
Checking Semantics Equivalence of MDA Transformations
in Concurrent Systems

Paulo Barbosa, Franklin Ramalho,
Jorge Figueiredo and Antonio Júnior

(Federal University of Campina Grande, Campina Grande, Brazil
paulo@dsc.ufcg.edu.br, franklin@dsc.ufcg.edu.br,

abrantes@dsc.ufcg.edu.br, antonio@dsc.ufcg.edu.br)

Anikó Costa and Lúıs Gomes
(Universidade Nova de Lisboa, Lisboa, Portugal

akc@uninova.pt, lugo@uninova.pt)

Abstract: In a previous work we have proposed an extension to the four-layer MDA
architecture promoting formal verification for semantics preserving model transforma-
tions. We analyzed semantics equivalence in transformations involving Platform Specific
Models (PSM s). In this paper, considering concurrent systems domain, we show how
this extended MDA architecture copes with the correctness verification of horizontal
model transformations involving Platform Independent Models (PIM s). Our approach
is supported by four formal techniques: behavioral equivalence relation, category the-
ory, bisimulation and model-checking. This set of techniques allows the analysis of
semantics equivalence between system model before and after transformation enabling
the decomposition of the system model into a set of concurrent sub-models, considered
as components. The validation of our approach occurs in a net splitting operation,
where PIM s are defined as Petri nets models according to the PNML metamodel with
transformations representing formal operations in this domain.
Key Words: MDA, transformations, formal semantics, concurrent systems, petri nets
Category: H.1, H.4.2, F.3.2, F.4.2

1 Introduction and Motivation

The Model-Driven Architecture (MDA) [Bettin 2004, Miller and Mukerji 2003,
OMG 2009] provides several ways to define models representing systems, and
transformations between these models. In MDA, a model is an abstract or con-
crete representation of a domain that enables communication between parts.
Models are classified as platform-independent models (PIM s) and platform-
specific models (PSM s). Furthermore, models are described by metamodels that
specify the elements that can appear in the models. Another important concept
in MDA are model transformations, a set of definition rules that describe how to
generate an output model from an input model. Metamodels play an important
role in the definition rules because they express the concepts and formalisms
involved in the transformations. Currently, there is a wide range of tools that
enables the transformation between models.

According to [OMG 2009, France and Bieman, 2001], a model transforma-
tion can have vertical or horizontal dimensions. In horizontal transformations the
source and target models reside in the same level of abstraction, while in verti-
cal transformations, they are in different levels of abstraction. Model abstraction
and model refinement are examples of vertical transformations, whereas model

Journal of Universal Computer Science, vol. 15, no. 11 (2009), 2196-2224
submitted: 18/1/09, accepted: 29/5/09, appeared: 1/6/09 © J.UCS

refactoring is an example of horizontal transformation. For instance, code gen-
eration from a model into a target programming language (PIM-to-PSM) is an
example of vertical transformation since some detail is added from the model to
the generated code. In case of the generated code be exactly as specified in the
model, we have model mappings, i.e., horizontal transformations. Thus, PIM-
to-PIM and PSM-to-PSM transformations may constitute vertical or horizontal
transformations.

Although MDA promises to overcome important unsolved problems in soft-
ware engineering, it has not specified ways to ensure that its transformations
are correct. Particularly, the lack of artifacts that allows a formal representation
of the involved models in the MDA architecture lead to undesirable situations
of ambiguity and low reliability when comparing the behavior of the input and
output models in its transformations.

The formal semantics of a model is the assignment of meanings to its sen-
tences or components. This assignment is given by a mathematical model that
represents every possible computation in the language that describes the model.
The dynamic semantics has a finer-grained conception of meaning: it is the be-
havior of a sentence as its context potentially changes. It is expected, with the
dynamic semantics description of a model, a foundation for understanding and
evaluating the design issues, and a valuable reference for transformations that
involve this model. In this sense, the formal definition of behavior is necessary
to guarantee the preservation of properties in the output model after a transfor-
mation.

Concurrent systems are systems that have the property of having several
processes or components executing at the same time, and that can interact with
each other. Most popular applications, from tightly-coupled to loosely-coupled,
from synchronous to asynchronous parallel and distributed systems satisfy this
property. Moreover, these systems require supporting implementation of each
involved process or component in a different platform, allowing heterogeneous
and distributed execution of the system model. This requirement enforces the
creation of several kinds of model transformations in very different contexts,
requiring the application of techniques that guarantee the semantics preserva-
tion of the models involved in these transformations. There are many formal
refinement techniques that are currently being implemented in the MDA frame-
work [Wadsack and Jahnke 2002]. For instance, [Costa and Gomes 2007] adopts
a set of executable MDA transformations that enable the automatic decompo-
sition of the system model into a set of components in the concurrent systems
domain. However, there is no guarantee that these (MDA) transformations are
semantics-preserving.

In [Barbosa et al. 2008(b)], we have proposed an extension of the four-layer
MDA architecture in order to incorporate formal semantics in its infrastructure.
We introduced the formalization of semantic metamodels, semantic models as
well as we proposed simplification rules and a formal checker to verify the equiv-
alence of the input and output models involved in transformations and to prove
properties about it, respectively. The proposed extension was analyzed and vali-
dated with some horizontal transformations involving (PSM s) in the modelware
domain. More precisely, the models were represented using specific constructs of
imperative and object oriented programming languages.

2197Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

In this paper, the main focus is on the correctness verification of horizontal
model transformations involving (PIM s) specifying concurrent systems, which
represent a substantial topic of interest related to the MDA community. We pro-
pose and analyze a formal approach for verification of the dynamic semantics in
MDA transformations to prove equivalence of concurrent and platform indepen-
dent models. This approach fits well with our extended MDA architecture, but
requires to be filled with specific techniques and tools necessary to deal with the
essence of the concurrent paradigm.

The evaluation occurs in a project that explores several distinct models of
computation for embedded systems’ design. It proposes the use of Petri nets
[Girault and Valk 2003] as the system-level specification language to model con-
current systems and components, which is verified and implemented in hardware
or software using co-design techniques [Gomes and Costa, 2006]. We analyze
and evaluate the MDA transformation representing the net splitting operation,
that is able to decompose a Petri net model into Petri net sub-models using
synchronous communication channels [Costa and Gomes 2007]. The presented
proofs of soundness of the transformation for partitioning models and identifica-
tion of sub-models intends to support the entire system development flow, from
specification to implementation.

The structure of this paper is as follows. Section 2 presents background is-
sues, with an overview of the current four layered MDA architecture, how we
have extended it in order to incorporate formal semantics in its artifacts and
the instantiation process of this architecture. Section 3 defines the case study
to be analyzed during the explanation of the approach. Section 4 presents the
instantiation of our solution for the concurrent systems domain. Section 5 gives
details about our proposed approach for checking semantics equivalence between
platform independent models of concurrent systems as well as presents the main
formal techniques adopted to support it and validates the Splitting Operation in
the context of the FORDESIGN project [Gomes et al, 2005]. Section 6 discusses
similar works. Finally, Section 7 presents some final remarks and future research
directions to the work.

2 Background

2.1 Model-Driven Architecture

Model-Driven Architecture is a software development approach that focuses on
models, metamodels and transformations to define the elements of a system.
Models are also key elements to direct the course of understanding, documenta-
tion and generation of artifacts that will become part of the overall solution. It
is supported by the Object Management Group (OMG) [OMG 2009].

Models are primary artifacts to generate implementations by applying trans-
formations. Three models are at the core of MDA. The first is the Platform In-
dependent Model (PIM) which captures the requirements and design of a com-
putational system independently of any target implementation platform. For
instance, it describes a software system that supports some business, indepen-
dently if it will be implemented with a relational database or as an application
server. The second is the Platform Specific Model (PSM), that is the result of

2198 Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

a transformation of the PIM. A PSM specifies the system in terms of a specific
implementation technology. Moreover, we will have a generated PSM from a
PIM for each specific technology according to the project requirements. Finally,
we have the Code model. It is the final step in the development and is result of
the transformation of each PSM. This transformation is relatively straightfoward
because of the PSM completeness.

There are two kinds of transformations: vertical and horizontal. Vertical
model transformations are used to refine or abstract a model; they affect the
abstraction level of the model specification. The horizontal model transforma-
tions do not affect the abstraction of the model, they are used mainly to re-
structure it. PIM-to-PSM and PSM-to-PIM transformations are examples of
vertical transformations that. The PIM-to-PSM transformations are performed
once the PIM is elaborated enough to be associated to the characteristics of
the platform, and PSM-to-PIM transformations are model reverse engineering
transformations, they relate to abstraction of models into more general concepts.

Let us take as an example the context of systems specification through the
UML language. In this case, the PIM is a UML model without any specific plat-
form detail. Horizontal model transformations are able to refine these models
using better design techniques, such as design patterns. A vertical model will
translate this PIM to a PSM, generating a more detailed model in the specific
plataform, such as Java, constructs. Finally, this PSM can straightfowardly be
mapped into concrete syntax Java constructs through another vertical transfor-
mation, generating the final Java executable code.

All the MDA artifacts (models, metamodels and transformations) are orga-
nized according to the four-layer architecture provided by the OMG consortium
[?]. It is presented in Figure 1, where is shown the context of two models in-
volved in a transformation: the input model (left side) and the output model
(right side). The layer M0 describes the concrete syntax of a given model. For
instance, in programming languages it is the final executable code coupled to
the chosen technology. M1 comprises artifacts which have similar characteristics
in a model. M2 provides the metamodel which serves as a grammar to check
the correctness of the model syntax developed at the layer M1. At the top, the
highest layer, named M3, describes the layer M2 by using MOF. Since MOF
describes itself, it does not require further metamodels. The model transforma-
tions are able to automatically generate output models from input models at the
layer M1. They are defined in terms of metamodel descriptions and cope only
with syntactic/structural aspects.

In addition, the OMG put forward some standards to specify the main arti-
facts of the MDA infrastructure, such as PIMs, PSMs, metamodels and trans-
formations. Examples of these standards are: Meta-Object Facility (MOF), a
language to specify metamodels; (ii) Unified Modeling Language (UML), as the
main modeling language to specify PIMs and PSMs (by means of UML profiles),
but other languages and formalisms can be used such as Petri nets (iii) the Object
Constrain Language (OCL), a language to define constraints to avoid ambigu-
ous model definitions; and (iv) Query/View/Transformations (QVT) that is a
standard to define transformations, though the Atlas Transformation Language
(ATL) [Bezivin et al. 2003] the most popular QVT-compliant language. Most of
the OMG standards are built towards reuse and alignment between themselves.

2199Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

Figure 1: Four-layered MDA architecture

For instance, MOF is based on UML ad OCL and allows building metamodels as
class diagrams annotated witl OCL constraints, i.e., describing the concepts and
their relations using classses, attributes, operations, associations and invariants
on classes. Thus, MOF reuses constructs from UML class diagrams and OCL
constraints at the meta-level layer.

2.2 The Extended MDA Architecture

In a previous work [Barbosa et al. 2008(b)], we have proposed an extended MDA
architecture for incorporating formal semantics in its artifacts and transforma-
tions. It was evaluated for an hypothetic example on imperative languages. The
proposed extension is shown in Figure 2. The new inserted modules to ensure
formalization are in gray at the layers M1 and M2. Briefly, its new inserted parts
are:

– Static Semantics Module, which provides the correct definition and repre-
sentation of the involved concepts with well-formedness rules that allows
to check important concepts, such as type-checking, scope verification and
more.

– Semantic Metamodel, it is divided in two parts: state structure and dynamic
semantics. The former defines the abstract syntax of the language to seman-
tic specifications and the latter defines the dynamic semantics, capturing
the state infrastructure of language constructs as well as how they use or
change an existing state. For instance, a concrete representation can be a
metamodel according to the EBNF grammar of a programming language
defining metaclasses as semantic concepts and rules, giving meaning for all
the constructs of this programming language, such as evaluation of state-
ments, assignments, control and so on.

2200 Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

– Semantic Model, which instantiates the state structure of the Semantic Meta-
model. For instance, for a given program, we have the representation of its se-
mantic domains, representing the meaning the specific syntactic constructs.
A representation of the environment of the program, the memory and its
locations, the stack, are all components that together are employed to give
the meaning of a program at a given moment.

– Semantic Equations, which define mappings, from the language’s abstract
syntax structures to meaning drawn from semantic models. As an example
we can have mappings to automatically extract the semantic models from
programs.

– Simplification Rules, which are able to perform the inference and compu-
tation of state configurations. As an illustration, after having the semantic
models that represent the state structure, we have the definition of rules that
enables computation of each constructs of the program, such as assignment
or control. This leads to the instantiation of the dynamic semantics, because
are concrete representations of the behavior of a program.

– Formal Checker, which is complementary to the simplification rules, and
required to prove properties about the equivalence of the verified input and
output models. For instance, we have employed theorem proving, in order
to prove whether two imperative programs can reach the same state or not.

Figure 2: The extended MDA architecture to incorporate formal semantics

It is important to emphasize that the module Formal Checker requires dif-
ferent formal techniques according to the models, domains or specific platforms
which it is employed. For instance, in [Barbosa et al. 2008(b)] we analyzed trans-
formations involving PSM s that describe imperative programs. For them, we
employed an approach following (i) Continuation-Passing Style (CPS) in the

2201Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

rewriting logic framework ; and (ii) specific constructs represented in CPS seman-
tics through program verification using the ITP theorem prover to the Formal
Checker module. On the other hand, for applications involving transformations
from or to the concurrent systems domain, even applied to PIM s, other formal
techniques and an appropriate approach are required for the two aforementioned
modules. These techniques are the main focus of this paper and they are pre-
sented and illustrated in Section 5.

2.3 The Instantiation Process

In order to turn the extended MDA architecture useful for verifying a model
transformation, it is necessary to instantiate it with specific techniques and tools
according to the paradigm of the involved models. Figure 3 is an UML activity
diagram that represents the workflow of this process. Each swimlane contains
specific activities for the existing actors: Solution Provider and MDA Client. The
Solution Provider is responsible for providing a complete solution for the MDA
client, hiding formal concepts and complicated aspects of techniques and tools.

Figure 3: Overview of the instantiation process

The activities of the Solution Provider concern to fill the architecture with
specific techniques. This is better detailed in the highest part of the figure. First,
the activity of providing well-formedness rules produces the static semantics for
the models to be analyzed. This static semantic guarantees that we can deal only
with correct models in our solution. Next, in order to provide semantic models
the semantic metamodel must be specified with a specific theory according to
the paradigm of the analyzed models. After this, the description of semantic
equations is necessary for the automatic extraction of these semantic models.
The processing semantic models is the next activity producing the simplifica-
tion rules, responsible for the dynamic semantics of the models. Finally, the
Solution Provider has to choose a comparison approach to check the equivalence
between semantic models. The end of this activity produces the formal checker.

2202 Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

The product of all these subactivities is an instance of the extended MDA ar-
chitecture for the paradigm of the involved models. Therefore, when the MDA
Client has applied the model transformation for the input model, the output
model is captured, which together with the input model are to be submitted to
the last activity in the prototype in order to employ the analysis techniques of
equivalence between these models. The equivalence result will enable detecting
whether the transformation is semantics-preserving or not.

3 Case Study

In this section we introduce a case study conducted to evaluate our approach.
This case study is part of a project called FORDESIGN [Gomes et al, 2005],
that proposes an easy-to-reason Petri net based language for concurrent systems
[Gomes et al. 2007] to describe PIM s in conformance with the PNML (Petri
Net Markup Language) metamodel [NWeber and Kindler 2003]. In the context
of this project, the Splitting Operation [Costa and Gomes 2007] was designed to
contribute to the usage of Petri nets as the system-level specification language
within the framework of hardware-software co-design of embedded systems, sup-
porting system model partitioning into components. In this sense, the splitting
operation performs a PIM-to-PIM transformation, starting from a centralized
model and generating a set of concurrent sub-models allowing distributed exe-
cution of the system.

3.1 Petri Nets

Petri nets is a graphical and mathematical formalism for modeling concurrent
systems [Girault and Valk 2003]. Its basic definition, also called Place/Transition
nets, is defined as a 4-tuple 〈S, T, F, W 〉, in which:

– S is a set of places.

– T is a set of transitions.

– F ⊆ (S × T) ∪ (T × S) is the set of arcs.

– W : (S × T) ∪ (T × S) → N is the weight function. N denotes natural
numbers.

The behavior, dynamic semantics, of a Petri net involves the concept of
marking, which is a function that associates to each place a non-negative integer,
called token. So, a marked Petri net is a tuple 〈 PN, M0 〉, where PN is a Petri
net and M0 is the initial marking. Henceforth, the terms Petri net and marked
Petri net are used interchangeably. For the sake of simplicity, let us consider that
all the arcs have weight 1.

Figure 4 shows the graphical representation of a simple Petri net with two
places (circles P1 and P2) and one transition (rectangle T 1). Focusing on T 1,
P1 is an input place whereas P2 is an output place. The initial marking is
M0 = (1, 1), indicating that there is one token in place P1 and one token in
place P2 (represented as black dots inside places in Figure 4).

2203Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

Figure 4: Example of Petri net

For operational analysis of Petri nets, a state is composed of the current
marking, which is stored in a data structure called multiset. The dynamic be-
havior of a Petri net is defined as a relation on its markings (states). A transition
of a Petri net may fire whenever there is a token in all of it input places. When
it fires, tokens from input places are consumed and new tokens are added in
the output places. The tokens in places that are neither input nor output places
remain unchanged. A firing is atomic, i.e., a single non-interruptible step. Con-
sidering the initial marking M0 for the Petri net in Figure 4, transition T 1 is
enabled to fire. After firing, one token is removed from place P1 and one token
is added to place P2. The new marking is M1 = (0, 2).

3.2 The Splitting Operation

The Splitting operation is based on the definition of a valid cutting set that
promotes the division of a Petri net model into several sub-models, which com-
municate through synchronous channels. The decomposition of the model is
achieved using a set of three rules (Rule #1, #2 and #3). Rule #1 is applied
when the node in the cutting set is a place. The remaining two rules, Rule #2
and Rule #3, are applied when the node in the cutting set is a transition.

Figure 5: Application of the Rule #1

The application of Rule #1 is illustrated in Figure 5. The initial net is com-
posed by two transitions and one place (Figure 5.a). By choosing to remove place

2204 Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

Figure 6: Application of the Rule #2

P1 (cutting set CS = {P1}) from the initial net, we have the new generated split-
ted net (Figure 5.b).

The application of Rule #2 is illustrated in Figure 6. The initial net is com-
posed by two places and one transition as depicted in Figure 6.a. The cutting
set node is CS = {T1} with input arcs from only one component. The result of
the splitting operation is shown in Figure 6.b.

Figure 7: Application of the Rule #3

The application of Rule #3 is illustrated in Figure 7. It is applied whenever
the cutting transition has input arcs from nodes which belong to different sub-
nets after node removal. After splitting, one component will receive the attribute
master while the other ones will receive the attribute slave. From the initial net
(Figure 7.a) and CS = {T1}, the result of the splitting operation is illustrated
in Figure (Figure 7.b).

3.3 The Parking Lot Controller Example

The Petri net that is used as an example in the rest of the paper describes a
parking lot controller. The parking lot has room for four cars, one entrance and
one exit. The Petri net that models the parking lot controller is shown in Figure

2205Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

8. The initial marking is defined with one token in places EntranceFree and
ExitFree and four tokens in place FreePlaces. It means that there is no vehicle
inside the parking lot and entrance and exit gates are free. The entrance and the
exit procedures are modeled using, respectively, the left and right parts of the
model. When the entrance gate is free and a car arrives, transition arrive+ fires
and a token is removed from place EntranceFree and a token is deposited in
place WaitingTicket indicating that a car is in the way to enter in the parking
lot. Then, transition Enter is enabled to fire and after firing, a token is removed
from place FreePlaces and one token is put on place CarInsideZone. This new
marking indicates that there is one car inside the parking lot and still room for
three more cars. Similarly, firing transition Exit indicates that a car is leaving
the parking lot and the number of free places is incremeted by one.

Figure 8: The net that models the parking lot controller

In order to illustrate the splitting operation, let us apply Rule #3 in the
Parking lot controller Petri net model. Considering that transition Enter was
in the cutting set, the application of splitting operation will produce a copy of
transitions Arrive+ and Enter. The remaining transitions are not copied.

Figure 9: The splitted model after application of Rule #3

2206 Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

The generated splitted Petri net model is presented in Figure 9.

4 Introducing Concurrent Models in the Extended
Architecture for Petri Nets

In this section we provide a complete overview of the extended MDA architec-
ture instantiated to deal with concurrent models. In this scenario, the semantic
metamodels must specify the state structure and the dynamic semantics of the
concurrent model, i.e., they must describe the elements captured from the se-
mantic representation of the concurrent model involved in the transformations.
A semantic model must be generated from the syntactic concurrent model and
it must be in conformance with its state structure previously specified by the
semantic metamodel. This generation is automatically performed by semantic
equations introduced in the MDA architecture by transformations that state
how to map each syntactic element from the concurrent model into its respec-
tive semantic elements. This process is applied to the input and output models
in order to obtain an input and an output semantic model, respectively.

It is important to emphasize that we have two kinds of MDA transformations
in the extended architecture: (i) Those responsible for generating the syntacti-
cal output model from the syntactical input model as prescribed by the MDA
infrastructure; and (ii) Those responsible for mapping syntactical elements into
semantic elements. The former are those to be proved as semantic-preserving
transformations, whereas the latter are prescribed in the extended architecture
as the way to automatically provide semantic models, essential for the proof
task.

Once the semantic models have been built from the input and output models,
the inference and computation of state configurations are performed by means
of rewrite rules in order to allow proving some properties by the formal checker
in order to state the equivalence (or not) of these models. These rewrite rules
are the simplification rules that instantiate the dynamic semantics since they
are concrete representations of the behavior of the concurrent model.

Any application involving concurrent models can deal with the extended achi-
tecture since all its artifacts are provided. For instance, the Petri nets models
and the splitting operations illustrated in Section 3 can be put together in the
extended architecture, where: (i) Petri nets are concurrent platform indepen-
dent models; (ii) splitting operations are PIM-to-PIM transformations that map
a centralized model to a set of concurrent sub-models allowing distributed exe-
cution of the system; (iii) synctactical elements of Petri nets are specified by the
PNML (Petri Net Markup Language) metamodel [NWeber and Kindler 2003],
whereas (iv) semantic elements are specified by the category theory metamodel
that describes its mathematical structures and the relations between them; and
finally (v) ATL rules automate the generation of (iv) from (iii);

The execution of soundness proofs for the PIM-to-PIM transformations spec-
ified in (ii) is realized by the formal checker that must be able to verify whether
the input and output models preserve some properties like liveness and dead-
lock. However, these proofs only can be done since a rewrite rule engine, like
the Maude rewrite system [Clavel et al. 2000], perform the inference and com-
putation of configurations of model states, implementing refactoring laws of the

2207Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

corresponding semantic models. Therefore, the formal checker is complementary
to the rewrite rules.

Figure 10 illustrates how these pieces fit together in the extended MDA
architecture.

As previously mentioned, the module Formal Checker in the extended MDA
architecture requires different formal techniques according to the models, do-
mains or specific platforms which it is employed. Therefore, for applications in-
volving transformations from or to the concurrent systems domain, even applied
to PIM s, other formal techniques and an appropriate approach, like bisimilarity
through model-checking, are required. This is the point this paper is focused
on. While the following subsections give details for each specific realized mod-
ule, Section 4 details the proposed techniques to be implemented in the formal
checker module in order to verify soundness of the MDA transformations applied
to concurrent models.

Figure 10: Instantiating the extended MDA architecture for concurrent models
verification nets models

4.1 PNML Metamodel

Figure 11 describes the Petri net metamodel. It is responsible for the abstract
syntax of Petri nets. A state is a Configuration which is composed by many
fragments of Petri net (many because in some formalisms, the nets are splitted).
A Petri net by a set of Places, a set of Transitions and a set of Arcs. Finally,
an Arc can link a Place to a Transition (PlaceToTransArc or a Transition to a
Place (TransToPlaceArc).

4.2 Semantic Metamodel and Models

For the definition of the semantic models, we view Petri nets as ordinary, directed
graphs equipped with two algebraic operations corresponding to parallel and

2208 Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

Figure 11: Excerpt of the syntactic metamodel for Petri nets

sequential composition of transitions. As an example, we can see the two models
produced by the operation described in Figure 6 as an ordinary graph whose
set of nodes is an algebraic structure generated by the set of places and the
morphisms are produced by the transitions. Given that we have one token in
each place (P1 and P2):

– Min T 1 : P1 ⊕ P2 → 2′P2

– Mout (Comp1 T 1 : P1) ; (Comp2 T 1 copy : P2)
→ (Comp2 2′P2)

In this case, it was necessary to adapt two algebraic operations inherited from
[Meseguer and Montanari 1988]: ⊕ and ;. The former corresponds to the union of
elements and the latter to the concatenation of arcs as sequential composition.
This means that in the output, the main syntactic observed differences are:
there are two fragmented net components, it is not allowed the union operation
of multisets over the markings of the places P1 and P2 and there now exists a
sequential composition between the transition T1 and the new inserted transition
T1_copy. The category theory seems useful to explain these aspects using a
formal algebraic notation.

The Semantic Algebra Metamodel proposed in [Barbosa et al. 2008(a)] is ex-
tended in Figure 12 in order to incorporate particular concepts of the categorical
representation of Petri nets. The new inserted metaclasses are in gray. Petri nets
models are viewed as Graphs, or more precisely CategoryGraphs. A Graph has
two FunctionSpaces corresponding to the source and target functions. A Cate-
goryGraph has its structure described as a CommutativeMonoid, that extends
the algebraic type Monoid and has the Identity, Idempotence, Closure, Asso-
ciative and Commutative properties. The morphisms of the CategoryGraph are
implemented as Rules from Operations.

2209Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

Figure 12: Excerpt of the Extension of the Semantic Algebra Metamodel for the
Category Petri

The semantic model is a concrete representation of a CategoryGraph, which
is composed by a Monoid, that satisfies its basic properties, as Identity, Closure
and Associativity plus the Commutative property as a CommutativeMonoid.

As a result, any semantic model representing the semantic domain of a given
Petri net must be in conformity with the aforementioned semantic metamodel.
Thus, we guarantee that these semantic models are well-formed models. In addi-
tion, the semantic metamodel is essential to the task of automatically generating
the semantic models from syntactic models since they are pivotal elements on
which underlie the MDA tranformations rules by means of which we introduce
semantic equations in the architecture.

4.3 Semantic Equations

In this section, we discuss our approach to introduce semantic equations as
formal specifications in the MDA infrasctructure. We reuse elements of the ex-
tended MDA architecture, such as a semantic codomain and semantic models.
Thus, we consider MDA transformations as the pivotal element to specify se-
mantic equations with a well-established and appropriate extraction from the
syntactic constructs to semantic domains. Although QVT is the current OMG’s
purpose for specifying transformations in the MDA vision, we have adopted ATL
for specifying the semantic equations. This is due main because QVT tools have
still low robustness and its use is not widely disseminated. On the other hand,

2210 Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

ATL has a framework widely used by an increasing and enthusiast community,
with full support to model operations, where, in an integrated way, one can spec-
ify and instantiate metamodels as well as specify and execute transformation on
them. In addition, ATL has a wide set of transformation examples available at
the literature and discussion lists, in contrast of QVT, whose documentation is
poor and not didactic.

The next code fragment describe a part of the semantic equations for the
Petri nets domain (line 1). It addresses the presented issues for semantic equa-
tions, mapping from a PNML to a SemanticAlgebra (line 2). It presents the rule
ConfigToSemAlgebra (line 3) which is the entry point of our transformation.
It creates, from a Petri net Configuration (lines 4-5), the main structure of a
SemanticAlgebra (lines 6-7), which contains a CategoryPetri (lines 8-10). The
CategoryPetri has a name that is retrieved from the Configuration’s PetriNet
name. It also has compound domains. They are: a Multiset composed of Rules,
two FunctionSpaces and a CMonoid (commutative monoid) (lines 11-14). The
imperative part of the rule (lines 15-22) iterates over the transitions of the nets to
map to a rule, creates the FunctionSpaces of the arc input and output functions
and fills the commutative monoid of the markings.

1: module Petri2Semantics;
2: create SemanticAlgebra : SEM from PNML : PN;
3: rule Config2SemAlgebra {
4: from
5: input : PN!Configuration
6: to
7: sa : SEM!SemanticAlgebra(domains <- cp),
8: cp : SEM!CategoryPetri(name <- input.nets->first().name,
9: compoundDomain <- rules, compoundDomain <- fsIN,
10: compoundDomain <- fsOUT, compoundDomain <- cm),
11: rules : SEM!Multiset,
12: fsIN : SEM!FunctionSpace(name <- ’in’),
13: fsOUT : SEM!FunctionSpace(name <- ’out’),
14: cm : SEM!CMonoid
15: do {
16: for (r in input.nets->first().transitions) {
17: self.addRule(rules,r.name);
19: }
20: self.makeFunSpace(fsIN,fsOUT,input.nets->first());
21: self.makeCMonoid(cm,input.nets->first().places);
22: }
23:}

4.4 Dynamic Semantics

For dynamic semantics, we define the firing of a transition as a rewrite rule. We
recover the definitions presented in Section 2.3 as the possible concrete reptore-
sentation of behavior to guide the analisys in the formal checker. The rewrite
rule will be able to automatically detect the firing of a transition using pattern
matching and their concrete representations will be presented in the concrete
example that follows in Section 5.

2211Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

5 An Approach for Checking Formal Semantics Equivalence
for Concurrent Systems

In this section we give specific details about our proposed techniques for check-
ing formal semantics equivalence in MDA transformations involving PIM s that
describe concurrent systems. It makes use of the extended MDA architecture in-
stantiated for the concurrency domain to guide the entire verification process. As
previously indicated, the most significant efforts to cope with this architecture
must be concentrated in the Formal Checker module. The Formal Checker mod-
ule is the adaptable part of our approach that must be in accordance with the
paradigm of the models under verification. The choice of the correct technique
in this case is the main issue of technical work that requires expertise.

Our approach to define the Formal Checker module of the extended MDA
architecture to cope with concurrent systems is supported by four formal tech-
niques. The first one concerns the execution of the transformation, in which, for
each applied rule, a syntactical analysis provides a syntactic equivalence relation
between models. The second states that semantic models have an algebraic rep-
resentation according to category theory. Finally, we reuse two techniques of the
operational semantics approach: bisimulation [Park 1981] and model-checking
[Clarke et al. 1990]. Bisimulation is used in order to show that two systems have
the same behavior, enabling the composition of both state structures that rep-
resent the behavior of both systems. Model-checking algorithms are used to
conclude that the particular instance of the transformation preserved the be-
havior correctly. All these techniques were chosen according to the requirements
of the FORDESIGN project. We have realized that the properties for equivalence
between models specified by this project could be easily expressed using these
techniques (e.g. temporal logic from model-checking) and can be approached in
a suitable way.

The following four subsections present details on how these four formal tech-
niques are used in the definition of the Formal Checker module.

5.1 Syntactic Equivalence Relation

Most MDA transformations consists of a set of rules, and each rule assumes
the format of a from declaration, which takes information from the input model
(Min) according to the input metamodel, and a to declaration, that puts the
processed data to the output model (Mout), according to the output metamodel.
The behavioral equivalence analysis extracts and stores syntactic observations
in a special data structure called equivalence table in which every component
relation is provided by the executed rules during the execution of the analyzed
MDA transformation. To this purpose, the transformation language must sup-
port the declarative and imperative paradigms, allowing matching and iteration
over all the metamodel elements. The equivalence table metamodel is shown in
Figure 13. As stated in the figure, an equivalence table is a table composed by
lines that are in turn composed of two ordered cells identifying one state from
the input model and another one from the output model.

Concerning the verification of semantic equivalence between both the initial
(Min) and splitted (Mout) models for the Parking Lot Controller example, we are

2212 Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

Figure 13: The equivalence table metamodel

able to apply the Splitting ATL transformation to the input model producing
the equivalence table shown in Table 1. This produces a syntactic notion of
equivalence between the two models, useful for the next steps.

Input Model Output Model
Arrive- Arrive-
Arrive+ Arrive+;Arrive+ copy
Enter Enter;Enter copy
Exit Exit

Leave- Leave-
Leave+ Leave+

Table 1: Equivalence table for the Parking Lot Controller

5.2 Extracting the Semantic Representation of the Models

After applied the transformation and having available Min and Mout, as well as
the equivalence table, it is required a proper representation of the meaning of the
models in order to apply formal techniques for verification of equivalence. The
formal definition of the behavior is the first step to verify its preservation. One
appropriate alternative to structure semantic models in the concurrency domain
is the category theory [Lawvere and Schanuel 1997]. The category theory is an
abstract way of dealing with mathematical structures and the relations between
them. [Stehr and Csaba 2001] argue that it provides an abstract language for
expressing very different models and allows the translation of constructions and
properties between models via adjunctions, which are a way of describing a
particular relationship between categories of algebraic structures. Therefore, the
categorical view of models for concurrency provides the definition of behavioral
equivalence between models.

Basically, categories consist of: (i) a set of objects, that can represent pro-
cesses in the concurrency domain; and (ii) a set of morphisms, in which each mor-
phism f has an unique source object a and an unique target object b (f :a → b),

2213Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

and represents a relationship between one process and another, or the current
behavior. Moreover, categories must have a binary operation (;), called mor-
phism composition, satisfying the identity and transitivity properties, that could
represent the process composition or the mapping of atomic arcs into whole
computations.

For the Parking Lot Controller example, the application of the semantic
equations in both models produces the semantic model as presented in Figure
14 in the Ecore format [Budinsky et al. 2003] for the input model, for example.
In the first column we have the entire semantic model with four subitems that is
a Category Graph. The first subitem is a multiset with the six rules that repre-
sent the behavior generated by the transitions. The second and third items are
explored in the second and third columns. These columns shows some fragments
of the source and target functions for each rule. Each one that has Commuta-
tiveMonoids as domain satisfies the required properties. Finally, the fourth item
represent the node of the Category Graph. It is composed by a multiset of to-
kens that represents the places and the sum of these items also complies with
the properties of a CommutativeMonoid. Each presented item is very important
for the next step: the code generation as Platform Specific Semantic Model for
verification purposes.

Figure 14: Semantic Model for the net of the Parking Lot Controller

The semantic models are automatically represented in the Maude rewrite
system, based on the second technique for the Formal Checker, the formalization
of Petri nets using category theory for rewriting logic. The next code fragment is
the Maude representation of the semantic model of the input model. All employed
places in the net are operations (lines 4-5), Marking is defined as empty or as
concatenation of other Markings (lines 6-7), and the existing transitions are
generated as rules (lines 9-14).

1: mod INPUT-PARKING-LOT is
2: sorts Place Marking .

2214 Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

3: subsort Place < Marking .
4: ops EntFree GtOpen FreePcs WaitnPay ExitFree
5: GtOutOpn CarInZone WaitnTkt : -> Place .
6: op empty : -> Marking .
7: op __ : Marking Marking
8: -> Marking [assoc comm id: empty] .
9: rl[Arrive-] : GtOpen => EntFree .
10: rl[Arrive+] : EntFree => WaitnTkt .
11: rl[Enter] : FreePcs WaitnTkt => GtOpen CarInZone .
12: rl[Exit] : CarInZone WaitnPay => FreePcs GtOutOpn .
13: rl[Leave-] : GtOutOpn => ExitFree .
14: rl[Leave+] : ExitFree => WaitnPay .
15:endm

The next code fragment provides the semantic model of output model. Tran-
sitions Arrive+ and Enter carry the messages to be exchanged between the nets
(line 12), and their rules (lines 18-23) change concurrently the markings of both
nets according to the specification. Complementary, the remaining transitions
are represented as internal actions (lines 16-17 and 25-30) because their firing
does not change any marking out of the scope of the owner net.

1: mod OUTPUT-PARKING-LOT is
2: inc CONFIGURATION .
3: sorts Place Marking .
4: subsort Place < Marking .
5: ops EntFree GtOpen FreePcs WaitnPay ExitFree
6: GtOutOpn CarInZone WaitnTkt WaitnTktM : -> Place .
7: op empty : -> Marking .
8: op __ : Marking Marking
9: -> Marking [assoc comm id: empty] .
10: op IOPT : -> Cid [ctor] .
11: op m :_ : Marking -> Attribute [ctor gather (&)] .
12: ops Arrive+ Enter : Oid Oid -> Msg [ctor] .
13: vars Comp1 Comp2 : Oid .
14: var C : Configuration .
15: var Any : Marking .
16: rl[Arrive-] : <Comp1:IOPT | m:GtOpen> =>
17: <Comp1:IOPT | m:EntFree> .
18: rl[Arrive+;Arrive+_copy] : Arrive+;Arrive+_copy(Comp1,Comp2)
19: <Comp1:IOPT | m:EntFree> <Comp2:IOPT | m:Any>
20: => < Comp1:IOPT | m:WaitnTkt> <Comp2:IOPT | m:Any WaitnTktM> .
21: rl[Enter;Enter_copy] : Enter;Enter_copy(Comp1,Comp2)
22: <Comp1:IOPT | m:WaitnTkt> <Comp2:IOPT | m:Any WaitnTktM FreePcs>
23: => <Comp1:IOPT | m:GtOpen> <Comp2:IOPT | m:Any CarInZone> .
25: rl[Exit] : <Comp2:IOPT | m:CarInZone WaitnPay Any> =>
26: <Comp2:IOPT | m:FreePcs GtOutOpn Any> .
27: rl[Leave-] : <Comp2:IOPT | m:Any GtOutOpn> =>
28: <Comp2:IOPT | m:Any ExitFree> .
29: rl[Leave+] : <Comp2:IOPT | m:Any ExitFree> =>
30: <Comp2:IOPT | m:Any WaitnPay> .
31: endm

5.3 Bisimulation and Bisimilarity

Bisimulation [Park 1981] is a widely employed technique for studying the struc-
tures that represent the behavior of concurrent systems. It is a binary relation
between state-transition systems, that associates similar behavior in the sense
that one system simulates other and the converse is also true. If we need to
compare the equivalence of systems at a level that is not too fine-grained, we

2215Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

call this technique as weak bisimulation. In our context, a simulation can be
derived through refinements of morphisms between algebraic structures, which
are mappings intended to preserve structure.

Bisimilarity is the union of all bisimulations. It was proved as being a fun-
damental semantic equivalence in the algebraic theory of concurrent systems.
The bisimilarity is employed to abstract some details of the systems. This ab-
straction enables to deal with infinite state spaces as equivalent finite structures.
We define bisimilarity through a generic LTS (Labelled Transition System) as a
tuple (S, L, Δ, s0) where: S is a set of states, with the initial state s0, L is a set
of labels, and Δ ⊆ S × L × S is the transition relation.

Given a LTS, a binary relation R over the states of a LTS is a bisimulation
if, always that s1Rs2 happens, we have:

– For all s′1 with s1
µ−→ s′1, there is a s′2 such that s2

µ−→ s′2 and s′1Rs′2.

– The same for the transitions incoming from s2.

From [Park 1981], bisimilarity, which is written as ∼, is the union of all
bisimulations. Therefore, s ∼ t is true if there is a bisimulation R with sRt.

Following the Parking Lot Controller example, we specify

eq initial =
(EntFree ExitFree FreePcs FreePcs FreePcs FreePcs)

as the initial state of the system model (input model) and

eq initial = Enter;Enter_copy(Comp1, Comp2) <Comp2:IOPT |
m:(FreePcs FreePcs FreePcs FreePcs ExitFree)>
Arrive+;Arrive+_copy(Comp1, Comp2) <Comp1:IOPT | m:EntFree >

as the initial state of the partitioned model. The partitioned model requires the
specification of the channels Enter;Enter_copy and Arrive+;Arrive+_copy
for the communication between Comp1 and Comp2. The specification of the ini-
tial states is the first part of defining the bisimulation. The other part is the
specification of equivalence for all states, which is based on the definition of
marking. This second part is achieved through Model-checking technique and
detailed in the next subsection.

5.4 Model-Checking

Model-checking [Clarke et al. 1990] is a technique to automatically verify formal
models. After having a formal behavioral description of the model M , properties
are specified in order to check their veracity. These specifications are generally
built using propositional temporal logic as metalanguage. Let ϕ as an example
of a property. The model-checker tool executes the process algorithmically and
produces a truth value as result to indicate whether the specification was satisfied
(M � ϕ) or not (M � ϕ). In the case of the non satisfiability of this property,
the tool must provide a list, called CE, from counter-example, of chained states
(s0s1s2...sn) that were reached which demonstrate that the specification was not
valid for this model.

In order to check if Mout of a MDA transformation is behaviorally equiva-
lent to Min, Mout must preserve the same properties of Min that one should

2216 Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

be interested in. This verification can be obtained through the application of
model-checking at both levels according to the equivalence relation as a form
of bisimulation. Given a property called ϕ that both models need to satisfy,
we must have (Min � ϕ) ⇒ (Mout � ϕ) or (Min � ϕ) ⇒ (Mout � ϕ), with
both counter examples, CEin and CEout being equivalent with respect to the
chained states. They must respect the equivalence table for arcs between states
and bisimulation laws. We admit CEin ⊆ CEout in the case of Mout represent a
concretization of Min or CEout ⊆ CEin in the case of a abstraction.

We Conclude the verification in the Parking Lot Controller example, per-
forming the verification of semantic equivalence between the semantic models.
In our case study, both models will be in equivalence if the following two main
conditions are satisfied: (i) if the deadlock freeness and/or liveness occurs for
the initial model then it must occur for the splitted model; and (ii) both models
must preserve the same event order, i.e., for a given sequence of transitions, they
must produce traces with the same order of fired transitions, reaching the same
final marking. In this sense, we perform the verification of the enumerated prop-
erties for each model as bisimulation through model-checking complementing the
usage of the Formal Checker with its fourth technique.

Deadlock Freeness and Liveness. For the system model we use the com-
mand in line 1 of the next output fragment, starting from the initial marking.
After this, the last line outputs No solution., which means that our specifica-
tion is deadlock free.

1: search in INPUT-PARKING-LOT : initial =>! Any:Marking .
2: No solution.
3: states: 54 rewrites: 102 in 0ms cpu (~rew/sec)

The same property must be satisfied for the generated partitioned compo-
nents. By applying the command in lines 1-4 of the next output fragment, we
ask if the partitioned system reaches a state with no successors. In the end, no
state without successors is found, representing the same behavior.

1: search in OUTPUT-PARKING-LOT : Enter;Enter_copy(Comp1, Comp2)
2: <Comp2:IOPT | m:(FreePcs FreePcs FreePcs FreePcs ExitFree)>
3: Arrive+;Arrive+_copy(Comp1, Comp2))
4: <Comp1:IOPT | m:EntFree> =>! C:Configuration .
5: No solution.
6: states: 35 rewrites: 55 in 0ms cpu (~rew/sec)

Complementary to the deadlock freeness property, the liveness ensures that
in both models, globally all states have markings with at least one enabled
transition. The property enabled was specified again in a separated module
using Maude. By observing the next two output fragments, both models show
the same output when submitted to check this property.

1: reduce in INPUT-PARKING-LOT : modelCheck(initial, []enabled) .
2: rewrites: 8 in 0ms cpu (0ms real) (~ rew/sec)
3: result Bool: true

1: reduce in OUTPUT-PARKING-LOT :
2: modelCheck(initial, []enabled) .
3: rewrites: 26 in 0ms cpu (0ms real) (~ rew/sec)
4: result Bool: true

2217Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

Preserving Events Order. The verification was performed automatically
for all generated traces of behavior of the models. In order to show that a number
of transitions can be fired in a given sequence, we use the firing of transitions
Enter, Arrive-, Arrive+, Leave+, Exit. Lines 1, 2 and 3 in the next two
output fragments illustrate how this is specified in LTL. The same sequence is
fired, according to the equivalence table and both models reaches the same state.
For example, the reached state is in line 13 for the INPUT-PARKING-LOT and at
lines 22-23 for the OUTPUT-PARKING-LOT. Therefore, we conclude positively about
the analyzed semantic equivalence according to bisimilarity.

1: reduce in INPUT-PARKING-LOT:modelCheck(initial,
2: ~ <> (Enter /\ O(Arrive- /\ O (Arrive+
3: /\ O (Leave+ /\ O Exit))))) .
3: rewrites: 255 in 5ms cpu (48000 rew/sec)
4: result ModelCheckResult:
5: {FreePcs FreePcs FreePcs FreePcs ExitFree WaitnTkt,’Enter}
7: {GtOpen FreePcs FreePcs FreePcs ExitFree CarInZone,’Arrive-}
9: {EntFree FreePcs FreePcs FreePcs ExitFree CarInZone,’Arrive+}
11:{FreePcs FreePcs FreePcs ExitFree CarInZone WaitnTkt,’Leave+}
13:{FreePcs FreePcs FreePcs WaitnPay CarInZone WaitnTkt,’Exit}

1: reduce in OUTPUT-PARKING-LOT :
2: modelCheck(initial,
3: ~ <> (Enter;Enter_copy /\ O(Arrive- /\ O (Arrive+;Arrive+_copy
4: /\ O (Leave+ /\ O Exit))))) .
5: rewrites: 92 in 3ms cpu (47000 rew/sec)
6: result ModelCheckResult:
7: {Arrive+;Arrive+_copy(Comp1, Comp2) Enter;Enter_copy(Comp1, Comp2)
8 Enter;Enter_copy(Comp1,Comp2)
9: <Comp1:IOPT | m:WaitnTkt> <Comp2:IOPT | m:(FreePcs FreePcs
10:FreePcs FreePcs ExitFree WaitnTktM)>,’Enter;Enter_copy}
11:{Arrive+;Arrive+_copy(Comp1, Comp2) Enter;Enter_copy(Comp1, Comp2)
12:<Comp1:IOPT | m:GtOpen>
13:<Comp2:IOPT | m:(FreePcs FreePcs FreePcs ExitFree CarInZone)>,
14:’Arrive-}
15:{Arrive+;Arrive+_copy(Comp1, Comp2) Enter;Enter_copy(Comp1, Comp2)
16:<Comp1:IOPT | m:EntFree> <Comp2:IOPT | m:
17:(FreePcs FreePcs FreePcs ExitFree CarInZone)>,’Arrive+;
18:Arrive+_copy}
19:{Enter;Enter_copy(Comp1, Comp2) <Comp1:IOPT | m:WaitnTkt> <Comp2:IOPT |
20:m:(FreePcs FreePcs FreePcs ExitFree CarInZone WaitnTktM)>,
21:’Leave+}
22:{Enter;Enter_copy(Comp1, Comp2) <Comp1:IOPT | m:WaitnTkt> <Comp2:IOPT |
23:m:(FreePcs FreePcs FreePcs WaitnPay CarInZone WaitnTktM)>,’Exit}

6 Related Work

The main related topic is the direct investigation of semantics preserving trans-
formations. [Baresi et al. 2006] ensures that transformations, if given by rules,
are seen as graph transformations. They demonstrate this by using the AGG tool
in executable business processes. In [Ehrig et al. 2007], the information is pre-
served with the bidirectionality requirement. [Narayanan and Karsai 2008] goes
directly to the investigation topic, by checking whether a graph transformation
preserves the behavior of a given instance as input. As a first step, this confor-
mance is analyzed for the reachability property through an equivalence relation
between two graphs. This equivalence is obtained by bisimilarity, proving that
the input model behaves exactly as the output model. The main difference of

2218 Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

these approaches and ours is that we have the definition of semantic models
through metamodels for the MDA infrastructure. They concentrate on trans-
formations only as operational rules. Our work represents an evolution of these
techniques according to the following views:

– We go beyond graph transformations. We propose to approach model trans-
formations, with models being described according to several paradigms and
metamodels. The only requirement is to belong to the MDA framework.

– We formalize semantic models and metamodels. In the previously mentioned
works there was no extraction of the denotational meaning of models or
graphs. There were only simulations. In our case, we cover since the inception
of the meaning of the model, proposing semantic metamodels according to
any formal technique and the correct instantiation of the models.

– We are immersed in MDA. We approach MDA model transformations, de-
scribe the semantic equations using MDA model transformation languages,
reuse the MOF standard to describe the semantic metamodels, describe
static analysis using OCL, and other techniques and tools. In this scenario,
we apply MDA in the project for co-design of embedded systems as a com-
plete methodology.

– We check several properties. In the previously mentioned work, only one
or few specific properties are suggested as equivalence proof between the
models. We deal with more sophisticated techniques, such as static and dy-
namic semantics verification, model-checking, theorem provers, in addition
to bisimulation in order to obtain a complete proof according to several views
of the transformation.

Some works combine formal verification techniques. [Ray and Sumners 2007]
discuss an approach to enable the two disparate techniques, theorem proving
and model checking, to complement one another. This work enables automa-
tion in invariant proofs, while preserving the expressiveness and control afforded
by theorem proving. As a more specific approach, [Mokhati et al. 2007] presents
a framework supporting formal verification of UML diagrams, by using object
oriented and concurrent Maude capabilities. In the domain of programming lan-
guages, [Neuhausser and Noll 2007] uses the Rewriting Logic framework to the
formal verification of programs written in the concurrent functional language
ERLANG. The authors verify properties implementing the formalized opera-
tional semantics of this language.

Concerning projects, the TOPCASED [TOPCASED 2009] is close to this
work because it developed a toolkit for critical applications systems develop-
ment using open-source concepts, starting from several modeling languages as
metamodels (namely UML, SDL, SysML, AADL, PDL) and use model trans-
formation tools supported by an intermediate format, able to provide support
and interoperability for a set of verification tools. There are verification tools
also based on Petri nets. The main difference to our work is the formal seman-
tics approach we have chosen to follow, including the conception of new formal
modules for MDA, differing from the methodology of the TOPCASED. While
TOPCASED, which relies in the Eclipse platform, is focusing in more pragmatic

2219Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

questions, such as allowing connection between model operations, dealing with
the requirement of working with more than one tool conjointly and offering fa-
cilities of deploying, managing and communicating plugins we are interested in
bringing more traditional concepts of formal semantics to MDA, attempting to
provide representations of these theories in this framework.

Related to verification of Petri nets using Maude, [Farwer and Leuschel 2004]
investigates Object Petri nets (OPNs), a class of Petri nets that provides a natu-
ral and modular method for modeling many real-world systems. [Stehr et al. 2001]
proposes rewriting logic as a unifying framework for Petri nets models. It also
proposes a mapping from the nets into rewriting logic specifications as assumed
here. The main difference from our work, in this case, is that we propose the
mapping as a MDA transformation, observing syntactic rules proposed in the
PNML metamodel. In this sense, our approach is more pragmatic, although less
general. The comparison of the Maude model-checker is made with several other
tools. In [Kazuhiro and Kokichi 2007] it is compared with the SAL toolkit, a tool
for analyzing transition systems with different tools. This work states clearly the
main advantages provided by the Maude model-checker. It strengthens our choice
for the Maude model-checker solution.

There are still several other works focusing on providing formal seman-
tics to specific languages involved in the MDA infrastructure, such as MOF
or UML. For instance, [Weisemoller and Schurr 2008] proposes the MOF for-
malization that can be useful in our approach for future works. In this work,
the authors follow the same idea presented here of reusing the category the-
ory modularization concepts from algebraic specification languages. This pro-
vides a graph-transformation-based formalization of MOF, upgrading MOF with
new interfaces and a composition operator based on graph morphisms. It is
the same idea reused here, however is a proposal for the meta-metalanguage of
the MDA framework, and not for a specific domain as we made for Petri nets.
[Kelsen and Ma 2008] proposes a novel approach for the definition of a formal
semantics to languages based on the Alloy language. It intends to turn semantics
definitions easier, encouraging the adoption of formal techniques. This work ad-
vocates that its approach provides two main advantages: uniform notation and
a mechanism for analysis. However it is not enough to ensure that MDA trans-
formations are semantics-preserving, as is our goal. Finally, [Arevalo et al. 2006]
concentrates in some specific problems commonly found when using MDA such
as refactorings and extraction of meanings of UML models. This work makes use
of mathematical techniques, specially the lattices theory, to discover abstractions
from a set of formal objects. This seems very useful for providing sound refactor-
ings. The similarity with our work is that semantic equations can also be viewed
as ATL transformations, when mapping a UML diagram to a formal context
(the semantic model).

Conversely to these works, we tackle the whole MDA infrastructure, provid-
ing formal techniques to each one of the artifacts covered by the MDA four-layer
architecture and integrating all these techniques in order to allow verifying if
a transformation is semantics-preserving or not. In this context, the extended
MDA architecture plays an important role, promoting the integration of formal
techniques for all the MDA artifacts.

2220 Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

7 Conclusions and Future Work

We instantiated the extended MDA architecture that incorporates formal se-
mantics for checking transformations involving models that represent concurrent
systems. We described in details the method to check whether the execution of
a certain transformation produces an output model preserving the semantics of
the input model. We presented a case study evaluating our approach in a real
case from the FORDESIGN project that adopts Petri net as concurrent models
and implements the Splitting Operation as MDA transformations. In this case
study, we have verified which of these transformations are semantics-preserving
or not. Our approach was also successfuly applied to more compex Petri nets
models from FORDESIGN project, considering different properties and trans-
formations.

For analysis results, we have not evaluated characteristics of non functional
requirements of the employed techniques (e.g. speed-up, state explosion, etc).

Our approach is almost fully automated. However, some efforts have still to
be made when specifying the equivalence table in the transformation code and
establishing the bisimulation axioms between states of the input and output
models. Currently, we are analyzing ways to alleviate this sort of effort.

With regard to the chosen execution platform, although Maude tools have
very efficient implementations, we are investigating the adoption of others tools.
There are some platforms that arise as strong candidates for the generation of
semantic models, such as the SPIN model-checker through the Promela language.

The main trend of future works concerns the validation of PIM-to-PSM trans-
formations also proposed by the FORDESIGN project. They propose automatic
code generation from Petri nets models to ANSI C and VHDL models in order
to be executed in several platforms of embedded systems [Gomes et al, 2005].
This proposal requires further analysis in order to unify the semantic models
extracted from these languages and specific aspects of the transformations.

References

[Arevalo et al. 2006] Arvalo, G., Falleri, J., Huchard, M. and Nebut, C.: “Building Ab-
stractions in Class Models: Formal Concept Analysis in a Model-Driven Approach”;
In Lecture Notes in Computer Science, Springer-Verlag, Berlin, Heidelberg, Volume
4199/2006, 513-527.

[AtlanticZoo 2009] The Atlantic Zoo, 2009. http://apps.eclipse.org/gmt/am3/
zoos/atlanticZoo/.

[Barbosa et al. 2007] Paulo Barbosa, Cassio Rodrigues, Jorge Figueiredo and Dalton
Guerrero. Distributed Model-Checking: Investigating the Use of Computational
Grids. Proceeding of the IEEE IECON’07, Pages 248–256. Taipei, Taiwan, 2007.

[Barbosa et al. 2008(a)] Paulo Barbosa, Franklin Ramalho, Jorge Figueiredo and An-
tonio Junior: “Incorporating Semantic Algebra in the MDA Framework”; Proceed-
ings of the Third International Conference on Software and Data Technologies (IC-
SOFT). Special Session on Metamodelling - Utilization in Software Engineering,
2008, isbn 978-989-8111-52-4, pages 330-336, Porto, Portugal.

[Barbosa et al. 2008(b)] Paulo Barbosa, Franklin Ramalho, Jorge Figueiredo and An-
tonio Junior: “An Extended MDA Architecture for Ensuring Semantics-Preserving
Transformations”; Proceedings of 32nd Annual IEEE Software Engineering Work-
shop, 2008, Kassandra, Greece.

2221Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

[Baresi et al. 2006] Luciano Baresi and Karsten Ehrig and Reiko Heckel: “Verification
of Model Transformations: A Case Study with BPEL”, TGC, Lecture Notes in Com-
puter Science, 2006, vol. 4661, pages 183-199, Springer. http://dblp.uni-trier.
de/db/conf/tgc/tgc2006.html#BaresiEH06.

[Bettin 2004] Bettin, J. : “Model-Driven Software Development: An emerging
paradigm for industrialized software asset development”; 2004, http://www.
softmetaware.com/mdsd-and-isad.pdf.

[Bezivin et al. 2003] J. Bezivin and E. Breton and Valduriez, Patrick and Dupr,
Grigoire: “The ATL Transformation-Based Model Management Framework”, IRIN,
2003 http://www.lina.sciences.univ-nantes.fr/Publications/2003/JBVD03.

[Bhm 1975] Corrado Bhm: “Lambda-Calculus and Computer Science Theory”, Pro-
ceedings of the Symposium Held in Rome, Lecture Notes in Computer Science,
1975, vol. 37, Springer.

[Boronat 2006] Boronat, Artur, Carśı, Jos and Ramos, Isidro: “Algebraic Specification
of a Model Transformation Engine” Fundamental Approaches to Software Engineer-
ing (2006), pgs 262-277 http://dx.doi.org/10.1007/11693017_20.

[Boronat et al. 2007] Artur Boronat, Jos . Carśı, Isidro Ramos and Patricio Letelier:
“Formal Model Merging Applied to Class Diagram Integration”; Electron. Notes
Theor. Comput. Sci. vol. 166 (2007), issn 1571-0661, pgs 5-26, Elsevier Science
Publishers B. V., Amsterdam, The Netherlands http://dx.doi.org/10.1016/j.
entcs.2006.06.013.

[Budinsky et al. 2003] Frank Budinsky and Stephen A. Brodsky and Ed Merks. Eclipse
Modeling Framework. ISBN 0131425420. Pearson Education, 2003.

[Clarke et al. 1990] Edmund M. Clarke, Jr., Orna Grumberg and Doron A. Peled:
“Model Checking”, MIT Press, 1999, ISBN 0-262-03270-8.

[Clavel et al. 2000] M. Clavel, S. Eker, P. Lincoln and J. Meseguer: “Principles of
Maude”, Electronic Notes in Theoretical Computer Science, vol. 4, Elsevier Sci-
ence Publishers, 2000.

[Costa and Gomes 2007] Anikó Costa and Lúıs Gomes: “Petri net Splitting Operation
within Embedded Systems Co-design”, Proceedings of INDIN (5th IEEE Interna-
tional Conference on Industrial Informatics, 2007.

[Ehrig et al. 2007] Hartmut Ehrig and Karsten Ehrig and Claudia Ermel and
Frank Hermann and Gabriele Taentzer: “Information Preserving Bidirectional
Model Transformations”, FASE, Lecture Notes in Computer Science, 2007, vol.
4422, pages 72-86, Springer. http://dblp.uni-trier.de/db/conf/fase/fase2007.
html#EhrigEEHT07.

[Farwer and Leuschel 2004] Berndt Farwer and Michael Leuschel: “Model Checking
Object Petri nets in Maude and Prolog”, PPDP ’04: Proceedings of the 6th
ACM SIGPLAN international conference on Principles and practice of declara-
tive programming, 2004, ACM, isbn 1-58113-819-9, pages 20-31, Verona, Italy.
http://doi.acm.org/10.1145/1013963.1013970.

[France and Bieman, 2001] France, R. and Bieman, J. Multi-View Software Evolution:
A UML-based Framework for Evolving Object-Oriented Software. In Proceedings
of Internacional Conference on Software maintenance (ICSM 2001).

[Girault and Valk 2003] Girault, Claude, Valk, Rudiger. Petri Nets for Systems Engi-
neering, 2003, XV, 607 p., Hardcover. ISBN: 978-3-540-41217-5.

[Gomes et al. 2007] Luis Gomes and Joao Paulo Barros and Anikó Costa and Ricardo
Nunes: “The Input-Output Place-Transition Petri Net Class and Associated Tools”,
Proceedings of the 5th IEEE International Conference on Industrial Informatics,
2007, pages 23-26, Vienna, Austria, IEEE Computer Society Press.

[Gomes et al, 2005] Luis Gomes, Joao Paulo Barros, Anikó Costa, Rui Pais, Filipe
Moutinho; Formal methods for Embedded Systems Co-design: the FORDESIGN
project; ReCoSoC05- Reconfigurable Communication-centric Systems-on-Chip -
Workshop Proceedings; Gilles Sassatelli, Manfred Glesner, Lionel Torres, Leandro
Soares Indrusiak, Thomas Hollstein (Editors); ISBN 2 9517 4611 3; 27-29 Junho
2005, Montpellier, France;

[Gomes and Costa, 2006] Luis Gomes, Anikó Costa; Petri nets as supporting formal-
ism within Embedded Systems Co-design; SIES2006 - 2006 IEEE International Sym-
posium on Industrial Embedded Systems; 18-20 October 2006, Nice, France; IEEE

2222 Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

Catalog Number: 06EX1451; ISBN 1-4244-0777-X
[Kazuhiro and Kokichi 2007] Kazuhiro Ogata and Kokichi Futatsugi: “Comparison of

Maude and SAL by Conducting Case Studies Model Checking a Distributed Al-
gorithm”, IEICE Transactions, 2007, vol. 90-A, pages 1690-1703. http://dblp.
uni-trier.de/db/journals/ieicet/ieicet90a.html#OgataF07.

[Kelsen and Ma 2008] Kelsen, P. and Ma, Q.: “A Lightweight Approach for Defining
the Formal Semantics of a Modeling Language”; 2008, In Proceedings of the 11th
international Conference on Model Driven Engineering Languages and Systems,
Springer-Verlag, Berlin, Heidelberg, 690-704.

[Lawvere and Schanuel 1997] Lawvere, F.W. and Schanuel, S.: “Conceptual Mathe-
matics: A First Introduction to Categories”, Cambridge: Cambridge University
Press, 1997.

[Meseguer and Montanari 1988] Jose Meseguer and Ugo Montanari: “Petri nets are
monoids: a new algebraic foundation for net theory”, Proceedings of the Third
Annual IEEE Symposium on Logic in Computer Science (LICS 1988), 1988, pages
155-164, Edinburgh, Scotland, UK.

[Meseguer and Rosu 2004] Jos Meseguer and Grigore Rosu: “Rewriting Logic
Semantics: From Language Specifications to Formal Analysis Tools”; IJ-
CAR, 2004, 1-44 {http://springerlink.metapress.com/openurl.asp?genre=
article{\&}issn=0302-9743{\&}volume=3097{\&}spage=1}.

[Miller and Mukerji 2003] J. Miller and J. Mukerji: “MDA Guide Version 1.0.1”; Ob-
ject Management Group (OMG), 2003.

[Mokhati et al. 2007] Farid Mokhati and Patrice Gagnon and Mourad Badri: “Veri-
fying UML Diagrams with Model Checking: A Rewriting Logic Based Approach”,
QSIC, 2007, IEEE Computer Society, isbn 1-58113-819-9, pages 356-362. http:
//dblp.uni-trier.de/db/conf/qsic/qsic2007.html#MokhatiGB07.

[Narayanan and Karsai 2008] Anantha Narayanan and Gabor Karsai: “Towards Veri-
fying Model Transformations”, Electron. Notes Theor. Comput. Sci., 2008, vol. 211,
issn 1571-0661, pages 191-200, Elsevier Science Publishers B. V.. http://dx.doi.
org/10.1016/j.entcs.2008.04.041.

[Neuhausser and Noll 2007] Martin Neuhausser and Thomas Noll: “Abstraction and
Model Checking of Core Erlang Programs in Maude”, Electron. Notes Theor. Com-
put. Sci., 2007, vol. 176, issn 1571-0661, pages 147-163, Elsevier Science Publishers
B. V.. http://dx.doi.org/10.1016/j.entcs.2007.06.013.

[NWeber and Kindler 2003] NWeber, Michael and Kindler, Ekkart: “The Petri
Net Markup Language”, Journal Petri Net Technology for Communication-
Based Systems, 2003, pages 124-144 http://www.springerlink.com/content/
6b23lvlm7kl5g1l5.

[OMG 2009] OMG(Object Management Group): “Model-Driven Architecture”; ac-
cessed 2009; http://www.omg.org/mda/.

[Park 1981] David Park: “Concurrency and Automata on Infinite Sequences”; Pro-
ceedings of the 5th GI-Conference on Theoretical Computer Science, 1981, 3-540-
10576-X, 167-183, Springer-Verlag, London, UK.

[Ray and Sumners 2007] Sandip Ray and Rob Sumners: “Combining Theorem Proving
with Model Checking through Predicate Abstraction”, IEEE Des. Test, 2007, IEEE
Computer Society Press, vol. 24, issn 0740-7475, pages 132-139. http://dx.doi.
org/10.1109/MDT.2007.38.

[Scott 1970] Dana S. Scott. Outline of a Mathematical Theory of Computation, Pro-
gramming Research Group, Technical Monograph PRG2, Oxford University, 1970.

[Scott and Strachey 1971] D.S. Scott and C. Strachey: “Towards a Mathematical Se-
mantics for Computer Languages”, Proceedings of the Symposium on Computers
and Automata, 1971, vol. 21, Polytechnique Institute of Brooklyn.

[Stehr et al. 2001] Mark-Oliver Stehr and José Meseguer and Peter Csaba lveczky:
“Rewriting Logic as a Unifying Framework for Petri Nets”, In Unifying Petri Nets,
Advances in Petri Nets, 2001, isbn 3-540-43067-9, pages 250-303, Springer-Verlag,
London, UK.

[Stehr and Csaba 2001] Mark-Oliver Stehr and Peter Csaba: “Rewriting logic as a
unifying framework for Petri nets”, Unifying Petri Nets, LNCS, 2001, 250–303,
Springer.

2223Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

[TOPCASED 2009] The Topcased Project; accessed 2009; http://www.topcased.org.
[Wadsack and Jahnke 2002] J. P. Wadsack and J. H. Jahnke. Towards Model-Driven

Middleware Maintenance. OOPSLA conference on Object Oriented Programming,
Systems, Languages and Applications, 2002.

[Weisemoller and Schurr 2008] Weisemoller, I. and Schurr, A.: “Formal Definition of
MOF 2.0 Metamodel Components and Composition”; In Proceedings of the 11th
international Conference on Model Driven Engineering Languages and Systems,
Springer-Verlag, Berlin, Heidelberg, 386-400.

2224 Barbosa P., Ramalho F., Figueiredo J., Junior A., Costa A., Gomes L. ...

