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Abstract: Argumentation games have been proved to be a robust and flexible tool to resolve
conflicts among agents. An agent can propose its explanation and its goal known as a claim,
which can be refuted by other agents. The situation is more complicated when there are more
than two agents playing the game.

We propose a weighting mechanism for competing premises to tackle with conflicts from multiple
agents in an n-person game. An agent can defend its proposal by giving a counter-argument
to change the “opinion” of the majority of opposing agents. Furthermore, using the extended
defeasible reasoning an agent can exploit the knowledge that other agents expose in order to
promote and defend its main claim.
Key Words: Artificial intelligence, Defeasible reasoning, Argumentation systems
Category: I.2.4

1 Introduction

In multi-agent systems, there are several situations requiring a group of agents to set-
tle on common goals despite each agent’s pursuit of individual goals which may con-
flict with other agents. To resolve the conflicts, an agent can argue to convince others
about its pursued goal and provides evidence to defend its claim. This interaction can
be modelled as an argumentation game [Prakken and Sartor 1996, Jennings et al. 1998,
Parsons and McBurney 2003]. In an argumentation game, an agent can propose an ex-
planation for its goal (i.e., an argument), which can be rejected by counter-evidence
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from other agents. This action can be iterated until an agent either successfully argues
its proposal against other agents or drops its initial claim.

The argumentation game approach offers a robust and flexible tool to resolve con-
flicts by evaluating the status of arguments from agents. Dung’s argumentation seman-
tics [Dung 1995] is widely recognised to establish relationships (undercut, defeated,
and accepted) among arguments. The key notion for a set of arguments is whether a set
of arguments is self-consistent and provides the basis to derive a conclusion.

An argumentation game is more complicated when the group has more than two
agents. It is not clear how to extend existing approaches to resolve conflicts from multi-
ple agents, especially when agents have equal weight. In this case, the problem amounts
to deciding which argument has precedence over competing arguments. The main idea
behind our approach is the global collective preference over individual proposals, which
enables an agent to identify the key arguments and premises from opposing agents in
order to generate counter-arguments. These arguments cause a majority of opposing
agents to reconsider their claims, therefore, an agent has an opportunity to change “atti-
tudes” of others. In our approach, an agent in the argumentation game cooperates with
the majority of the group if the agent fails to defend its proposal against those of the ma-
jority. At the end of the game, the agent follows the proposals accepted by the majority
of the group.

Each of our agents is equipped with its private knowledge, background knowledge,
and knowledge obtained from other agents. The private knowledge of an agent repre-
sents its own understanding about the game including its private goals. The background
knowledge, commonly shared by the group, presents the expected behaviours of a mem-
ber of the group and can include the description of the environment. Any argument
violating the background knowledge is not supported by the group. The background
knowledge also represents the primitive set of goals, which are recognised by the group
of agents. The knowledge about other agents, growing during the game, enables an
agent to efficiently convince others about its own goals.

Defeasible logic is chosen as our underlying logic for the argumentation game due
to its efficiency and simplicity in representing incomplete and conflicting informa-
tion. Furthermore, Defeasible Logic has a powerful and flexible reasoning mechanism
[Antoniou et al. 2000, Maher et al. 2001] which enables our agents to flawlessly cap-
ture Dung’s argumentation semantics by using two features of defeasible reasoning,
namely the ambiguity propagating and ambiguity blocking.

Our paper is structured as follows. In section 2, we briefly introduce the basic no-
tions of defeasible logic and the construction of the argumentation semantics. Section
3 introduces our n-person argumentation game framework using defeasible logic. We
present firstly the external model of agents’ interaction, which describes a basic proce-
dure for an interaction between agents. Secondly, we elaborate the extension of the de-
feasible reasoning with a superior theory. Thirdly, we define the internal model, which
shows how an agent can deal with individual knowledge sources to propose and defend
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its goal against other agents. Finally, we show the justification of arguments generated
by an agent during the game with respect to (w.r.t.) the background knowledge of the
group. Section 4 provides an overview of research works related to our approach. Sec-
tion 5 concludes the paper.

2 Background

In this section, we briefly present the essential notions of defeasible logic (DL) and the
construction of Dung’s argumentation semantics by using two features of defeasible
reasoning including ambiguity blocking and propagating.

2.1 Defeasible Logic

Following the presentation in [Billington 1993], a defeasible theory D consists of a
finite set of facts F ; a finite set of rules R; and a superiority relation > on R. The
language of defeasible theory is based on a finite set of literals. Given a literal l, we use
∼l to indicate the complement of l.

A rule r in R is composed of an antecedent (body) A(r), a consequent (head) C(r),
and a connective between A(r) and C(r). A(r) consists of a finite set of literals and C(r)
contains a single literal. A(r) can be omitted from the rule if it is empty. The set of
connectives includes →, ⇒, and �, which represents strict rules R s, defeasible rules
Rd, and defeaters Rdft in R respectively. We define Rsd as the set of strict and defeasible
rules, and R[q] as the set of rules whose heads are q.

A conclusion derived from the theory D is a tagged literal and is categorised accord-
ing to how the conclusion can be proved: +Δq: q is definitely provable in D; −Δq: q
is definitely unprovable in D; +∂q: q is defeasibly provable in D; −∂q: q is defeasibly
unprovable in D.

Provability is based on the concept of a derivation (or proof) in a defeasible theory
D = (F,R,>). Informally, definite conclusions can derive from strict rules by forward
chaining, while defeasible conclusions can obtain from defeasible rules if and only if
all possible “attacks” are rebutted due to the superiority relation or defeater rules. The
set of conclusions of a defeasible theory is finite. This set is the Herbrand base that can
be built from the literals occurring in the rules and the facts of the theory.

A derivation is a finite sequence P = (P(1), . . . ,P(n)) of tagged literals satisfying
proof conditions (which correspond to inference rules for each of the four kinds of
conclusions). P(1..i) denotes the initial part of the sequence P of length i. In the follows,
we present the proof conditions for definitely and defeasibly provable conclusions by
[Antoniou et al. 2001].

Definition 1. The condition for a conclusion with tag +Δ is defined as:

+Δ : If P(i+ 1) = +Δq then
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(1) q ∈ F or
(2) ∃r ∈ Rs[q] ∀a ∈ A(r) : +Δa ∈ P(1..i)

The definition of +Δ describes just forward chaining of strict rules. For a literal q
to be definitely provable there is a strict rule with head q, of which all antecedents have
been definitely proved previously.

Definition 2. The condition for a conclusion with tag −Δ is defined as:

−Δ : If P(i+ 1) =−Δq then
(1) q �∈ F or
(2) ∀r ∈ Rs[q] ∃a ∈ A(r) : −Δa ∈ P(1..i)

To show that q cannot be proven definitely, q must not be a fact. In addition, we need
to establish that every strict rule with head q is known to be inapplicable. Thus, for every
such rule r there must be at least one antecedent a for which we have established that a
is not definitely provable −Δq.

Definition 3. The condition for a conclusion with tag +∂ is defined as:

+∂ : If P(i+ 1) = +∂q then either
(1) +Δq ∈ P(1..i) or

(2.1) ∃r ∈ Rsd [q] ∀a ∈ A(r) : +∂a ∈ P(1..i) and
(2.2) −Δ∼q ∈ P(1..i) and
(2.3) ∀s ∈ Rsd [∼q] either

(2.3.1) ∃a ∈ A(s) : −∂a ∈ P(1..i) or
(2.3.2) ∃t ∈ Rsd [q] such that t > s and

∀a ∈ A(t) : +∂a ∈ P(1..i)

To show that q is provable defeasibly, it is more complicated since opposing chains
of reasoning against q must be considered: (1) q is already definitely provable; or (2) the
defeasible part of D is investigated. In particular, it is required that a strict or defeasible
rule with head q which can be applied is in the theory (2.1). In addition, the possible
“attacks” must be taken into account. To be more specific: q is defeasibly provable
providing that ∼q is not definitely provable (2.2); this is to ensure that the logic does
not derive conflicting conclusions. Also (2.3) the set of all rules supporting ∼q are
considered. Essentially, each such a rule s attacks the conclusion q. The conclusion q is
provable if each such rule s is not applicable or s must be counter-attacked by a rule t
with head q and t must be stronger than s.

Definition 4. The condition for a conclusion with tag −∂ is defined as:

−∂ : If P(i+ 1) =−∂q then either
(1) −Δq ∈ P(1..i) or

(2.1) ∀r ∈ Rsd [q] ∃a ∈ A(r) : −∂a ∈ P(1..i) or

2656 Pham D.H., Governatori G., Thakur S.: Extended Defeasible Reasoning ...



(2.2) +Δ∼q ∈ P(1..i) or
(2.3) ∃s ∈ Rsd [∼q] such that

(2.3.1) ∀a ∈ A(s) : +∂a ∈ P(1..i) and
(2.3.2) ∀t ∈ Rsd [q] either t �> s or

∃a ∈ A(t) : −∂a ∈ P(1..i)

The similar explanation is applied for proving −∂q. In short, the theory D does not
have any strict rule supporting q and one of following conditions: all defeasible rules
for q are not applicable; there is a strict support for ∼q; at least one defeasible rule for
∼q is applicable and successfully overrides the “attack” from those rules for q.

The defeasible reasoning has the properties of coherence (Definition 5) and consis-
tency (Definition 6).

Definition 5. A defeasible theory is coherent if it is impossible to derive from it a pair
−Δq and +Δq, or −∂q and +∂q.

Definition 6. A defeasible theory is consistent if it is possible to derive+∂q and+∂∼q
if and only if the theory derives both +Δq and +Δ∼q.

2.2 Defeasible Logic with Ambiguity Propagation

The version presented in the previous section is ambiguity blocking. However, it is pos-
sible to provide an ambiguity propagating variant of the logic [Governatori et al. 2004,
Antoniou et al. 2000]. The superiority relation is not considered in the inference pro-
cess of this variant. The extension introduces a new tag Σ , which shows a support for a
literal in a defeasible theory. +Σ p means that there is a monotonic chain of reasoning
that would lead to conclude p in the absence of conflicts. Thus, a defeasibly provable
literal tagged with +∂ is also supported. In contrast, a literal may be supported even
though it is not defeasibly provable. Therefore, support is a weaker notion than defeasi-
ble provability. In the follows, we present the extension conditions for ±Σ conclusions
with respect to the superiority relationship among defeasible rules.

Definition 7. The positive support for a literal is defined as:

+Σ : If P(i+ 1) = +Σq then
∃r ∈ Rsd[q]: ∀a ∈ A(r) : +Σa ∈ P(1..i) and
∀s ∈ Rsd[∼q] either ∃a ∈ A(s) : −∂a ∈ P(1..i) or

∃t ∈ Rsd[q] such that t > s and ∀a ∈ A(t) : +Σa ∈ P(1..i)

Definition 8. The negative support for a literal is constructed as:

−Σ :If P(i+ 1) =−Σq then
∀r ∈ Rsd [q]: ∃a ∈ A(r) : −Σa ∈ P(1..i) or
∃s ∈ Rsd[¬q] and ∀a ∈ A(s) : +∂a ∈ P(1..i) and

∀t ∈ Rsd[q] such that t �> s or ∃a ∈ A(t) : −Σa ∈ P(1..i)
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We can achieve ambiguity propagation behaviour by making a minor change to the
inference conditions for +∂AP and −∂AP.

Definition 9. The condition for a positive defeasible conclusion with respect to ambi-
guity is defined as:

+∂AP: If P(i+ 1) = +∂APq then either
(1) +Δq ∈ P(1..i) or

(2.1) ∃r ∈ Rsd [q] ∀a ∈ A(r) : +∂APa ∈ P(1..i) and
(2.2) −Δ∼q ∈ P(1..i) and
(2.3) ∀s ∈ Rsd [∼q]

∃a ∈ A(s) : −Σa ∈ P(1..i)r1

The conditions for −∂AP is obtained from that of +∂AP using the principle of the strong
negation [Antoniou et al. 2000, Antoniou et al. 2006].

Definition 10. The condition for a unprovable defeasible conclusion with respect to
ambiguity is constructed as:

−∂AP: If P(i+ 1) =−∂q then either
(1) −Δq ∈ P(1..i) and

(2.1) ∀r ∈ Rsd [q] ∃a ∈ A(r) : −∂APa ∈ P(1..i) or
(2.2) +Δ∼q ∈ P(1..i) or
(2.3) ∃s ∈ Rsd [∼q] such that

∀a ∈ A(s) : +Σa ∈ P(1..i)

In the following example, we illustrate the use of support notion and the inference
with ambiguity.

Example 1. Considering a defeasible theory D where R d = {r1 :⇒ a; r2 :⇒∼a; r3 :⇒
b; r4 : a ⇒∼b}

Without the superiority relationship, there is no means to decide between a and
∼a and both r1 and r2 are applicable. In a setting where the ambiguity is blocked, b
is not ambiguous because r3 for b is applicable whilst r4 is not since its antecedent is
not provable. If the ambiguity is propagated, we have evidence supporting all of four
literals since all of the rules is applicable.+Σa,+Σ∼a,+Σb and +Σ∼b are included in
the conclusion set. Moreover we can derive −∂a, −∂∼a, −∂b and −∂∼b showing that
the resulting logic exhibits an ambiguity propagating behaviour. In the second setting b
is ambiguous, and its ambiguity depends on that of a.

2.3 Argumentation Semantics

In what follows, we briefly introduce the basic notions of an argumentation system
using defeasible reasoning [Governatori et al. 2004]. We also present the acceptance of
an argument w.r.t. Dung’s semantics.

2658 Pham D.H., Governatori G., Thakur S.: Extended Defeasible Reasoning ...



Definition 11. An argument A for a literal p based on a set of rules R is a (possibly
infinite) tree with nodes labelled by literals such that the root is labelled by p and for
every node with label h:

1. If b1, . . . ,bn label the children of h then there is a rule in R with body b 1, . . . ,bn and
head h.

2. If this rule is a defeater then h is the root of the argument.

3. The arcs in a proof tree are labelled by the rules used to obtain them.

A (proper) sub-argument of an argument A is a (proper) subtree of the proof tree
associated to A.

DL requires a more general notion of proof tree that admits infinite trees, so that the
distinction is kept between an infinite un-refuted chain of reasoning and a refuted chain.
Depending on the rules used, there are different types of arguments: (1) A supportive
argument is a finite argument in which no defeater is used; (2) A strict argument is an
argument in which only strict rules are used; (3) An argument that is not strict is called
defeasible.

Example 2. Consider the following defeasible theory

D = {⇒ e; e� f ; ⇒ p; p ⇒ q; →¬q}

From D we can build a set of argument ArgsD = {⇒ e� f ; ⇒ p ⇒ q; → ¬q}. The
argument for f is not supportive because of the defeater rule e� f whilst the argument
for q is a supportive and defeasible. There is one strict argument for ¬q in Args D.

Relationships between two arguments A and B are determined by literals constitut-
ing these arguments. An argument A attacks a defeasible argument B if a literal of A is
the complement of a literal of B, and that literal of B is not part of a strict sub-argument
of B. A set of arguments S attacks a defeasible argument B if there is an argument A
in S that attacks B.

A defeasible argument A is undercut by a set of arguments S if S supports an
argument B attacking a proper non-strict sub-argument of A. An argument A is undercut
by S means some literals of A cannot be proven if we accept the arguments in S .

The concepts of the attack and the undercut concern only defeasible arguments
and sub-arguments. A defeasible argument is assessed as valid if we can show that the
premises of all arguments attacking it cannot be proved from the valid arguments in S .
The concepts of provability depend on the method used by the reasoning mechanism
to tackle ambiguous information. According to the features of the defeasible reasoning,
we have the definition of acceptable arguments (Definition 12).

Definition 12. An argument A for p is acceptable w.r.t. a set of arguments S if A is
finite, and
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1. If reasoning with the ambiguity propagation is used: (a) A is strict, or (b) every
argument attacking A is attacked by S .

2. If reasoning with the ambiguity blocking is used: (a) A is strict, or (b) every argu-
ment attacking A is undercut by S .

The status of an argument is determined by the concept of acceptance. If an ar-
gument can resist a reasonable refutation, this argument is justified (Definition 13). If
an argument cannot overcome attacks from other arguments, this argument is rejected
(Definition 15). We define the sets of justified arguments w.r.t. a set of arguments con-
structed from a defeasible theory D as follows:

Definition 13. Let D and ArgsD be a defeasible theory and a set of arguments from D
respectively. We define JD

i as follows.

– JD
0 = /0

– JD
i+1 = {a ∈ ArgsD| a is acceptable w.r.t. JD

i }
The set of justified arguments in a defeasible theory D is JArgsD =

⋃∞
i=1 JD

i .

Typically argumentation semantics frameworks just consider justified arguments and
justified conclusions. However, as we have seen in the previous sections, Defeasible
Logic has both provable and unprovable conclusions. To capture that a conclusion is
not provable, we have to introduce the notion of rejected argument.

Definition 14. An argument A for p is rejected w.r.t. to a set of arguments S (set of
already rejected arguments) and a set of arguments T (set of accepted arguments), if

1. If reasoning with ambiguity propagation is used: (a) a proper subargument of A is
in S or (b) it is attacked by a finite argument.

2. If reasoning with ambiguity blocking is used: (a) a proper subargument of A is in
S or (b) it is attacked by an argument supported by T .

Notice that in the above definition, for the case of ambiguity propagation that the set of
accepted argument is not used.

Definition 15. Let D be a defeasible theory and T be a set of arguments. We define
RD

i (T ) as follows.

– RD
0 (T ) = /0

– RD
i+1(T ) = { a ∈ ArgsD| a is rejected by RD

i (T ) and T }.

The set of rejected arguments in a defeasible theory D w.r.t. T is RArgs D(T ) =⋃∞
i=1 RD

i (T ).
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For a defeasible theory the set of rejected argument is given by RArgs D(JArgsD), i.e.,
we have the set of arguments rejected by JArgsD.

We are now able to extend the notions of justified and rejected to conclusions of a
defeasible theory.

Definition 16. Given a defeasible theory D:

– a literal a is justified if it is the conclusion of an argument in JArgsD.

– A literal a is rejected by S if there is no argument in JArgsD −RArgsD(S ), the
top rule of which is a strict or defeasible rule with head a. A literal is rejected if it
is rejected by JArgsD.

3 n-Person Argumentation Game

In this section, we utilise the argumentation semantics presented in Section 2.3 to model
agents’ interactions in an n-person argumentation game. Also, we propose a knowledge
structure which enables an agent to construct its arguments w.r.t. knowledge from other
agents as well as to select a defensive argument.

3.1 Agents’ Interactions

In our approach to n-person argumentation, a group of agents A shares a set of prim-
itive goals G and a set of external constraints Tbg represented as a defeasible theory,
known as a background knowledge. This knowledge provides common expectations
and restrictions to the agents in A . An agent has its own view on the working environ-
ment, therefore, can autonomously pursue its own goals. The agent convinces the other
agents by presenting the arguments to defend its goals. An agent can recall the argu-
ments played by the others but does not know the knowledge, which generates those
arguments. That is an agent has a partial view on the knowledge of the other agents.

In this work, we model interactions between agents to settle on goals commonly
accepted by the group. Also, at each step of the game, we show how an agent can
identify a goal and sub-goals for its counter arguments. This information is critical for
those agents whose main claims are refuted either directly by arguments from other
agents or indirectly by the combination of these arguments.

3.1.1 Settling on Common Goals

An agent can pursue a goal in the set of common goals G by proposing an explanation
for its goal. The group justifies proposals from individual agents in order to identify
commonly-accepted goals using a dialogue as follows:

1. Each agent broadcasts an argument for its goal. The system can be viewed as an
argumentation game with n-players corresponding to the number of agents.
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2. An agent checks the status of its argument against those from the other agents.
There are three possibilities, the argument is: (a) directly refuted if its argument
conflicts with those from others; (b) collectively refuted if its argument does not
conflict with individual arguments but violates the combination of individual argu-
ments (see Section 3.3.1); (c) collectively accepted if its argument is justified by
the combination (see Section 3.4.2).

3. According to the status of its main claim, an agent can: (a) defend its claim; (b)
attack a claim from other agents; (c) rest.

4. The dialogue among agents is terminated if all agents pass their claims. For a dis-
pute, agents stop arguing if they do not have any more argument to propose.

3.1.2 Weighting Opposite Premises

In a dialogue, at each step an agent is required to identify goals and sub-goals which
are largely shared by other agents. This information is highly critical for agents, whose
main claims are refuted either directly by other agents or collectively by the combina-
tion of arguments from others in order to effectively convince other agents.

To achieve that an agent, Ame, identifies a sub-group of agents, namely “opp-group”,
which directly or collectively attacks its main claim at step i. Ame creates Argsopp

i as
the set of opposing arguments from the opp-group and P opp

i as the set of premises in
Argsopp

i . Essentially, Argsopp
i contains arguments attacking Ame’s claim. Each element

of Popp
i is weighted by its frequency in Argsopp

i . We define the preference over Popp
i as

given p1, p2 ∈ Popp
i , p2 	 p1 if the frequency of p2 in Argsopp

i is greater than that of p1.
Because Argsopp

i is the set of arguments played by the opp-group, the more frequent an
element q ∈ Popp

i is the more agents use this premise in their arguments. Therefore, the
refutation of q challenges other agents better than the premises having lower frequency
since this refutation causes a larger number of agents to reconsider their claims.

3.1.3 Defending the Main Claim

At iteration i, Argsopp
i represents the set of arguments played by the opp-group:

Argsopp
i =

|A |⋃

j=0

Arg
Aj
i |Arg

Aj
i directly attacks ArgAme

i

where Arg
Aj
i is the argument played by agent A j at step i. If A j rests at iteration i, its

last argument (at iteration k) is used Arg
Aj
i = Arg

Aj
k . ArgAme

i is the argument played by
Ame at step i. The set of opposite premises at iteration i is:

Popp
i = {p|p ∈ Argsopp

i and p �∈ ArgAme
i }

The preference over elements of Popp provides a mechanism for Ame to select arguments
for defending its main claim.
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Example 3. Suppose that agent A1 and A2 respectively propose ArgA1 = {⇒ e ⇒ b ⇒
a} and ArgA2 = {⇒ e ⇒ c ⇒ a} whilst agent A3 claims ArgA3 = {⇒ d ⇒∼a}. From
A3’s view, its claim directly conflicts with those of A1 and A2. The arguments and
premises of the opp-group are:

Argsopp
i = {⇒ e ⇒ b ⇒ a; ⇒ e ⇒ c ⇒ a} and Popp

i = {a2,b1,c1,e2}

The superscript of elements in Popp
i represents the frequency of a premise in Argsopp

i .
A3 can defend its claim by providing a counter-argument that refute ∼a – the major
claim of the opp-group. Alternatively, A3 can attack either b or c or e in the next step.
An argument against e is the better selection compared with those against b or c since
A3’s refutation of e causes both A1 and A2 to reconsider their claims.

3.1.4 Attacking an Argument

In this situation, individual arguments of other agents do not conflict with that of A me

but the integration of these arguments does. Agent A me should argue against one of
these arguments in order to convince others about its claim.

At iteration i, let the integration of arguments be T i
INT = Tbg

⋃|A |
j=0 T i

j , where T i
j is the

knowledge from agent j supporting agent j’s claim, and JArgs Ti
INT be the set of justified

arguments from integrated knowledge of other agents (see Section 3.4.2). The set of
opposite arguments is defined as:

Argsopp
i = {a|a ∈ JArgsTi

INT and a is attacked by ArgAme
i }

and the set of opposite premises is:

Popp
i = {p|p ∈ Argsopp

i and (p �∈ ArgAme
i or p is not attacked by ArgAme

i )}

The second condition is that Ame is self-consistent and does not play any argument
against itself. In order to convince other agents about its claim, A me is required to pro-
vide arguments against any premise in Popp. In fact, the order of elements in Popp offers
a guideline for Ame on selecting its attacking arguments.

3.2 Extended Defeasible Reasoning

In this section, we propose a simple method to integrate two independent defeasible
theories. Note that a defeasible theory has finite sets of facts and rules, and a derivation
from the theory can be computed in linear time [Maher 2001]. In addition, we revise
the argumentation semantics with respect to the extended reasoning mechanism.
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3.2.1 Defeasible Reasoning with a Superior Theory

Suppose that an agent considers two knowledge sources represented by defeasible theo-
ries labeled as Tsp – the superior theory, and Tin – the agent’s internal theory. The agent
considers that Tsp has higher level of importance than Tin. That relationship is repre-
sented as Tsp 
 Tin. Thus, conclusions from the internal theory should be withdrawn if
they conflict with the superior theory; the agent prefers the superior theory’s conclu-
sions to its own. We denote that reasoning process over Tsp and Tin as Tsp � Tin. It is
noticed that Tsp and Tin are coherent and consistent.

Thanks to the transformations of [Antoniou et al. 2001] to remove the superiority
relation and defeater rules, we can assume that the two theories contain only strict and
defeasible rules. To perform the defeasible reasoning, the agent generates a superiority
relation over sets of rules as in Rsp > Rin, that is the rules from Tsp are stronger than
the rules from Tin. In this scheme, the subscript denotes the type of rules while the
superscript indicates the type of the theory which contains the rules.

A definite conclusion e.g. +Δq is derived by performing forward chaining with the
strict rules in the superior theory, or in the internal theory if the complementary literals
cannot be positively proved by the superior theory. In other words, T sp � Tin derives
+Δq if Tsp has a proof for q or Tin can definitely prove q provided that there is no
(definite) support for ∼q from Tsp.

+Δ : If P(i+ 1) = +Δq then
(1) q ∈ F or
(2) ∃r ∈ Rsp

s [q] ∀a ∈ A(r) : +Δa ∈ P(1..i) or
(3) ∃t ∈ Rin

s [q] ∀a ∈ A(t) : +Δa ∈ P(1..i) and
∀r ∈ Rsp

s [∼q] ∃a ∈ A(r) : −Δa ∈ P(1..i)

The conclusions tagged with −Δ mean that the extended mechanism cannot pro-
duce a positive proof for the corresponding literals from the strict parts of the both
theories or the superior theory holds the complements.

−Δ : If P(i+ 1) =−Δq then
(1) q �∈ F and
(2) ∀r ∈ Rsp

s [q] ∃a ∈ A(r) : −Δa ∈ P(1..i) and
(3) ∀r ∈ Rin

s [q] ∃a ∈ A(r) : −Δa ∈ P(1..i) or
∃t ∈ Rsp

s [∼q] ∀a ∈ A(t) : +Δa ∈ P(1..i)

A defeasible conclusion+∂q can either be drawn directly from definite conclusions,
or by investigating the defeasible part of the integrated theory. In particular, it is required
that a strict or defeasible rule with an “applicable head” q is in the theory (2.1). In
addition, the possible “attacks” must be either unprovable (2.2 and 2.3.1) or counter-
attacked by “stronger” rules (2.3.2).

+∂ : If P(i+ 1) = +∂q then either
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(1) +Δq ∈ P(1..i) or
(2.1) ∃r ∈ Rsp

sd [q]∪Rin
sd[q] ∀a ∈ A(r) : +∂a ∈ P(1..i) and

(2.2) −Δ∼q ∈ P(1..i) and
(2.3) ∀s ∈ Rsp

sd [∼q]∪Rin
sd[∼q] either

(2.3.1) ∃a ∈ A(s) : −∂a ∈ P(1..i) or
(2.3.2) ∃t ∈ Rsp

sd [q]∪Rin
sd[q] such that t > s and

∀a ∈ A(t) : +∂a ∈ P(1..i)

The conclusions tagged with −∂ mean that the extended mechanism cannot re-
trieve a positive proof for the corresponding literals from the strict and defeasible rules
of both theories or these conclusions are rebutted because of “stronger” conclusions.
The proof for −∂ derives from that of +∂ by using the strong negation principle
[Antoniou et al. 2000].

−∂ : If P(i+ 1) =−∂q then
(1) −Δq ∈ P(1..i) and

(2.1) ∀r ∈ Rsp
sd [q]∪Rin

sd[q] ∃a ∈ A(r) : −∂a ∈ P(1..i) or
(2.2) +Δ∼q ∈ P(1..i) or
(2.3) ∃s ∈ Rsp

sd [∼q]∪Rin
sd[∼q] such that

(2.3.1) ∀a ∈ A(s) : +∂a ∈ P(1..i) and
(2.3.2) ∀t ∈ Rsp

sd [q]∪Rin
sd[q] either t �> s or

∃a ∈ A(t) : −∂a ∈ P(1..i)

The extended mechanism reconstructs the superiority relation among rules from that
of the theories Tsp and Tin. Therefore, the standard conditions for defeasible conclusions
can be applied for the defeasible part of the combined theory. It is noticed that the con-
ditions for ±Δ are different. Essentially, the meaning of definite conclusions is slightly
changed. Only definite conclusions from the superior theory Tsp are not refutable but
those conclusions from the internal theory Tin can be rejected by those from Tsp.

Given two defeasible theories T and S and a proof tag #, we use T � #q to mean
that #q can be proved from theory T using the basic proof conditions of DL. Meanwhile
T � S � #q means that there is a derivation of #q from the theory integrating T and S
using the proof conditions given in this section and where T plays the role of T sp and S
the role of Tin.

The properties of the extended reasoning with the superior knowledge are repre-
sented as propositions. If a strict conclusion is derived from the superior theory, the
extended mechanism does not provide any proof for its negation (Proposition 17). The
conclusions from the extended mechanism can violate defeasible conclusions obtained
from the superior theory if the agent has a strong evidence of the contradiction in its
internal knowledge (Proposition 18). The extended reasoning maintains the coherence
and consistent of the standard reasoning (Proposition 19).

Proposition 17. If Tsp �+Δq then Tsp � Tin ��+Δ∼q and Tsp � Tin ��+∂∼q.
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Proof. This result directly draws from the proof conditions of our reasoning mecha-
nism. Assume that q is derived from the strict rules of the superior theory, Tsp � +Δq,
while +Δ∼q is computed by the integrated theory, Tsp � Tin � +Δ∼q. With regard to
the proof for +Δ , +Δ∼q can be derived either from (1) or (2) that is T sp �+Δ∼q. But
this violates the assumption. If +Δ∼q is proved by (3), this proof condition requires
the strict rules from the superior theory do not have any support for q, T sp �� +Δq.
Again, this contradicts the assumption. Hence the first part of the proposition is proved.
Tsp � +Δq blocks the derivation of +Δ∼q and −Δ∼q from the integrated theory.
That means (1) and (2.2) are not satisfied in the proof of +∂ . Consequently, +∂∼q
is blocked.

Proposition 18. If Tsp � −Δ∼q and Tin �+Δq then Tsp � Tin �+∂q.

Proof. Assume that the integrated theory derives the contradiction, Tsp � Tin �+∂∼q,
given the conditions of the proposition. According to the proof of +∂ , +∂∼q requires
Tsp � Tin to prove either +Δ∼q or −Δq since the conditions of (2.1) and (2.3) can be
met due to the superiority of Tsp over Tin. As shown in the proof of Δ , the derivation
of +Δ∼q and −Δq from Tsp � Tin respectively requires Tsp � +Δ∼q or Tin � +Δ∼q,
Tsp ��+Δq and Tin ��+Δq. Clearly, these requirements violate the assumptions of Tsp �
∼Δ∼q and Tin �+Δq.

Proposition 19. The extended reasoning mechanism is coherent and consistent (See
Definition 5 and 6).

Proof. First, we investigate the derivation of strict conclusions. By the definition of the
standard defeasible logic, for each individual theory it is not possible to prove both
−Δq and +Δq. The only case leading to conflicting conclusions is where the superior
theory supports q, Tsp �+Δq, while the internal theory proves the contradictory, Tin �
+Δ∼q. According to the proof condition for +Δ , the contradiction is always rejected.
Therefore, the derivation of strict conclusions is coherent.

The coherence of the defeasible part of the reasoning with the superior theory di-
rectly inherits from that of the standard defeasible reasoning in the case that both the-
ories have empty sets of facts and strict rules. The only case that can lead to the inco-
herence is Tsp �+∂q and Tin �+Δ∼q. That means the defeasible rules of the superior
theory prove a conclusion conflicting with that supported by the strict rules of the in-
ternal theory. However, as mentioned above, the defeasible part of the superior theory
is defeated by the strict part of the internal theory. That is, the derivation of defeasible
conclusions is also coherent.

The consistency property follows from the coherence property. It is impossible to
have conflicting conclusions from the proof conditions for defeasible conclusions. The
only source of inconsistency comes from the proof for strict conclusions.

The extended mechanism computes a consistent set of conclusions with respect
to the superior theory. The mechanism goes beyond the standard defeasible reasoning
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because it extends the superiority relation of rules to that of theories. This increases the
size of theory to be investigated, but does not change the complexity of the reasoning
mechanism, since the inference mechanism is not changed.

3.2.2 Argumentation Semantics

This section shows the properties of arguments built by the extended reasoning mech-
anism. First, we revise the proof for strict conclusions derived from the combination,
therefore, strict arguments. Regard to the standard defeasible reasoning, we introduce
the notion of defeasibility into the strict part of the combined theory. Essentially, a strict
argument can be rejected if and only if that argument is constructed from a theory with
lower priority. Otherwise, the argument is not rejected by any argument. We define the
acceptance of a strict argument w.r.t. the extended reasoning in Definition 20.

Definition 20. In the extended reasoning, a strict argument A for p is strictly accept-
able w.r.t. a set of strict arguments S if A is finite, and every argument attacking A is
undercut by S .

We now present the property of strict arguments constructed by the extended rea-
soning over two defeasible theories Tsp and Tin, where Tsp has priority over Tin.

Proposition 21. Let Tsp and Tin be defeasible theories such that Tsp 
 Tin and p be a
literal.

1. Tsp � Tin �+Δ p iff there is a strictly acceptable argument for p from Tsp � Tin.

2. Tsp � Tin � −Δ p iff there is no strictly acceptable argument for p from Tsp � Tin.

Proof. We prove the only if (⇒) direction of the proposition by induction on the length
of a derivation P of the extended reasoning over Tsp and Tin.

At the first step of the derivation, P(1) = +Δ p. That implies there is a strict rule, r,
supporting p in Tsp � Tin (Notice that a fact can be considered as a strict rule with an
empty body). If r is in Tsp then there is a strict argument for p constructed from Tsp. That
argument is self acceptable within Tsp due to the priority of Tsp. If r is in Tin, there is a
strict supportive argument A for p constructed from Tin. Within Tin there is no argument
against A as the standard reasoning. Corresponding to the extended condition for +Δ ,
P(1) holds only if there is no strict rule in Tsp supporting ∼p. In other words, there is
no argument supporting ∼p constructed from Tsp. Therefore, the argument A from Tin

is acceptable w.r.t. Tsp.
At the first step, if P(1) = −Δ p then there is not any strict rule r supporting p in

both Tsp and Tin. Therefore, it is not possible to have a strict argument for p in both
theories.

At the inductive step, we assume that the proposition holds for derivations with
length up to n. P(n+ 1) = +Δ p. That is there exists a supportive argument A for p,
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which is built from a strict rule r ∈ Tsp∪Tin such that ∀ar ∈A(r),+Δar ∈ P(1..n). Every
ar must be justified by inductive hypothesis. According to the standard reasoning, the
strict rules from a theory do not support for both a r and ∼ar. Therefore, the attack
results from the other theory of the combination Tsp � Tin. If ar ∈ Tsp, the attacks from
Tin is rejected due to the priority of Tsp over Tin. In the case that ar ∈ Tin, we have
∀r ∈ Rsp

s [∼ar] ∃a ∈ A(r) : −Δa ∈ P(1..n). By inductive hypothesis, there is no strict
argument for ∼ar from Tsp. The argument for ar from Tin is not attacked, hence, it is
acceptable.

Assume that P(n+ 1) = −Δ p, there are two possibilities. First, each strict rule r
for p in Tsp and Tin has at least one literal ar in the body such that −Δar ∈ P(1..n).
By inductive hypothesis, there is no strict argument for a r, therefore, it is not possible
to built a strict proof for p from Tsp and Tin. Second, there is a rule in Tsp supports
the complement of p. By the inductive hypothesis for the positive proof, there is a
strictly acceptable argument for ∼p. Hence, all of the arguments for p (from T in) is not
acceptable.

In what follows, we prove the if direction (⇐) of the proposition.
In the first part of the proposition, suppose that A is a strict argument for p having

the height of 1. If A is built from Tsp, there is a strict rule with empty body for p in the
combination Tsp ∪Tin. If A is built from Tin and accepted by Tsp, there is a strict rule for
p in Tin and no rule for ∼p in Tsp. In both case, there is a applicable rule for p in the
combination, therefore, Tsp � Tin �+Δ p.

At the inductive step, we assume that the first part holds for arguments with height
up to n and A is an argument for p. From A, we construct a strict rule as A(r)→ p. For
every literal ar ∈ A(r), which is accepted by Tsp, we create sub-arguments of A having
the height less than n. By inductive hypothesis we obtain +Δa r, hence, the condition
for A(r)→ p is satisfied. Therefore, Tsp � Tin �+Δ p.

We prove the second part of the proposition by contradiction. Accordingly, assume
that Tsp � Tin �� −Δ p. That leads to: (1) r ∈ Rsp

s [p]∀ar ∈ A(r) Tsp � Tin �� −Δar; or (2)
s ∈ Rin

s [p]∀as ∈ A(s) Tsp � Tin �� −Δar and ∀t ∈ Rsp
s [∼p]∃at ∈ A(t) Tsp � Tin ��+Δat .

For a strict rule for p in Tsp, we construct a partial argument A for p by expanding
r. The expansion of the argument ends with three instances:

1. A rule with the empty body. That is there a strict argument for the literal from T sp.
That contradicts the assumption.

2. No more rule to expand, therefore, we have −Δa r. That also contradicts with the
assumption.

3. A loop. None of the literals of the loop can prove the adjacent literal. Therefore, we
have −Δar. That also contradicts with the assumption.

For a strict rule for s in Tin, we construct a partial argument B for p by expanding
s. Considering an argument C attacking B at q. If q is supported by Tsp, the attack is
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rejected because of the priority of Tsp. Hence, q is supported by a rule Tin. If E for ∼q
is constructed from Tsp, then that violates the assumption ∀t ∈ Rsp

s [∼q]∃at ∈ A(t) Tsp �

Tin ��+Δat . If E for ∼q is derived from Tin, that violates the coherence and consistency
of the strict part of Tin. Therefore, E is not an acceptable argument. Also, B is not attack
by any argument.

For both cases, the assumption is not valid, hence, the second part of the proposition
is proved.

Example 4. This example shows the result of extending the superiority relation between
theories to the strict parts of defeasible theories. Suppose that we have two defeasible
theories Tsp = {Rs = {r1 :→ a; r2 : a → b}} and Tin = {Rs = {r1 :→ c; r2 : c →∼b}}
such that Tsp 
 Tin.

The extended Tsp � Tin reasoning proves+Δa,+Δb,+Δc, and−Δ∼b. Correspond-
ingly, the combined theory justifies the strict arguments JArgs Tsp�Tin = {→ a→ b;→ c}.
Due to the priority of Tsp over Tin, the argument → c →∼b is rejected and undercut by
→ a → b. Therefore, there is no justified argument for ∼b.

The combination of Tsp � Tin extends the priority among defeasible theories to that
of rules in the combination. Therefore, the set of arguments constructed from the com-
bination inherits the justification property from that of the standard defeasible logic.
This is also due to the coherent property of the extended conditions for strictly provable
conclusions.

Proposition 22. In the combination of two independent theories Tsp � Tin

1. Tsp � Tin �+∂ p iff arguments for p are justified by Tsp � Tin.

2. Tsp � Tin � −∂ p iff arguments for p are rejected.

Due to coherent and consistent properties of the extended defeasible reasoning, the
set of arguments constructed from the combination of two independent theories satisfies
Proposition 23. The extended reasoning over the combination does not simultaneously
provide proof for +∂ p and −∂ p, or +Δ p and −Δ p. As a result, it is not possible to
construct the arguments both for and against a literal and its complement.

Proposition 23. In the integration of two defeasible theories Tsp � Tin

1. No argument is both justified and rejected.

2. No literal is both justified and rejected.

3.3 Knowledge Representation

Agent Ame has three types of knowledge including the background knowledge Tbg, its
own knowledge about the working environment Tme, and the knowledge about others:

Tother = {Tj : 1 ≤ j ≤ |A | and j �= me}

2669Pham D.H., Governatori G., Thakur S.: Extended Defeasible Reasoning ...



where Tj is obtained from agent A j during iterations and Tj is represented in DL. At
iteration i, the knowledge obtained from A j is accumulated from previous steps:

T i
j =

i−1⋃

k=0

T k
j +Arg

Aj
i

In our framework, the knowledge of an agent can be rebutted by other agents. It is
reasonable to assume that defeasible theories contain only defeasible rules and defeasi-
ble facts (defeasible rules with empty body).

3.3.1 Knowledge Integration

To generate arguments, an agent integrates knowledge from different sources. Given
ambiguous information between two sources, there are two possible methods to com-
bine them: ambiguity blocking and ambiguity propagation.

3.3.1.1 Ambiguity Blocking Integration.

This method extends the standard defeasible reasoning by creating a new superiority
relation from that of the knowledge sources, i.e., given two sources as Tsp, the superior
theory, and Tin, the inferior theory, we generate a new superiority relation R sp

d > Rin
d

based on rules from two sources. The integration of the two sources is denoted as T INT =

Tsp � Tin (see Section 3.2). Now, the standard defeasible reasoning can be applied for
TINT to produce a set of arguments ArgsTINT

AB .

Example 5. Given two defeasible theories

Tbg = {Rd = {r1 : e ⇒ c; r2 : g, f ⇒∼c; r3 :⇒ e};>= {r2 > r1}}
Tme = {Rd = {r1 :⇒ d; r2 : d ⇒∼a; r3 :⇒ g}}

The integration of Tbg � Tme produces:

TINT = {Rd ={r
Tbg
1 : e ⇒ c; r

Tbg
2 : g, f ⇒∼c; r

Tbg
3 :⇒ e;

rTme
1 :⇒ d; rTme

2 : d ⇒ a; rTme
3 :⇒ g};

>={r
Tbg
2 > r

Tbg
1 }}

The integrated theory inherits the superiority relation from Tbg. That means the new
theory reuses the blocking mechanism from Tbg.

3.3.1.2 Ambiguity Propagation Integration.

Given two knowledge sources T1 and T2, the reasoning mechanism with ambiguity prop-
agation can directly apply to the combination of theories denoted as T

′
INT = T1 + T2.

The preference between two sources is unknown, therefore, there is no method to solve
conflicts between them. The supportive and opposing arguments for any premise are re-
moved from the final set of arguments. The set of arguments obtained by this integration

is denoted by Args
T
′
INT

AP .
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3.4 Argument Justification

The motivation of an agent to participate in the game is to promote its own goal. How-
ever, its claim can be refuted by different agents. To gain the acceptance of the group,
at the first iteration, an agent should justify its arguments by common constraints and
expectations of the group governed by the background knowledge T bg. The set of argu-
ments justified by Tbg determines arguments that an agent can play to defend its claim.
In subsequent iterations, even if the proposal does not conflict with other agents, an
agent should ponder knowledge from others to determine the validity of its claim. That
is an agent is required a justification by collecting individual arguments from others.

3.4.1 Justification by Background Knowledge

Agent Ame generates the set of arguments for its goals by combining its private knowl-
edge Tme and the background knowledge Tbg. The combination is denoted as TINT =

Tbg � Tme (see Section 3.2) and the set of arguments is ArgsTINT. Due to the non-
monotonic nature of DL, the combination can produce arguments beyond individual
knowledges. From Ame’s view, this can bring more opportunities to fulfil its goals. How-
ever, Ame’s arguments must be justified by the background knowledge Tbg since Tbg gov-
erns essential behaviours (expectations) of the group. Any attack to Tbg is not supported
by members of A . Ame maintains the consistency with the background knowledge Tbg

by following procedure:

1. Create TINT = Tbg � Tme. The new defeasible theory is obtained by replicating all
rules from common constraints Tbg into the internal knowledge Tme while maintain-
ing the superiority of rules in Tbg over that in Tme.

2. Use the ambiguity blocking feature to construct the set of arguments Args Tbg from
Tbg and the set of arguments ArgsTINT

AB from TINT.

3. Remove any argument in ArgsTINT
AB attacked by those in ArgsTbg, obtaining the jus-

tified arguments by the background knowledge JArgs TINT = {a ∈ ArgsTINT
AB and a is

accepted by ArgsTbg}.

Example 6. Consider two defeasible theories:

Tbg ={Rd = {r1 : e ⇒ c; r2 : g, f ⇒∼c; r3 :⇒ e};>= {r2 > r1}}
Tme ={Rd = {r1 :⇒ d; r2 : d ⇒∼a; r3 :⇒ g}}

We have sets of arguments from the background theory and the integrated theory:

ArgsTbg ={⇒ e; ⇒ e ⇒ c}
ArgsTINT = ArgsTbg�Tme ={⇒ e; ⇒ e ⇒ c; ⇒ d; ⇒ g; ⇒ d ⇒∼a}

In this example, there is not any attack between arguments in Args Tbg and ArgsTINT
AB .

In other words, arguments from ArgsTINT are acceptable by those from ArgsTbg. The set
of justified arguments w.r.t. ArgsTbg is JArgsTINT = ArgsTINT

AB .
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3.4.2 Collective Justification

During the game, Ame can exploit the knowledge exposed by other agents in order to
defend its main claims. Due to possible conflicts in individual proposals, an agent uses
the sceptical semantics of the ambiguity propagation reasoning to retrieve the consistent
knowledge. Essentially, given competing arguments an agent does not have any prefer-
ence over them, therefore, these arguments will be rejected. The consistent knowledge
from the others allows an agent to discover “collective wisdom” distributed among
agents in order to justify its claim.

The justification of collective arguments, which are generated by integrating all
knowledge sources, is done by the arguments from the background knowledge Args Tbg.
The procedure runs as follows:

1. Create a new defeasible theory T
′
INT = (Tbg � Tme)+Tother.

2. Generate the set of arguments Args
T
′
INT

AP from T
′
INT using the feature of ambiguity

propagation.

3. Justify the new set of arguments JArgsT
′
INT = {a|a ∈ Args

T
′
INT

AP and a is accepted by
ArgsTbg}.

JArgsT
′
INT allows Ame to verify the status of its arguments for its claim JArgsTINT.

If arguments in JArgsT
′
INT and JArgsTINT do not attack one another, Ame’s claims are

accepted by other agents. Any conflict between two sets shows that accepting argu-

ments in JArgsT
′
INT stops Ame to achieve its claims in next steps. The set of arguments

Argsopp against Ame is identified as any argument in JArgsT
′
INT attacking Ame’s argu-

ments. Ame also establishes Popp to select its counter-argument. It is noticed that Ame is
self-consistent.

Example 7. Suppose the background knowledge Tbg and the private knowledge Tme of
Ame are:

Tbg = {Rd ={r1 : e ⇒ c; r2 : g, f ⇒∼c};>= {r2 > r1}}
Tme = {Rd ={r1 :⇒ e; r2 : c ⇒ d; r3 :⇒ g}}

Agent Ame currently plays {⇒ e ⇒ c ⇒ d} and knows about other agents:

Tother = {T1,T2} where T1 = {⇒ h ⇒ f ⇒ b ⇒ a} and T2 = {⇒ e ⇒ c ⇒ a}
The claim of A3 is acceptable w.r.t. arguments played by the other agents. How-

ever, the combination T
′
INT = Tbg � Tme+Tother shows the difference. This combination

generates {⇒ g; ⇒ e; ⇒ e ⇒ f ⇒ b; ⇒ g, f ⇒ ∼c}. {⇒ g, f ⇒ ∼c} is due to the
superiority relation in Tbg which rebuts the claim of A3. Therefore, the set of oppos-
ing arguments Argsopp = {⇒ g, f ⇒∼c} and Popp = { f 1}. Given this information, A3

should provide a counter-evidence to f in order to pursue c. Moreover, A 3 should not
expose g to the other agents. Otherwise, A3 has to drop its initial claim d.
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4 Related Works

Substantial works have been done on argumentation games in the artificial intelligence
and law-field. [Prakken and Sartor 1996] introduces a dialectical model of legal ar-
gument, where arguments can be attacked with appropriate counterarguments. In the
model, the factual premises are not arguable; they are treated as strict rules. An early
specification and implementation of an argumentation game based on the Toulmin
argument-schema without a specified underlying logic is given in [Bench-Capon 1998].
[Lodder 2000] presented the pleadings game as a normative formalization and fully im-
plemented computational model, using conditional entailment.

Settling on a common goal among agents can be seen as a negotiation process where
agents exchange information to resolve conflicts or to obtain missing information.

The work in [Amgoud et al. 2007] provides a unified and general formal framework
for the argumentation-based negotiation dialogue between two agents. The work estab-
lishes a formal connection between the status of a argument (accepted, rejected, and
undecided) with an agent’s actions (accept, reject, and negotiate respectively). More-
over, an agent’s knowledge is evolved by accumulating arguments during interactions.

[Parsons and McBurney 2003] presents an argumentation-basedcoordination, where
agents can exchange arguments for their goals and plans to achieve the goals. The ac-
ceptance of an argument of an agent depends on the attitudes of this agent namely
credulous, cautious, and sceptical. In [Rueda et al. 2002], agents collaborate with one
another by exchanging their proposals and counter-proposals in order to reach a mu-
tual agreement. During conversations, an agent can retrieve missing literals (regarded
as sub-goals) or fulfil its goals by requesting collaboration from other agents.

We have advantages of using DL since it flawlessly captures the statuses of argu-
ments, such as accepted, rejected, and undecided by the proof conditions of DL. The
statuses are derived from the notions of +∂ ,−∂ and +Σ corresponding to a positive
proof, a negative proof, and a positive support of a premise. Consequently, an agent
can take a suitable action either to provide more evidence or to accept an argument
from others. In addition, DL provides a compact representation to accommodate new
information.

Recenly DL has been proposed to model various argumentation game concepts.
[Letia and Vartic 2006] focuses on persuasive dialogues for cooperative interactions
among agents. It includes in the process cognitive states of agents such as knowledge
and beliefs, and presents some protocols for some types of dialogues (e.g. information
seeking, explanation, persuasion). [Hamfelt et al. 2005] provides an extension of DL to
include the step of the adversarial dialogue by defining a meta-program for an alterna-
tive computational algorithm for ambiguity propagating DL while the logic presented
here is ambiguity blocking. In [Thakur et al. 2007], arguments are generated by using
the defeasible reasoning with ambiguity blocking. After each step in an argumentation
game, an agent can upgrade the strength of its arguments if these arguments are not
refuted by the opposing agent.
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We tackle the problem of evolving knowledge of an agent during iterations, where
the argument construction is an extension of [Thakur et al. 2007]. In our work, we de-
fine the notion of collective acceptance for an argument and a method to weight ar-
guments defending against opposing arguments by using both features of ambiguity
blocking and propagating.

The works in literature did not clearly show how an agent can tackle with conflicts
from multiple agents, especially when the preference over arguments is unknown. The
main difference in our framework is the external model where more than two agents can
argue to settle on goals commonly accepted by the group. Our weighting mechanism
enables an agent to build up a preference over premises constituting opposing arguments
from other agents. As a result, an agent can effectively select an argument among those
justified by the group’s background knowledge to challenge other agents.

We also propose the notion of collective justification to tackle the side-effect of ac-
cepting claims from individual agents. Individual arguments for these claims may not
conflict with one another, but the integration of these arguments can result in conflict-
ing with an agent’s claim. This notion is efficiently deployed in our work due to the
efficiency of defeasible logic in handling ambiguous information.

5 Conclusions

We presented an n-person argumentation game based on the extension of defeasible
logic, which enables a group of more than two agents to settle on goals commonly
accepted by the group. During an argumentation game, using the extended defeasible
reasoning each agent can use knowledge from multiple sources including the group’s
constraints and expectations, other agents’ knowledge, and its own knowledge in or-
der to argue to convince other agents about its goals. The knowledge about the group’s
constraints and expectations plays a critical role in our framework since this knowl-
edge provides a basis to justify new arguments non-monotonically inferred from the
integration of different sources.
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