3 Pattern matching and indexing

In previous sections, we only consider pattern similarity matching on a single
stream time series. In such scenario, we only store recent at most hmax (denotes
the maximal number of end points among all patterns, i.e., hmax = 10) end
points in a sliding window. Whenever a new end point is identified, we only
update the window. However, in the scenario of n stream time series, for example,
thousands of time series, the problem becomes more complex.

2577Jiang T., Feng Y., Zhang B.: Online Detecting and Predicting...

Table 2: A feature matrix for all patterns
ID Pattern h trend ε λ1 λ2

1 P1 7 ↑ 0.12 1 0
2 P2 5 ↑ 0.08 1 0
...

...
...

...
...

...
...

16 P16 10 ↓ 0.08 1 0

At the moment, our system takes advantage of a B+-tree to index all end
points into an index idxpat whose each leaf node corresponds to the entry
(sid, SWseq), among which sid is the id of data streams and SWseq is the corre-
sponding sliding window and stores the end points, so as to improve the efficiency
of pattern matching. In fact, the sliding windows only fill up smaller the volume
of main memory. Assuming there are 2000 streams and each sliding window need
to hmax*(8+4) bytes, the total volume will be 2000*hmax*12=2000*10*12≈240K.
So, the idxpat can be loaded into main memory.

Whenever a new end point from sid data stream is identified, the system
removes the oldest end point from SWseq and inserts the new end point into the
aftermost position of SWseq . Then, a global sliding window SWg is used to store
the data of SWseq. Furthermore, the system selects all possible patterns Pi from
SWg and match it with the standard pattern Pj from feature matrix FM . The
detailed algorithm of pattern matching is as Algorithm 3.

Algorithm 3: Pattern Matching
Input: a feature matrix FM
Output: a set of matching patterns PS
1. Loading FM into main memory, PS ← ∅;
2. while a new end point Et is identified do {
3. Updating the corresponding SWseq of tid data

stream with Et in index tree idxpat;
4. SWg ← SWseq ;
5. for Pi ∈ SWg do
6. for Pj ∈ FM do {
7. if (Pi and Pj is not matchable) continue;
8. if (d(Pi, Pj) ≤ FM.[j].ε) PS = PS ∪ Pi;
9. }
10. }// end of while

Subsequently, let’s discuss the index of segmenting and pruning idxseg , which

2578 Jiang T., Feng Y., Zhang B.: Online Detecting and Predicting...

is used to index the latest data points from all streams so as to find the current
end points. For one stream, these indexing data items are all data points which
begin after the last identified end point and end right before the current point.
Similarly, the idxseg is implemented by using a B+-tree. After identifying the
current end point, we can replace all data items between the last end point and
the data point before the current point with future data points.

4.4 Statistical analysis and pattern prediction

In fact, we can make some statistical analysis to predict the trend precision of
one type pattern. This needs to count the historical number of emergence of the
type pattern and the number of hitting the corresponding trend which can be
judged by the future end point and fed back. A simple method is adding two
columns, that is, freq PID and hit trend in FM , where freq PID denotes the
emerging number of one type pattern and hit trend represents that the pattern
trend is accorded with the future trend during the next several end points.

We denote the last end point of current pattern from data stream Si as
Ecur, and the next l-th end point as El as Wu et al. (2004) noted. Here, l is
an important and user defined parameter (i.e., l = 1 or l = 2). We increase
hit trend by 1 if El > Ecur + σ (σ also is a user given parameter, σ > 0) and
the trend is up, otherwise, if El < Ecur−σ and the trend is down, we decrease 1
from hit trend. Thus, by computing the proportion hit trend/freq PID of each
pattern, we can know which pattern trend is more credible.

On the other hand, we can also take advantage of the previous information
of end points to predict the pattern type even if the current end point of the
pattern has not still emerged. During the interval between (h − 1)th end point
and hth end point, we may compute the distance of the previous h − 1 end
points of two possible semi-patterns d(Psemi1, Psemi2), where Psemi1 and Psemi2

is consisted of the h − 1 end points of current data stream and feature matrix
FM , respectively. Similarly, we define two variables hit PID and miss PID to
represent hitting or missing the corresponding type pattern. If d ≤ (h− 1) ∗ ε/h
and some critical features from feature function FP are satisfied, we predict the
current pattern of data stream as the pattern whose identifier is ID in FM . In
the paper, we predict future possible pattern based on frequency and hit ratio.
In other words, the predicted probability is Prob PID which is proportional to
freq PID.hit PID/(hit PID + miss PID). When the current end point arrives
and the practical pattern is identified, we can judge if our prediction is correct.
If obtaining a wrong prediction, then we feed the error back by increasing the
corresponding miss PID by Prob PID and the corresponding freq PID by 1.
Otherwise, we increase freq PID by 1 and hit PID by Prob PID for the current
pattern.

2579Jiang T., Feng Y., Zhang B.: Online Detecting and Predicting...

5 Experiment Evaluation

5.1 Experiment setup

In order to evaluate the effectiveness and the efficiency of our proposed ap-
proaches, we make extensive experiments with real stock data. In the experi-
ments, we use more than 1,820,000 data points of 1700 real stocks in China from
http://finance.yahoo.com/. Among these data, about 400,000 historical data
points are used to set up all parameters and build the feature matrix FM . Other
1,420,000 data points are used to test pattern similarity and pattern prediction.
We conducted experiments on a Pentium 3 PC with 512 MB memory.

Before formal experiments, we require obtaining the correlative parameters.
Some parameters can be gained by some experiments. Other parameter can be
obtained by hand, i.e., the query patterns in FM . We use the close price of a
day or a week as a financial data stream. We set up k-periods moving average
with parameter k = 3 or 5. The size of the sliding window is changed from
m = 20 or m = 4 to n = 60 or n = 12 for the time interval over days or weeks,
respectively, and the threshold μ of delay time is 4 or 5 in the procedure of
segmenting and pruning. The shortest length of pattern segment, minLenseg, is
20 or 5 in the interval over days and weeks, respectively, the parameter δ about
maximal relative approximation error is 0.02 on identifying pattern segment.
The parameter ε, λ1 and λ2 are 0.2, 1 and 0, in pattern similarity, respectively.
The number of end points in patterns, hmax is 10. In trend prediction, threshold
l is 2 and σ is ±(10%− 20%)Ecur.

5.2 Comparable test

In the first test, we evaluate the accuracy of several functions on pattern sim-
ilarity from [Perng et al. 2000, Wu et al. 2004, Chen et al. 2007]. We call the
method of Wu et al. (2004) and our method WuPS and NewPS, respectively. So,
we will compare four approaches in the experiment, that is, LandMark, WuPS,
SpADe and NewPS. For each type of special pattern, we pick up a representative
pattern as the query pattern. There are a total of 4 query patterns. To test the
accuracy of distance measures on pattern similarity, we use KNN query to re-
trieve the 10 nearest neighbors of each query pattern. Hits or misses of detected
matching patterns are determined by the positions of pattern at the financial
time series. The accuracy is evaluated based on the average error rate of the
KNN queries.

As shown in [Fig. 6(a)] and [Fig. 6(b)], NewPS outperforms the other three
methods in handling amplitude shifting and scaling. LandMark performs better
than WuPS because it takes into account the proportion of amplitude change
which reflects in the equation �δamp

i = |si − s̃i|/((si + s̃i)/2). Note that it is

2580 Jiang T., Feng Y., Zhang B.: Online Detecting and Predicting...

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Amplitude shifting(% of viariance)

E
rr

o
r

ra
te

0 0.06 0.12 0.18 0.24 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Amplitude scaling (1+/−x%)

E
rr

o
r

ra
te

NewPS

SpADe

LandMark

WuPS

NewPS

SpADe

LandMark

WuPS

(a) Accuracy on amplitude shifting (b) Accuracy on amplitude scaling

Figure 6: Accuracy comparisons under amplitude factor

5 15 25 35 45 55 65 75
0

50

100

150

200

250

300

350

The Length of Pattern Segment

A
ve

ra
g

e
C

P
U

 T
im

e
fo

r
10

00
00

 R
u

n
n

in
g

 (
m

s)

Naive Algorithm

Calculating_Err

Figure 7: The comparison of CPU time for Naive and algorithm 2

different from NewPS. However, WuPS perform worst among four functions,
owing to its main consideration of subsequence similarity, but pattern similarity.
Here, we omit the discussion of accuracy on pattern similarity under time shifting
and scaling.

In the second test, we compare the CPU time of the Calculating Err algo-
rithm and the corresponding naive algorithm (Naive) which uses three circles to
compute coefficients a and b, RErrlinear , respectively, for each invoking. From
[Fig. 7], we observe that Calculating Err is faster than Naive. In fact, the CPU
running time of Calculating Err method is almost constant and its time com-
plexity is O(1) at each sampling time t. However, the CPU running time of Naive
gradually increases with the increase of the length of local pattern and the time
complexity of Naive method is O(n). Calculating Err is 32.3 times faster than
Naive on CPU Time when local pattern length is 75. Even if with shortest length

2581Jiang T., Feng Y., Zhang B.: Online Detecting and Predicting...

5, Calculating Err is 3.51 times faster than Naive on CPU Time. But, note that
the CPU time is the summary of 100,000 running owing to too short time for
each invoking.

5.3 Accuracy on pattern matching

The next set of experiments study the accuracy of pattern matching algorithm.
Firstly, we define the accuracy of pattern matching as the following: Pattern
matching accuracy=the number of correctly matching patterns/the number of
matching total patterns. Fig. (8a) shows the most familiar patterns in our pattern
matching algorithm. They include Head and Shoulders pattern, V-form pattern,
Triangle pattern and Banner pattern, etc.

(a) patterns

0 2 4 6 8 10 12 14 16
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pattern type

P
at

te
rn

 m
at

ch
in

g
ac

cu
ra

cy
 (

%
)

(b) accuracy

Figure 8: (a) Main patterns identified by the algorithm of pattern matching and
pattern prediction (b) Pattern matching accuracy vs. pattern type.

The accuracy of our algorithm reflects in [Fig. (8b)] which includes 16 type
special patterns. We map integer 1, 2, . . ., 16 of [Fig. (8b)] to the patterns in
[Fig. (8a)] according to the order from left to right and from up to bottom.
As we expected, the pattern matching algorithm attains a high accuracy for
the most patterns. However, there is a smaller accuracy among V-form pattern,
Scatter Triangle pattern and Rectangle pattern. In fact, it is difficult to identify
above three patterns. For V-form pattern, it only includes three end points whose
shape is contained in other patterns. To Rectangle pattern, we have a difficulty
in determining the duration of pattern. However, to Scatter Triangle pattern, it
is not easy to acquire the number of end points.

2582 Jiang T., Feng Y., Zhang B.: Online Detecting and Predicting...

5.4 Accuracy on pattern prediction

In the section, we study pattern prediction accuracy by a series of experi-
ments. In experiments, we extract all regular patterns from 1700 real stocks
time series. In particular, the pattern prediction accuracy is measured by the
recall ratio of the predicted pattern result formulated as follows: Recall ratio =
recall num/act num

1
2

3
4

5
6

7
8

9
10

11
12

0

0.2

0.4

0.6

0.8

1.0

P
at

te
rn

 p
re

di
ct

in
g

ac
cu

ra
cy

d=0.1
d=0.15

d=0.2

Pattern type

Figure 9: Pattern predicting accuracy vs. pattern type when ε = 0.1, ε = 0.15
and ε = 0.2

where recall num is the number of candidates in the predicted pattern result
that indeed match with the pattern in FM , and act num is the actual number of
future possible patterns that satisfy the equation d(Psemi1, Psemi2) ≤ (h−1)∗ε/h
which is introduced in [Section 4.4]. In our experiments, we only predict 12 type
special pattern which didn’t include V-form pattern (up form and down form),
Scatter pattern and Rectangle pattern. The order of all patterns is similar to
[Fig. (8b)], in addition to above four patterns. As shown in [Fig. 9], pattern
predicting algorithm keeps a high predicted accuracy. For most special pattern,
it achieves above 60% accuracy. Moreover, we can find that it is higher when
the pattern similarity threshold is smaller. In Convergent Triangle pattern, the
accuracy is lowest among all patterns, that is, 35% when ε = 0.2.

5.5 System performance

Finally, we evaluate the matching efficiency of the corresponding pattern in terms
of the I/O cost and the CPU cost. Specifically, we compare the pattern matching
on B+-tree index with the no-index method. We set the page size to 1024 bytes,
and run the experiments on real stock data which is consisted of the sliding

2583Jiang T., Feng Y., Zhang B.: Online Detecting and Predicting...

window sequence SWseq, including the end points of current possible patterns,
from 1700 stocks. Here, we set up the length of each SWseq 10.

In fact, our algorithm can be divided two situations, that is, online way and
offline way. For the former, we use current quote over an interval of 1 minute, 5
minutes, 10 minutes, 30 minutes or an hour to look for the current end point. Our
algorithm only spends a little time in matching and predicting a fixed pattern,
due to many unqualified end points. When using the time interval over 1 minute,
the average response time for a special pattern matching is only 5 milli-seconds
over all 1700 stocks. It is obvious that the responding time is enough to adapt
to the real-time situations. Our algorithm is up to 10 times faster than no-index
method. The page accesses of the no-index method are about more 6 times than
our method.

For the latter, we use the daily close price of all historical data, including more
than 1,420,000 data points, as input. When using the way of batch program, our
algorithm spends 21 seconds. It is 5 times faster than no-index method. On the
I/O cost, the page accesses of the no-index method are about 3 times relative
to our algorithm. The efficiency of the offline way is lower than the online way.
This is because the offline way needs more I/O cost than the online way and
it can only index a part of end points and data points of current segment into
index, although it has high search efficiency on B+-tree.

6 Conclusion

In the paper, we argue that the existing pattern matching methods do not work
well in detecting pattern over multiple financial data streams when shifting and
scaling exist in temporal or amplitude dimensions. We have presented a com-
plete framework for efficiently detecting and predicting special patterns over
thousands of financial data streams in an online fashion. We have demonstrated
the framework is effective and efficient by extensive experiments on the large
real stock datasets. In the future, we plan to evaluate the applicability of the
proposed framework for the other domains, i.e., medical data and astronomical
data.

References

[Aggarwal 2003] Aggarwal C. C.: “A framework for diagnosing changes in evolving
data streams”; Proc. of SIGMOD Conf., ACM, San Diego, 2003, 575–586.

[Agrawal et al. 1993] Agrawal R., Faloutsos C., and Swami A.: “Efficient similarity
search in sequence databases”; Proc. of the 4th Int’l Conf. on Foundations of Data
Organization and Algorithms, Springer, Chicago, (1993), 69–74

[Berndt and Clifford 1996] Berndt DJ. and Clifford J.: “Finding patterns in time se-
ries: a dynamic programming approach”; Proc. of the Advances in Knowledge
Discovery and Data Mining; AAAI/MIT, Menlo Park, (1996), 229–248

2584 Jiang T., Feng Y., Zhang B.: Online Detecting and Predicting...

[Bulut and Singh 2005] Bulut A. and Singh A.: “A unified framework for monitoring
data streams in real time”; Proc. of ICDE Conf., IEEE, Tokyo, (2005), 44–55.

[Chen et al. 2007] Chen Y., Nascimento M., and Ooi B. C.: “Spade: On shape-based
pattern detection in streaming time series”; Proc. of ICDE Conf., IEEE, Istanbul,
(2007), 786–795.

[Keogh 2002] Keogh E.: “Exact indexing of dynamic time warping”; Proc. of VLDB
Conf., Morgan Kaufmann, Hong Kong, (2002), 406–417.

[Keogh and Pazzani 1998] Keogh E. and Pazzani M.: “An enhanced representation of
time series which allows fast and accurate classification, clustering and relevance
feedback”; Proc. of SIGKDD Conf., ACM, New York, (1998), 239–241.

[Lian et al. 2007] Lian X., Chen L., and Yu J. X.: “Similarity match over high speed
time-series streams”; Proc. of ICDE Conf., IEEE, Istanbul, (2007), 1086–1095.

[Papadimitriou et al 2005] Papadimitriou S., Sun J., and Faloutsos C.: “Streaming
pattern discovery in multiple time-series”; Proc. of VLDB Conf., ACM, Trond-
heim, (2005), 697–708.

[Papadimitriou and Yu 2006] Papadimitriou S. and Yu P. S.: “Optimal multi-scale pat-
terns in time series streams”; Proc. of SIGMOD Conf., ACM, Chicago, (2006),
647–658.

[Perng et al. 2000] Perng C., Wang H., and Zhang S.: “Landmarks: A new model for
similarity-based pattern querying in time series databases”; Proc. of ICDE Conf.,
IEEE, San Diego, (2000), 33–42.

[Sakurai et al. 2007] Sakurai Y., Faloutsos C., and Yamamuro M.: “Stream monitoring
under the time warping distance”; Proc. of ICDE Conf., IEEE, Istanbul, (2007),
1046–1055.

[Sakurai et al 2005] Sakurai Y., Papadimitriou S., and Faloutsos C.: “Braid: Stream
mining through group lag correlations”; Proc. of SIGMOD Conf., ACM, Baltimore,
(2005), 599–610.

[Vlachos et al. 2002] Vlachos M., Kollios G., and Gunopulos D.: “Discovering similar
multidimensional trajectories”; Proc. of ICDE, IEEE, San Jose, (2002), 673–684.

[Wu et al. 2004] Wu H., Salzberg B., and Zhang D.: “Online event-driven subsequence
matching over financial data streams”; Proc. of SIGMOD Conf., ACM, Paris,
(2004), 23–34.

[Zhang et al. 2007] Zhang T., Yue D., Gu Y. and Yu G.: “Boolean Representation
Based Data-Adaptive Correlation Analysis over Time Series Streams”; Proc. of
ACM CIKM Conf., ACM, Lisboa, (2007), 203–212.

[Zhu and Shasha 2002] Zhu Y. and Shasha D.: “Statstream: Statistical monitoring of
thousands of data streams in real time”; Proc. of VLDB Conf., Morgan Kaufmann,
Hong Kong, (2002), 358–369.

[Zhu and Shasha 2003] Zhu Y. and Shasha D.: “Efficient elastic burst detection in data
streams”; Proc. of SIGKDD Conf., ACM, Washington, (2003), 336–345.

2585Jiang T., Feng Y., Zhang B.: Online Detecting and Predicting...

