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Abstract: In recent years, many component-based real-time systems have been pro-
posed as a solution to modular and easily maintainable distributed real-time systems.
This paper proposes a methodology for estimating probability distributions of exe-
cution times in the context of such systems, where no access to component internal
code is assumed. In order to evaluate the proposed methodology, experiments were
conducted with components, and related compositions, implemented over CIAO and
ARCOS. CIAO is a known real-time component-based middleware and ARCOS is a
software framework devoted to the construction of real-time control and supervision
applications, also developed over CIAO. The collected experimental data show that
the proposed approach is indeed a good approximation for component execution time
probability distributions.
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1 Introduction

The requirements of modern real-time distributed systems, such as more flexibil-
ity, interoperability, and cost savings, have motivated both the use of software-
intensive solutions and the exploitation of hardware and software COTS (Com-
mercial Off-The-Shelf). In this context, distributed software components appear
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as a promising technology, since their modular and uncoupled approach used for
implementing and combining components leads to reusable and easily maintain-
able systems. Therefore, the use of real-time component-based middleware for
the construction of real-time distributed systems has deserved a great deal of
attention from the research community in the last years [Wang et al., 2004a].

Whereas it is widely acknowledged that applications can benefit from the
adoption of such modular solutions, where COTS can be integrated into a sys-
tem provided that their implementations comply rigorously with the specified
interfaces, the lack of knowledge of the component implementation (black-box
approach) makes it difficult to verify the timeliness guarantees of the whole
system, which may turn out to be a barrier to use such an approach in the
real-time arena. As a result, several aspects on the general use of COTS need to
be analyzed. Indeed, possible risks and impacts that are imposed to the project
due to the adoption of external components must be taken into consideration
[Li et al., 2008].

A conventional way of verifying the timeliness of a safety-critical real-time
system is by schedulability analysis [Liu, 2000], which determines whether some
system task may miss its deadline in worst-case scenarios. To do so, one must first
calculate the worst case execution time (WCET) of each task in isolation and
then combine such WCETs in formulas that capture the worst-case execution
scenarios for the analyzed system. In order to precisely calculate the WCET of
a given task, one must take into account each instruction execution time of the
task worst case execution path. Variations of instruction execution times due to
mechanisms such as memory caches and pipelines should be also considered.

Unfortunately, when COTS are used it is not always possible to apply such an
approach. Indeed, only the component interface may be available and traditional
time analysis requires access to the component code. Hence, such COTS-based
real-time systems have limited applicability on safety-critical applications where
missing deadlines can cause great losses. On the other hand, there are other
real-time scenarios, such as multimedia, telecommunication, and some industrial
applications, where missing a deadline causes only a quality of service degrada-
tion, but it is still tolerable given that the probability of such misses is below
a certain limit. Therefore, finding alternative ways of estimating response times
of such COTS-based real-time systems is an important challenge to be faced by
the research community.

This paper tackles this challenge by proposing and validating a methodol-
ogy for estimating probability distributions of execution times in the context
of a component-based distributed real-time system. These estimations can help
designers to verify the timeliness of component-based systems by applying alter-
native models of timeliness analysis [Kim et al., 2005], [Manolache et al., 2001].
The ultimate motivation of the proposed approach is to apply it to estimate re-
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sponse times of services developed in the context of ARCOS, a component-based
framework implemented atop CIAO and devoted to the construction of industrial
control and supervision distributed systems [Andrade and Macêdo, 2007].

In order to evaluate the proposed methodology, experiments have been con-
ducted with components implemented over CIAO and ARCOS, and the related
probability distributions estimated. The analysis of performance data shows that
the proposed approach is indeed a good approximation for estimating component
execution time probability distributions.

This is an extended version of our paper originally published in SBCARS2008
(2nd Brazilian Symposium on Components, Architectures and Software Reuse),
which introduced a methodology for estimating component execution time prob-
ability distributions. For the journal version, the paper was entirely revised. The
original approach was extended to deal with component compositions and a sim-
ulated car cruise control application, developed on top of ARCOS, was applied
as a new case-study to evaluate the proposed method.

The remainder of this paper is structured as follows. In section 2 related work
is discussed. Section 3 summarizes the component-model used for implementing
the proposed approach. In section 4 the assumed system model and the new
approach for estimating the component execution time probability distributions
are presented. A case study is also used in this section to illustrate and validate
the efficacy of the presented approach. In section 5 the presented approach is
extended to deal with component compositions. Finally, in section 6 conclusions
are drawn and future work is pointed out.

2 Related Work

Most work in the field of time analysis of real-time systems is on estimating
WCET with the best possible accuracy. Together, these studies show different
approaches to addressing the factors of influence (input data, execution path,
cache memory and pipeline) that determine the occurrence of the worst case
system behavior. Usually, they aim at reducing the pessimism and increase the
accuracy of WCET calculations. However, given the extreme difficulty in deter-
mining the exact value, the maximum they can achieve is an estimate of WCET
that is sufficiently secure for many real-time applications.

The techniques related to this topic of study can be broadly divided into
the following categories: static, probabilistic, and hybrid. The publication list on
static analysis is considerably large where the focus is on analyzing the execution
paths of the application code to derive the values of WCET for a given hardware
platform. Recent work applies such an approach to component-based real-time
systems [Estévez-Ayres et al., 2005], [Ballabriga et al., 2007], [Fredriksson, 2006],
[Moss and Muller, 2004]. Usually static approaches tend to be complex and pro-
duce over-pessimistic estimations and/or need the knowledge to the source code
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of application. This has motivated the development of probabilistic and hybrid
estimation techniques, which are more related to our work.

A pioneering work on probabilistic WCET estimation is based on sampling
task execution times by measurements and then their WCET are estimated us-
ing extreme value statistics [Edgar and Burns, 2001]. The authors assume that
the sampled data follow a Gumbel distribution and are independent and identi-
cally distributed. Although this is a black-box approach, the assumption on data
independence may limit the applicability of this approach for practical systems.
The work by [Bernat et al., 2002] is hybrid since it combines both the static
and the probabilistic approaches. They determine the execution time profiles
of code blocks by measurements. Execution time profiles are actually a table
that contains the execution time observed and its frequency. Then, they obtain
a WCET value (with an associated probability) by convolving and combining
these profiles. Certain data and execution paths dependencies are taken into
consideration, although the fine-grained instrumentation of application code is
necessary. A scheme to store execution time profiles of component-based sys-
tems is also presented by [Nolte et al., 2003]. They argue that the components
of the system should keep monitoring themselves. Based on this scheme, a hybrid
WCET estimation technique is proposed [Möller et al., 2005].

Instead of estimating a value for WCET, this paper focus on deriving the exe-
cution time probability distributions in component-based systems. Such distribu-
tions have been used in approaches to schedulability analysis [Kim et al., 2005],
[Manolache et al., 2001]. Similar to probabilistic and hybrid approaches, the pro-
posed estimation method is based on measurements. However, it is not required
any prior knowledge about the internal code of the application for carrying out
the measurements. The instrumentation of the code was used only for the pur-
pose of validation of the final results. We assume, for example, that there may
be components developed by third-part development teams, so the knowledge of
application code may not be available. This makes static or hybrid estimation
approaches clearly unsuitable for this context. Moreover, unlike some proba-
bilistic approaches [Edgar and Burns, 2001], we do not assume any particular
distribution and may consider complex systems, where data independence may
not be ensured. The proposed method is therefore appropriate to COTS ori-
ented models - compiled version. In this paper we first present how to estimate
a probability distribution to a simple component, and after that we extend the
proposed method to apply it on a composition of components developed with
the ARCOS framework.
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3 Architecture of Components

3.1 System Model and Assumptions

The work developed considers a system of components that communicate through
the connection of standardized interfaces, known as ports. Through their ports,
a component specifies the features that will be made available externally as
services to other components. Thus, each component can provide or consume
services through connections. A service may be built from a number of compo-
nents, and the execution paths that can be activated will depend on the related
component connections.

Components are implemented by processes and communicate by exchanging
messages through communication channels. Processes and channels are assumed
to be timely: process steps and message delivery are carried out within bounded
times. However, such bounds or deadlines may be missed from time to time.
Hence, it is assumed to be a soft real-time system.

In order to evaluate the methodology proposed in this paper, we have im-
plemented case studies on top of the middleware CIAO (Component Integrated
ACE ORB) [Wang et al., 2004a] and the framework ARCOS, recently devel-
oped (Architecture for Control and Supervision) [Andrade and Macêdo, 2005],
[Andrade and Macêdo, 2007]. In the next two sections we briefly present CIAO
and ARCOS and the corresponding terminology that will be used throughout
the text. However, the proposed method is generic enough to be applied to other
types of component-based middleware.

3.2 The CIAO Real-time Middleware

The model of CIAO is compliant with a ligthweight version of Corba Component
Model - CCM [OMG, 2006], a specification that describes a standard architecture
for CORBA components. CIAO implements a server of real-time components,
called container, which supports non-functional services such as security, data
persistence, and component life-cycle operations, and inter-component commu-
nication facilities. Such services are configurable through deployment descriptors
by using XML files (eXtensible Markup Language).

CIAO was developed on top of TAO (The ACE ORB) [Schmidt et al., 1998],
a middleware that provides an ORB (Object Request Broker) coded in the C++
language, and is compliant with the Corba Real-time specification. The inter-
nal structure of TAO is based on ACE (Adaptative Communication Environ-
ment), an object oriented framework that applies design patterns for communi-
cation with distribution and concurrency features [Schmidt and Huston, 2003].
The services provided by TAO (e.g. scheduling and real-time event) were de-
signed using the patterns available in ACE, aiming at optimizing the efficiency
and predictability of the real-time ORB [Schmidt and Cleeland, 2001].
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Therefore, CIAO supports the development of predictable, portable and in-
teroperable applications. Figure 1(a) presents a general view of CIAO and Figure
1(b) illustrates the real-time container. According to the terminology adopted
by CIAO, synchronous communication ports are called facets and receptacles.
For asynchronous communication, event channels are called producers and con-
sumers ports. For more details on CIAO the reader can refer to other references
[Wang et al., 2004b].

(a) Architecture (b) Server of components

Figure 1: Real-time middleware based on components

3.3 ARCOS

ARCOS (Architecture for Control and Supervision) is a component-based frame-
work devoted to the construction of distributed industrial applications to perform
tasks of acquisition, control and supervision. ARCOS is developed atop CIAO
and implements DAIS (Data Acquisition from Industrial Systems), a standard
CORBA specification created by OMG (Object Management Group) for the
acquisition of industrial data. Such specification supports the simultaneously
transfer of large amounts of data to multiple clients, usually called consumer
applications. Because ARCOS is based on CIAO, it is also compliant with the
CCM specification.

In order to allow for a standard representation of common operations of
industrial control and supervision applications, some extensions to DAIS were
introduced in ARCOS. Such extensions make it possible, for instance, to spe-
cialize the system for the acquisition in specific devices, considering different
techniques of control (e.g. a PID controller - Proportional-Integral-Derivative).

Internally, ARCOS uses TAO’s real-time event service as an integrating mech-
anism for communication between ARCOS’ components. The DAIS clients can
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use the DAISFacade class available on ARCOS to create new data acquisition
groups interested in specific services. Thus, ARCOS provides an appropriate en-
vironment for the development of new distributed applications of control and
supervision, where most core ARCOS’ components are re-used for each new
application deployed. Figure 2 illustrates the main software layers upon which
ARCOS was designed.

Figure 2: ARCOS framework

4 Estimating Component Execution Time Probability
Distributions

The proposed method is based on measurements, where a monitor component
is responsible for measuring the response time for executing a service provided
by another component. It also measures the response time to call a null-code
service, which is called round-trip time. Thus, response time (R) and round-trip
time (RT ) are defined as the variables of interest. It is important to emphasize
that no knowledge about the application code is being used. Application code
is seen as black-box entities. The model of measurement is illustrated in Figure
3. The monitor follows rules defined by designers so that it is able to measure
different states of the component execution properly, considering different inputs
over a range of values of interest.

The main goal of the proposed approach is to estimate component execution
time probability distributions, where the execution time of a component service
can be seen as the variable C = R − RT . To do so, the monitor component is
designed to measure several values of R and RT . After describing the proposed
method in the next section, its use is illustrated with a case study.
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(a) Measuring R

(b) Measuring RT

Figure 3: Model of measurement applied

4.1 Estimation Method

Let Sr and Srt denote two collections of measured values that contain response
times and round-trip times obtained by the monitor, respectively. The elements
of a collection are not necessarily distinct. The set of distinct values in a collection
S is given by D(S). The number of times a value v is observed in a collection
S is denoted by η(v, S). Also, define the function f(v, S) that gives the relative
frequency of value v in a collection S. For example, if the monitor measured
the same value r ∈ Sr three times in 10 measurements, f(r, Sr) = 0.3. More
precisely,

f(v, S) =
η(v, S)∑

∀u∈D(S) η(u, S)
(1)

It is possible to derive the probability distribution of C by computing the
joint probability distribution

P (C = c) =
∑

P (R = r, RT = rt) ∀r ∈ Sr, rt ∈ Srt : c = r − rt (2)

Nevertheless, not all combinations of values in r ∈ Sr and rt ∈ Srt are
possible since it is known that P (C ≤ 0) = 0. More generally, assuming that
there must exist a lower bound cmin > 0 on the execution time, it is necessary to
consider those combinations that satisfy r − rt ≥ cmin. It is important to point
out that non-valid values of r − rt may appear because the measurements in Sr

and Srt are carried out independently. Thus, let us define a collection of possible
values for C as

Sc = {r − rt|r − rt ≥ cmin, r ∈ Sr, rt ∈ Srt} (3)
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Assuming cmin ≈ 0 is simple but non-realistic. In order to provide better
estimations when deriving the probability distribution of C, it is convenient to
use better estimations for cmin. Since larger values of execution times are of more
interest, the following procedure can be used to estimate cmin:

1. Find the minimum value rtu ∈ Srt such that the probability P (RT ≤ rtu) ≥
p, where p, 0 < p < 1, is a threshold on the desired probability given by the
user and P (RT ≤ rtu) can be computed as

P (RT ≤ rtu) =
∑

∀rt∈D(Srt):rt≤rtu

f(rt, Srt) (4)

2. Find the minimum value rmin ∈ Sr such that rmin − rtu > 0.

3. Define cmin = rmin − rtu.

Once cmin is found, collection Sc and function (1) produce the desired dis-
tribution of C. In order to illustrate the proposed estimation approach, let
Sr = {1, 2, 3, 6, 6, 7} and Srt = {1, 2, 3, 3, 3, 4}. Also, consider the desired thresh-
old p = 0.8. In this case, rtu = 3 since P (RT ≤ 2) = 1/3 and P (RT ≤ 3) =
5/6 ≈ 0.83. Thus, rmin = 6 and so the values of C cannot be less than cmin = 3.
Therefore, Sc = {3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 6}.

It is important to emphasize that the above definition of rtu is used to derive
the lower bound cmin. Discarding values of C below this bound is useful since it
improves the quality of the estimation and does not compromise the estimation
procedure. Indeed, the discarded values are too low and can be only observed
for too high and very unlikely round-trip time values. Since it is of more interest
to better estimate higher values of C, this discarding strategy is also a safe
approach. Preliminary tests indicated that to get a good estimate for cmin, the
value of p should be considered as close as possible to one. Lower values of p

may result in discarding too many measurements. Good values of p depends on
the application characteristics, though. The next section shows a case study that
illustrates the effectiveness of the proposed estimation method.

4.2 Case Study: Applying the Methodology to a Component

The proposed method was applied in an experiment executed on CIAO, a mid-
dleware described in section 3.2.

We implemented both the monitored and the monitor components, hosting
them in the same container. The monitored component provides a service that
simulates a kind of data analyzer, which keeps sampled data records and provides
predictions on the analyzed data behavior. Since the semantics of this component
service is not relevant here, it will not be further described. To obtain round-
trip times, one third component was hosted latter in the same container with no
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internal code implementation (null-service). In order to minimize the interference
in the measured times of the monitored component, its execution priority was
set to the maximum value.

The default setting of CIAO was used as a base during the installation pro-
cedure, due to the fact that it already has features configured to guarantee
optimization and efficiency of the platform, providing an environment suitable
for many real-time applications. However, given the purpose of measuring in
the experiment, some ORB parameters have been specifically configured with
XML file descriptors: FIFO scheduling policy (first-in-first-out), direct mapping
of CORBA priorities to the native priorities, priority policy defined by server and
use of static tasks for the execution of the components installed in the container.
These parameters mean that the interference in measurements will be limited,
because these settings reduce the overhead. The number of concurrent tasks and
their priorities were fixed during the experiment. Enough resources on the server
components (e.g. prior allocation of memory) were also guaranteed.

CIAO 0.6.0 was compiled with GCC 4.2.1 and installed on Linux operating
system with kernel with 2.6.20-16 and running on Intel Core Duo to 1.83GHz,
1GB of RAM and 2MB of cache memory. The operating system was configured
with the parameters maxcpus = 1 in order to consider only one processor core,
and runlevel = 1, restricting the operating system to its basic services. The
definitions of services available and consumed by the components of the exper-
iment were made through the language IDL (Interface Definition Language),
which allows for the specification and subsequent generation of the structure
of components in the CIAO architecture. The procedure for the installation of
components followed a deployment plan defined for the components used in the
experiment. This plan was also based on XML descriptors.

To carry out the necessary measurements, the monitor performed n calls
through the connections with the analyzer and the null-service. For each com-
pleted call, the times measured were recorded. Both services use an identical
port (named facet in the CIAO terminology) and the calling parameters were
randomly generated by the monitor based on a range of values of interest. The
measurements performed by the monitor were not correlated whatsoever. In our
experiments, first the values of variable R were measured and then those of RT .
The calling frequencies used in those measurements were set to 25Hz, 50Hz, 75Hz
and 100Hz so that there were n/4 measurements for each calling frequency. In
order to measure these values, we used the class High Resolution Timer provided
by the framework ACE [Schmidt and Huston, 2003], on top of which CIAO was
implemented. Thus, time was measured in microseconds (μs). The number n

of measurements should be defined by the user and must be large enough so
that the collected values of R and RT are representative. In our experiments,
n = 2 × 106.
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Figure 4: Probability distributions of R and RT .

Figure 4 plots the probability distributions derived from the collected values
in Sr and Srt. As can be seen, these distributions exhibit similar behaviors
although the dispersion of Sr is higher. This is due to the fact that they are
subject to higher interference when compared to Srt. Given that we did not use
a real-time operating system, the observed dispersion is not so high and can be
considered as expected [Liu, 2000], [Regnier et al., 2008].

Given the collections Sr and Srt, the proposed estimation method was carried
out. Table 1 shows some descriptive statistics for the obtained results. In order
to evaluate the proposed method, we also measured the execution time of the

2152 Perrone R., Macedo R., Lima G., Lima V.: An Approach for Estimating ...



Table 1: Descriptive Statistics.

Measured Data Estimated Data

Summary Statistics R RT C′ C

Mode 89 21 66 68

Median 89 21 66 68

Mean 88.8 20.62 65.87 68.20

Std. Dev. 2.317528 1.143541 1.699584 2.381033

Max. 378 315 352 360

Min. 82 18 61 60

Range 296 297 291 300

code of the monitored service - analyzer. Thus, it was necessary to instrument
the monitored service internal code. The measured execution times are repre-
sented by variable C′ in the table. Also, it can be noted that there is a higher
standard deviation for R when compared with RT . This is caused by the already
mentioned higher dispersion of Sr as compared to Srt.

0.
0

0.
6

Time(μs)

R
el

at
iv

e 
fr

eq
.

50 100 150 200 250 300 350 400
60

0.
1

0.
2

0.
3

0.
4

0.
5 C’

C

352 360

Figure 5: Probability distribution of C and C′

For the estimative of Cmin was adopted p = 99.5%, and the lower value
of rtu that answered this requirement was 22μs with probability 99.59%. From
that value the distributions of C were calculated. Figures 5 and 6 illustrate
better the effectiveness of the proposed approach. As can be seen, the probability
distributions of C and C′ and their respective mass functions are very similar.
We also carried out the Kolmogorov-Smirnov test [Conover, 1971], finding that
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both distributions can be considered the same with level of significance of 5%.
As can be seen in Figure 5, the distribution of C exhibits a right-shifted

curve when compared with C′ distribution. It is due to the influence caused
by the joint probability computation when the Equation (2) was applied - i.e.
P (r = 89, rt = 21) = 21.86%. However, this right-shift does not compromise
the results since the estimated probabilities in C distribution are related to time
values that are higher than time values related to the curve of probabilities in
C′ distribution. So the approach is safe for the adoption of the estimated value.
The same occurs with the cumulative distribution of C in Figure 6, that exhibits
a right-shift (e.g. P (C ≤ 100) = 99.93% and P (C′ ≤ 100) = 99.99%).

Finally, it is should be noticed that the estimated probability distribution pro-
vides a simple way of estimating probabilistic WCET, for instance, 360μs with
probabilistic guarantee P (C < 360) = 99.999%. Likewise, the probability dis-
tribution produced can be used in probabilistic models like in [Kim et al., 2005]
or in [Manolache et al., 2001] where the ratio of missed deadlines are computed
per task, and the analysis uses a pseudo-continuous distribution based on prob-
abilistic density curves.

5 Estimating Component Compositions Execution Time
Probability Distributions

We have extended the previous estimation method to cope with probability dis-
tributions of component compositions. We observe that instead of estimating
such compositions by convolving the probability distributions related to the ex-
ecution time of isolated components, we take a simpler approach. Indeed, using
such convolutions yields greater complexity when considering COTS - compiled
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version. This is because there may be dependencies between components. Ob-
serve also that if a measured component activates another component, this lat-
ter component has to be immediately measured after its activation and such an
evaluation should also consider the actual state of the computer architecture.
In general, the time analysis must consider the state of execution environment
related to all successive activations, usually called execution history. As will be
seen, our approach is more attractive and appropriate to COTS since component
dependence is not directly considered. Instead, the whole composition is treated
as a black-box.

We believe that the proposed black-box method ensures greater portability
compared with other methods that tend to be complex and dependent on the
hardware architecture used. However, we need a strategy that makes the adop-
tion of the statistical method in the context of component compositions feasible.
First, some definitions are introduced.

– Consider a chain of j components, where the first and last components in
the chain is represented by cots1 and cotsj , respectively. Also, consider that
when the monitor calls a service of cots1, these j components are activated
in sequence (see Figure 7(a)). Hence, the time measured by the monitor ac-
counts for the total response time that includes the activation chain, defined
as Rtotal. In this sense, all components activated by the monitor can be seen
as a unique entity. More precisely,

Rtotal = Rcots1 + Rcots2 + Rcots3 + · · · + Rcotsj (5)

– Similarly, to evaluate the round-trip of a composition, the whole composition
should be treated as a black-box. The composition should be created and
installed in the container so that a chain of null services can be measured.
Thus,

RTtotal = RTcots1 + RTcots2 + RTcots3 + · · · + RTcotsj (6)

– We will use the variables R and RT as before. However, their values represent
now the response and round-trip times for compositions, respectively.

Given the new definitions for R and RT , the equation for C is the same as pre-
sented in Section 4, so that the values of Sc can be obtained. Sctotal

now denotes
the value of Sc for a composition. The execution time probability distribution
of Sctotal

refers to a measured composition (Ctotal), following the rules of joint
probability defined by Equation (2). Given that a composition is executed for a
given system configuration, it is necessary that such configuration be the same
for both the measurements of the Rtotal and RTtotal variables to avoid any erros
in the measured values. It should be observed that distinct probability distribu-
tion curves of Ctotal can be obtained from distinct system configurations and by
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(a) Measurement of Rtotal

(b) Measurement of RTtotal

Figure 7: Model of measurement for a composition of components.

comparing these curves a designer can evaluate the impact of the adoption of
components from different suppliers.

5.1 Case Study: Applying the Methodology to a Component
Composition

In order to evaluate the proposed method we applied it to a component com-
position developed on top of ARCOS: a simulated car cruise control application
[Pont, 2001].

As the car cruise control is simulated, the values for the acceleration, distance,
and speed are obtained from a mathematical model given by the Equations (7),
(8), and (9), respectively.

Accel =
Trothle × ENGINE POWER − (FRIC × Old speed)

MASS
(7)

Dist = Old speed + Accel ×
(

1

SAMPLE RATE

)
(8)

Speed =
√

Old speed2 + (2 × Accel × Dist) (9)

This car cruise control application is made of two modules: a data acquisition
module and a control module.

The data acquisition module includes the following components: a DAISSim-
ulatedCarProvider component that represents the car being monitored, providing
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the speed data and implementing the IDAISProviderBaseFacet and ISimulated-
CarProviderFacet interfaces; a DAISDAGroupManager component that man-
ages all operations for a data acquisition group; a DAISDAGroupClock com-
ponent that is responsible for generating events according to the frequencies
previously defined for the execution of acquisition and control tasks; a DAIS-
Server component that is responsible for creating connection points and data
access sessions.

The control module is made of the following components: the PIDController
component that represents a PID controler and implements the IController-
BaseFacet and IPIDControlerFacet interfaces; the ControlManager component
responsible for managing the control cycle; the ControlManagerDAISCallback
component that includes the callback object required by the DAIS implementa-
tion for the periodic transmission of data.

Figure 8: Speed control system for a vehicle.

Figure 8 gives a general view of the components and their inter-connections.
Basically, the application works as follows. Periodically, the DAISDAGroupClock
component generates a data acquisition event that is consumed by the DAIS-
DAGroupManager component. The DAISDAGroupManager component in turn
obtains the data from the DAISSimulatedCarProvider component and passes
them on to the ControlManager component through the ControlManagerDAIS-
Callback component - on data change() method. At this point the control loop
begins managed by the ControlManager component that passes on the acquired
data - method control(). The PIDController component performs the speed con-
trol task. Its goal is to maintain the vehicle speed close to the set-point, as illus-
trated in Figure 9. The controller tunning is done by the attributes setpoint, kp, ki

e kd, and the control cycle frequency is adjusted by the attribute sample rate.
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Figure 9: Feedback Control Loop

5.2 Experiment Configuration and Assessment

The speed control application, described in the former section, was originally de-
veloped in ARCOS for an older version of CIAO. Such a version did not provide
some real-time facilities such as the real-time container. Hence, we decided to
adapt the application code to the CIAO version 0.6.5 by slightly modifying the
XML descriptor file used in the component composition. It was included in this
file specific markers to indicate which resources would be reserved to which com-
ponent instance. These markers were defined according to the resource utilization
policies pre-defined for each application component. Hence, as described in sec-
tion 4.2, some ORB parameters were specifically configured: FIFO scheduling
policy; direct mapping from CORBA priorities to native ones; priority policies
defined by the server; and static tasks for the execution of components installed
in the container.

The DAISDAGroupClock component works as a periodic event generator.
The event periods are defined during the DAIS client group creation proce-
dure. Since this component has one of the functions carried out by the monitor

component (recall Figure 3), an adaptation was carried out in the code of DAIS-
DAGroupClock enabling it to measure and register event occurrences generated
by the TAO real-time event service. This adaptation made it unnecessary to
connect a monitor component to the composition.

The application was configured considering three set-point values for the
controller, namely 30, 60 and 90 km/h. The values of kp = 0.05, ki = 0 and kd = 0
were used for computing the accelerator actuation behavior. It is important to
emphasize that several different combinations of speed values, control frequency,
and kp, ki and kd are possible.

The set of evaluation experiments was carried out making use of Linux kernel
version 2.6.24-19. In order to obtain better temporal predictability, the 2.6.24.19-
rt preemptive patch was applied. This operating system environment gives rea-
sonably good real-time behavior [Regnier et al., 2008] since it handles aspects
related to interrupt and activation latencies, data sharing (e.g. rt mutex ) etc.
CIAO 0.6.5 and ARCOS were compiled by GCC 4.2.3 and these middleware
platforms were installed on a 1.67GHz Intel(R) Core(TM) 2 Duo, with 2GB
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RAM and 2MB cache. The operating system was configured with maxcpus = 1
so that only one core was used. Also, only basic operating system services were
installed by option runlevel = 1. The definitions of the published and con-
sumed services and the component category used were specified through IDL.
The container component installation procedure was carried out making use of
DAnCE. The priority of each component was set to the maximum allowed by
the FIFO Linux scheduling policy.

The measurement procedure was initialized for each timeout event consumed
by DAISDAGroupClock. An execution path was activated to each acquisition-
control cycle. The measurements related to each cycle were carrried out and
registered in a log file. Initially, the values of Rtotal were collected. This corre-
sponds to the configuration illustrated in Figure 8. Then, similar measurements
were carried out but with the null-service configuration. The collected values cor-
respond to the RTtotal variable, which represents the total round-trip time for the
whole activated execution path. In both measurement phases each component
was executed by a dedicated task.

The measured values of Rtotal and RTtotal were not related since they were
observed independently. Also, these measurements were carried out taking four
frequency values into consideration: 25Hz, 50Hz, 75Hz e 100Hz. These frequencies
were specified in the group configuration ControlAquisition, created in the DAIS-
DAGroupManager component. We carried out 120000 measurements for three
set-point values, that is, 30000 measurements were carried out for each consid-
ered frequency value. Again, we used the High Resolution Timer class provided
by the framework ACE so that microsecond precision can be obtained (μs). The
interference generated by this measurement mechanism was estimated to be 35
nanoseconds (ns). Clearly, this is a small value. Also, considering that this in-
terference is approximately constant, when computing Ctotal = Rtotal −RTtotal,
its effects on the estimation is canceled. Thus, we considered that the interfer-
ence due to measurements can be neglected when computing Ctotal. However, the
same may not be true for measuring C′

total, the actual application execution time,
used for validating the proposed methodology. Indeed, C′

total =
∑n

i=1 C′
cotsi

,
where C′

cotsi
represents the i-th component in the execution path to be mea-

sured. Hence, the interference due to measurements depends on n and may not
be neglected since it is cumulative. This problem was dealt with by subtracting
the accumulated interference value from the measurements. For the performed
experiments, this accumulated interference was estimated to be approximately
385ns.

Let Srtotal
and Srttotal

be collections containing the measured values of Rtotal

and RTtotal, respectively. Figure 10 shows the respective frequency distributions
derived from these values. Although these distributions preserve some similari-
ties, it can be seen that Srtotal

exhibits higher dispersion. This is due to the fact
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Figure 10: Probability distribution of Rtotal and RTtotal.

that the values of Srtotal
belong to components whose internal code present a

much higher number of execution states. Recall that RTtotal are implemented
with null-service code. Also, the actual application components are subject to
more interference from the execution infrastructure since their execution time
are higher. Finally, some dispersion is expected since the operating system does
not provide hard real-time guarantees.

Once the collections Srtotal
and Srttotal

were obtained by measurements, the
proposed methodology was carried out as described in section 5 so that Sctotal

could be estimated. As previously mentioned, the actual execution times were
measured so as to determine C′

total. This measurement was made by instrument-
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Table 2: Descriptive Statistics.

Measured Data Estimated Data

Summary Statistics Rtotal RTtotal C′
total Ctotal

Mode 283 45 233 238

Median 284 46 233 239

Mean 283.7 44.53 233.3 239.1766

Std. Dev. 3.131618 2.163726 2.869205 3.515307

Max. 578 200 528 537

Min. 280 41 228 230

Range 298 159 300 307
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Figure 11: Probability distribution of Ctotal and C′
total

ing the corresponding component code. The descriptive analysis of the obtained
data can be seen in Table 2. As can be noted, the standard deviation for Ctotal is
the highest one. This reflects the higher dispersion mentioned before. This effect
causes a shift to the right in all values computed for Ctotal when compared to
the respective values of C′

total.
The value of cmin was estimated taking p = 99.90% and the lowest value

of rtu corresponding to this value of p was found to be 50μs with probability
99.93%. Then the distribution of Ctotal was determined and plotted in Figures
11 and 12. For the sake of comparison, these graphs also show the distribution of
C′

total. Again, its possible to observe similarities between C′
total and Ctotal. Sim-

ilarly to what was done for a single component, we carried out the Kolmogorov-
Smirnov test for the data obtained in this set of measumenets [Conover, 1971].
Again, the test showed that both C′

total and Ctotal can be considered as following
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the same distribution with significance level of 5%.
In Figure 11 we can see a peak representing the relative frequency of mode

equal to 0.2557 while the corresponding estimated frequency for the mode was
0.2029. The mode time values for both variables C′

total and Ctotal presented a
small difference equal to 5μs. This is because the already mentioned higher dis-
persion observed in the data, which in turn is taken into consideration when
computing the joint probability distribution. More precisely, Equation (2) - e.g.
P (r = 283, rt = 45) = 11.88%. It is important to emphasize that this is an
interesting characteristic of joint probability computation: The combination of
higher probable data values of R and RT tends to give good and safe approx-
imations with respect to the actual values. As a result, we can observe that
the relative frequency of Ctotal is right-shiftted when compared to C′

total. This
makes the proposed approach safe since the given estimation is not lower than
the corresponding actual value. Figure 12 shows the cumulative distributions
for C′

total and Ctotal. As can be noticed, the same right-shifft effect can be ob-
served. This information may be useful for the designers since they can compute
a upper bound on the execution time with probabilistic gurantees so that the
requirements for the considered applications can be taken into consideration. For
example, P (Ctotal ≤ 531) = 99.999% and P (C′

total ≤ 526) = 99.999%.

6 Conclusions and Future Work

This paper presented and evaluated a new methodology for estimating execution
time probability distributions of COTS-based real-time systems. Nowadays, such
probabilistic approaches are being considered very relevant in the design of mod-
ern real-time systems, where the traditional methodologies can not be applied
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or face difficulties, due to the lack of access to the internal component code. The
benefits generated by this work allow the designer to evaluate the time proper-
ties of black-box COTS-based systems at early development stages. As a result,
different COTS can be analyzed into different configuration of compositions to
compare and evaluate the time properties.

Though the proposed methodology is indented to black-box components, it
can also be used in some white-box scenarios (where internal knowledge of soft-
ware components is available), if the application of conventional methodologies
- such as static analysis - is not cost-effective. Also, the statistical method we
proposed can be applied to others component technologies as long as such tech-
nologies include usual real-time facilities as those available in CIAO. However,
some improvements need to be done to face specific issues in component com-
positions. For instance, conditional component activation along execution paths
triggered by a service need to be considered. This is a challenge when we are
dealing with black-box COTS and techniques based on measurements. To eval-
uate the proposed methodology, two case studies were fully implemented over
the component-based middleware CIAO and the framework ARCOS. In both
case studies, component execution time probability distributions were estimated
from interactions via the component interfaces and from instrumented code in-
side the components, bypassing the component interfaces. The comparison of
these distributions considering the summary statistics showed that the proposed
methodology produces results very close to the real values. This indicates that
the statistical method applied can be considered a good approach for estimating
execution time probability distributions in such context.

Future work also includes complementing the proposed methodology with
mechanisms to derive probabilistic worst-case execution times of components
and related probabilistic scheduling feasibility tests.
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