
SQL/XML Hierarchical Query Performance Analysis
in an XML-Enabled Database System

Eric Pardede, J. Wenny Rahayu, Ramanpreet Kauer Aujla
(Department of Computer Science and Computer Engineering, La Trobe University

Melbourne, Australia
{E.Pardede, W.Rahayu}@latrobe.edu.au)

David Taniar

(Clayton School of Information Technology, Monash University, Melbourne, Australia
David.Taniar@infotech.monash.edu.au)

Abstract: The increase utilization of XML structure for data representation,
exchange, and integration has strengthened the need for an efficient storage and
retrieval of XML data. Currently, there are two major streams of XML data
repositories. The first stream is the Native XML database systems which are built
solely to store and manipulate XML data, and equipped with the standard XML query
language known as XPath and XQuery. The second stream is the XML-Enabled
database systems which are generally existing traditional database systems enhanced
with XML storage capabilities. The SQL/XML standard for XML querying is used in
these enabled database systems stream. The main specific characteristic of this
standard is the fact that XPath and XQuery are embedded within SQL statements. To
date, most existing work in XML query analysis have been focussing on the first
stream of Native XML database systems. The focus of this paper is to present a
taxonomy of different hierarchical query patterns in XML-Enabled database
environment, and to analyze the performance of the different query structures using
the SQL/XML standard.

Keywords: XML, SQL/XML Query, XML-Enabled Database
Categories: H.2.7

1 Introduction

The distinctiveness of XML data structure has driven the emergence of a new stream
of database system known as the XML database systems. To date, there are two well-
known streams in this area: the Native XML Database (NXD) and the XML-Enabled
Database (XED).

For the purpose of this paper, we define the main differences between the two
streams as follows. The NDX is an XML database system that is built solely to store
and manipulate XML data structures, and utilizes pure XQuery [W3C, 2007] as its
query language. On the other hand, the XED is generally developed incrementally
from another existing database system. XED that has relational database as
foundation will support SQL as well as XML query languages such as XPath and

Journal of Universal Computer Science, vol. 15, no. 10 (2009), 2058-2077
submitted: 15/1/09, accepted: 5/5/09, appeared: 28/5/09 © J.UCS

XQuery. This extended SQL is widely known as SQL/XML [ISO/IEC, 2003]. This
fact has made query performance analysis in XED systems very unique. The analysis
has to consider the nature of XML tree as well as the relational-based performance
measurement.

In this paper, we compare and analyze the performance of different querying
techniques and propose a recommendation to determine which query writing is
suitable for various SQL/XML queries. To achieve this, we start by identifying the
classification of XML queries based on the nature of the target retrieval and path
traversal. We identify several types of query path traversal including: Child,
Descendant, Parent, and Ancestor queries, whereby each of them may be represented
as sub-tree, element, attribute, or text node.

In our SQL/XML query performance experiments, we consider two dimensional
aspects whereby each aspect is a measure relevant to SQL and XML respectively. The
first aspect of measure is the XML path analysis which is based on above
classification of XML query path traversal. The second aspect of measure is the level
of hierarchy analysis which is based on the placement of SQL selection and
projection at different levels of XML hierarchy. In the experimental testing, we used a
major XED product, Oracle 10g Release 2 [Oracle, 2007].

2 Related Work

Some of the existing works used approaches that are based on how the XML is stored
in XED. For example, [Zhang, 2001] investigated the query optimization using
loosely-coupled information retrieval engine and using DBMS tables with query
execution engines. It shows the effect of join algorithm and hardware cache utilization
towards containment queries performance. Unfortunately, there is no detail discussion
on how to improve the performance, so that, the containment queries can be
efficiently processed. In this paper, we use a different approach. We will only focus
on the usage of DBMS tables and query execution engine for query optimization.
However, we will show how to improve the query performance for a range of
SQL/XML query types.

Other works focused on investigating translation from XML standard to XED
language. [Wang, 2005] proposed an algebraic approach for order-sensitive XQuery
processing over relational databases, which is called XQuery-to-SQL Order-sensitive
Translation (XSOT). This work has more focus on direct rewriting from one query
family to another query family.

[Zhang, 2002] investigated the algorithm using XML Algebra Tree (XAT) for
explicitly represents the semantics of XQuery. Unfortunately, it does not clearly
describe how it is applied in XED language such as SQL or SQL/XML. A similar
approach is taken by [Grinev, 2005], where the authors proposed a technique to
rewrite XQuery by using an XML element constructor. It provided XQuery samples
and their optimized result. However, there is no justification for the performance
evaluation.

[Le, 2007] proposed semantic transformation algorithms for querying data in
XML database. The authors proposed to pre-process XML schema before any
retrieval. They also proposed to rewrite the XPath in SQL/XML query languages. In
[Le, 2008], they applied the approach for update operations. While the works claimed

2059Pardede E., Rahayu J.W., Aujla R., Taniar D.: SQL/XML Hierarchical Query ...

to have improved the query and update operations, they are only applied to XML data
with existing schema. In addition, the semantic path transformation is also limited to
certain paths only.

Another research [De Meo, 2004] also investigated the use of semantic concepts
to manage XML documents. However, it is more targeted for XML data integration
instead of for query optimization or query performance analysis.

Finally [Sun, 2006] used Ontology semantics for rewriting XML Query. They
proposed a set of rules that can be used for query optimization. There is no clear
guideline on how these rules can be applied in SQL/XML query and XPath in general.

To the best of our knowledge, there has no attempt to solve the query
optimization problem from both structural and semantic properties of XML
documents. In this paper, we aim to consider both SQL/XML query structure and
semantic query classification for performance analysis.

3 XML Enabled Database

XML Enabled Databases (XED) can be defined as established databases that support
the storage and manipulation of XML data as a document. Most XEDs were
developed from relational databases. In terms of XML solution, there is a
fundamental difference between the relational database and the XED.

B

Relational Database

XML Data

Table

Column A
(Atomic Type)

Column B
(Atomic Type)

Column C
(Atomic Type)

Table

Column A
(LOB Type)

Table

Column A
(XML Type)

Column B (XML
Type)

XED

Figure 1: Storing XML Data: Relational Database vs XED

In pure relational database, the XML data will be stored in a table column as a
large object or by shredding the tree elements into atomic values. Many researches in

2060 Pardede E., Rahayu J.W., Aujla R., Taniar D.: SQL/XML Hierarchical Query ...

the last 10 years have offered this solution [Florescu, 1999; Shanmugasundaram,
1999; Pardede, 2004]. On the other hand, XED stores the XML data as a unique type
such as XMLType. This data type considers the tree structure of XML data and
facilitates XML Query languages and standards. Figure 1 depicts the difference
between storing XML data in relational database and in XED.

Many data management areas for XED are still unexplored. XED requires
mechanism to define how a tree or partial tree is stored in the table column. XED also
requires special languages to retrieve and manipulate the data as XML Type.
SQL/XML standard provides a uniform language for managing data in XED.
However, the standard language still have different syntax structure, which obviously
determined by the operations behind each structure.

Unlike research work in storing XML data in Relational Database, research in
storing and manipulating XML data in XED through special types is still rarely found.
Of the few, [Pardede, 2008a] discussed the update operations for XML data in XED
through trigger mechanism. [Le, 2007] provided work on semantic transformation of
queries in XED. None of the work has investigated the various SQL/XML syntax
structure for managing XML data in XED and how they affect the query performance.
We will attempt to investigate this issue. Before we describe these various syntaxes,
we show the classification of the query based on the projection and selection target.

4 Taxonomy on XML Query

Based on the retrieval target, we classify XML Query into three types:
Child/Descendant (C/D) Queries, Parent Queries and Ancestor Queries (see figure
2). Each of them can be further grouped into the target structure; either it is a sub-tree,
an element or an attribute.

Child/
Descendant

Sub-tree
Queries

Child/
Descendant

Attribute
Queries

Child/Descendant
Text Node Queries

XML Queries

Child/Descendant
Queries

Parent
Queries

Ancestor
Queries

Ancestor
Element(s)

Queries

Ancestor
Attribute
Queries

Parent
Element(s)

Queries

Parent
Attribute
Queries

Figure 2: XML-Enabled Database Query Classification

The main idea behind this classification is to check the performance difference
for selection at the different levels of hierarchy while fixing the projection at a single
node. The query implementation is dependent on the database type. Even in one

2061Pardede E., Rahayu J.W., Aujla R., Taniar D.: SQL/XML Hierarchical Query ...

database family, such as XED, the implementation can be different from one product
to another. We discuss about the variation in the next section.

4.1 C/D Queries Classification

C/D queries are further classified into three types: C/D Sub-tree queries, C/D Text
Node queries and C/D Attribute queries. For the rest of the paper, we will refer them
as sub-tree, text node and attribute query. This sub-division is based on the projection
target. Sub-tree queries retrieve whole C/D nodes including text node and attributes
associated with it. Text Node queries and Attribute queries retrieve just the text node
of an element and attribute respectively.

 Selection
Predicate 2

Projection
Predicate

Selection
Predicate 1

Selection
Predicate 3

Input Tree Output Sub-Tree Query

A

B C

D E F G

D

textD
Output Text Query D

attD
Output Attribute Query D

Figure 3: Tree Representation for C/D Queries

Sub-Tree Queries

These are the queries which involve the retrieval of C/D element(s) based on the
selection on the parent, ancestor or sibling element. For example, figure 3 shows a
tree representation for C/D retrieval (node D), having selection on the parent element
(node B), ancestor element (node A) and sibling element (node E). From the figure,
we can see that this query type retrieve node D and its sub-elements. All these queries
represented as tree structure can be written using XPath extract Query, XMLTABLE
XQuery and XMLQuery XQuery syntax.

Text Node Queries

These queries involve with the projection of a text node associated with the C/D
element based on the selection on the parent, ancestor or sibling element. For
example, figure 3 shows the output of the query is the text associated with element D
In XED, these queries can be performed using SQL function text() in XPath
XMLSequence Query and XPath extract Query. The changed syntax of XPath extract
Query for Text Node query is given below:

SELECT extract(<alias>.OBJECT_VALUE,‘//<projection_element>/text ()’)
FROM <table_name> <alias>
WHERE existsNode(<alias>.OBJECT_VALUE, ‘//<selection_condition>’);

2062 Pardede E., Rahayu J.W., Aujla R., Taniar D.: SQL/XML Hierarchical Query ...

Attribute Queries

These queries involve in the projection of attributes associated with the C/D element
based on the selection on the parent, ancestor or sibling element. For example, Figure
3 shows the output of the query is the attribute associated with node D. Attribute
queries use XPath extract Query, XMLTABLE XQuery and XMLQuery XQuery with
a little modification. The changed syntax of above mentioned queries in order to
retrieve attribute associated with C/D elements is given below.

XPath extract attribute Query:

SELECT extract(<alias>.OBJECT_VALUE,

‘/<element_having_attribute>/@<projection_attribute>’)
FROM <table_name> <alias>
WHERE existsNode(<alias>.OBJECT_VALUE, ‘//<selection_condition>’);

XMLTABLE attribute XQuery:

SELECT xtab.COLUMN_VALUE
FROM <table_name>, XMLTABLE(‘<XQuery Expression using FLOWR Expressions>
 for $a in //<element_node> where

<selection_predicate[conditional_expression]>
RETURN $a/<element_having_attribute>/@<projection_attribute>’
PASSING OBJECT_VALUE)xtab;

XMLQuery attribute XQuery:

SELECT XMLQuery(‘<XQuery Expression using FLOWR Expressions>

for $a in //<element_node> where
<selection_predicate[conditional_expression]>
RETURN $a/<element_having_attribute>/@<projection_attribute>’
PASSING OBJECT_VALUE RETURNING CONTENT)

FROM <table_name>;

4.2 Parent and Ancestor Queries Classification

Parent and Ancestor Queries are further classified based on the projection target, into
Element(s) Queries and Attribute Queries. Element(s) queries retrieve the whole
element node including child elements and attributes associated with it, while
Attribute queries retrieve just the attribute associated with the parent/ancestor
element.

Parent Element(s) Queries

These are the queries which involve the retrieval of the Parent element(s) based on the
selection on the child element. For example, figure 4 shows a tree representation for
element retrieval (node B), having selection on the child element (node D). From the
figure, we can see that this query type retrieve node B and its sub-elements. All these
queries represented as tree structure can be written using XPath extract Query,
XMLTABLE XQuery and XMLQuery XQuery syntax.

2063Pardede E., Rahayu J.W., Aujla R., Taniar D.: SQL/XML Hierarchical Query ...

Selection
Predicate

Projection
Predicate

Input Tree Output Parent
Element Query

A

B C

D E F G

attBOutput Parent
Attribute Query B

B

D E

Figure 4: Tree Representation for Parent Queries

Parent Attribute Queries

These queries involve with the projection of attributes associated with the parent
element based on the selection on the child element. For example in figure 4, the
output of the parent attribute query is the attribute associated with element B.

Attribute queries use XPath extract Query, XMLTABLE XQuery and XMLQuery
XQuery with a little modification. The changed syntax of the above mentioned
queries in order to retrieve attribute associated with Parent element is given below.

XPath extract attribute Query:

SELECT extract(<alias>.OBJECT_VALUE,

‘/<element_having_attribute>/@<projection_attribute>’)
FROM <table_name> <alias>
WHERE existsNode(<alias>.OBJECT_VALUE, ‘//<selection_condition>’);

XMLTABLE attribute XQuery:

SELECT xtab.COLUMN_VALUE
FROM <table_name>, XMLTABLE(‘<XQuery Expression using FLOWR Expressions>
 for $a in //<element_node> where

<selection_predicate[conditional_expression]>
RETURN $a/<element_having_attribute>/@<projection_attribute>’
PASSING OBJECT_VALUE)xtab;

XMLQuery attribute XQuery:

SELECT XMLQuery(‘<XQuery Expression using FLOWR Expressions>

for $a in //<element_node> where
<selection_predicate[conditional_expression]>
RETURN $a/<element_having_attribute>/@<projection_attribute>’
PASSING OBJECT_VALUE RETURNING CONTENT)

FROM <table_name>;

2064 Pardede E., Rahayu J.W., Aujla R., Taniar D.: SQL/XML Hierarchical Query ...

Ancestor Element(s) Queries

Ancestor Element(s) queries involve with the retrieval of the Ancestor element(s)
based on the selection on the descendant element. For example, figure 5 shows the
tree representation for element retrieval (node A), having selection on the descendant
element (node D). From the figure, we can see that element A is on the top hierarchy.
If the descendant node satisfies the selection condition, then the whole input tree will
be output tree. All these queries represented as tree structure can be written using
XPath extract Query, XMLTABLE XQuery and XMLQuery XQuery syntax.

Selection
Predicate

Projection
Predicate

Input Tree
Output Ancestor
Element Query

A

B C

D E F G
AttAOutput Ancestor

Attribute Query A

A

B C

D E F G

Figure 5: Tree Representation for Ancestor Queries

Ancestor Attribute Queries

Ancestor Attribute queries involve with the projection of attributes associated with an
element based on the selection on the descendant element. For example, in figure 5,
the retrieval of attribute(s) associated with element A having selection predicate on
descendant element D. This query represented as tree structure can be easily
implemented with XPath extract attribute Query, XMLTABLE attribute XQuery and
XMLQuery attribute XQuery syntaxes.

5 Queries Performance Experiments

5.1 Experimental Setup and Tool

For all practical purposes, Oracle 10g Release 2 [Oracle, 2007] was used for this
paper. The experiments were performed on a Windows workstation having 40 GB of
disk storage and 504MB of memory. XML Schema was created based on a publicly
available XML document (http://www.dia.uniroma3.it/Araneus/Sigmod/Record/
SigmodRecord/SigmodRecord.xml)

The size of the data used for the experiment was 1.01MB. The table was created
based on the XML Schema. The XML documents stored contain not only element
nodes but also attribute and text nodes. TKPROF utility and Timing utility [Oracle,
2007] were used to do performance analysis. TKPROF utility [Srivastava, 2002], also
known as SQL Trace, reports information about each SQL statement executed with
the resources it has used, the number of times it was called, and the number of rows
which it processed.

Performance analysis of the queries involves the comparison of the statistical
information of the queries. The information is based on the following parameters: (i)

2065Pardede E., Rahayu J.W., Aujla R., Taniar D.: SQL/XML Hierarchical Query ...

CPU Time, refers to time taken to parse, execute, or fetch calls for the statement.
Query performance is shown by Execute and Fetch phases; (ii) TKPROF Elapsed
Time, refers to the time required for all parsing, executing, or fetching calls for the
statement. This is the total time from start to finish of the execution of the query; and
(iii) Timing Elapsed Time, which is the total execution time of the query obtained by
timing utility of SQL*Plus.

5.2 Experimentation

Sub-tree Queries Experimentation. “Retrieve title C/D element when the selection
is on parent/ancestor/sibling element.”

The query for this problem can be categorized into six, based on different
combinations of projections and selections in the hierarchy [Pardede, 2007]. The
projection predicate is fixed at title element but the selection predicate is located at
different levels of hierarchy. Each category can have four ways of query writing.

Figure 6 represents the selection and the projection predicates for one category
(denoted with A) , if the selection predicate is located at first level ancestor element.
In this case, we retrieve title descendant element when attribute textValue1 (ancestor
element) is 50. The projection predicate is title and the selection predicate is articles
(textValue1 attribute) located at the fourth level of hierarchy (see figure 6). Queries
below represent the possible structures to perform the operation. Queries 1 and 4 are
written using XPath extract Query. Query 4 is written using the same query structure
as Query 1. However, the way it is written is different. Query 2 is written using
XMLTABLE XQuery. Query 3 is written using XMLQuery XQuery.

Query 1:
SELECT extract(s.OBJECT_VALUE, '//title')"TITLE"
FROM SIGMOD s
WHERE existsNode(s.OBJECT_VALUE,

'//articles[@textValue1="50"]')= 1;

Query 2:
SELECT xtab.COLUMN_VALUE "TITLE"
FROM SIGMOD, XMLTABLE ('for $a in //articles let

$b:=$a[@textValue1="50"]
 return $b//title' PASSING OBJECT_VALUE)xtab;

Query 3:
SELECT XMLQuery('for $a in //articles return $a//title'
 PASSING OBJECT_VALUE RETURNING CONTENT)"TITLE“
FROM SIGMOD s
WHERE existsNode(s.OBJECT_VALUE,

'//articles[@textValue1="50"]')= 1;

Query 4:
SELECT extract(s.OBJECT_VALUE,

'/SigmodRecord/*//articles/*//title') TITLE"
FROM SIGMOD s
WHERE existsNode(s.OBJECT_VALUE,'/SigmodRecord/*//articles

[@textValue1="50"]')= 1;

2066 Pardede E., Rahayu J.W., Aujla R., Taniar D.: SQL/XML Hierarchical Query ...

Projection A

Selection A

issuesTuple
(textValue
attribute)

issues

Sigmod
Record

number volume articles
(textValue1 att)

articlesTuple
(textValue2 att)

title

author
(AuthorPosition att)

initPage endPage authors

Projection B

Selection B Projection C

Selection C

Projection D

Selection D

Projection E

Selection E Projection F

Selection F

Projection G

Selection G

Figure 6: Query Tree Representation

Text Node Queries Experimentation. “Retrieve Text Node associated with
author/volume C/D element when the selection is on a Parent/Ancestor/Sibling
element.”

The Text Node Queries are based on projection of two different elements. One of
which is the topmost element (volume) and the other is the bottom-most element
(author). Based on the projection and the selection nodes, we can classify this query
into 12 categories [Pardede, 2007].

Figure 6 represents selection and projection predicate for one of the category
(denoted with B), if the selection predicate is on element which is a sibling to the
parent element of the projection predicate. In this case, we retrieve text node of
author when element initPage is 114 or 144. The projection predicate for this query is
author element and the selection predicate is initPage element located at sixth level of
hierarchy. The following queries represent the possible structures to perform the

2067Pardede E., Rahayu J.W., Aujla R., Taniar D.: SQL/XML Hierarchical Query ...

operation. Query 5 and Query 7 are written using XPath extract Query with text()
function. Query 7 is written using the same query structure as Query 5 but the path in
Query 7 is written in different way. Query 6 is written using XPath XMLSequence
Query. This query takes XPath expression as input.

Query 5:
SELECT extract(s.OBJECT_VALUE, '//author/text()') "AUTHORS"
FROM SIGMOD s
WHERE existsNode(s.OBJECT_VALUE,'//

articlesTuple[initPage="144" or initPage="114"]')= 1;

Query 6:
SELECT extractValue(value(AUTHORS), '/author')"AUTHORS"
FROM SIGMOD s, table(XMLSequence(extract(s.OBJECT_VALUE,

'//author')))AUTHORS
WHERE existsNode(s.OBJECT_VALUE,'

//articlesTuple[initPage="144" or initPage="114"]')= 1;

Query 7:
SELECT extract(s.OBJECT_VALUE, '/SigmodRecord/*//

articlesTuple/*//author/text()') "AUTHORS"
FROM SIGMOD s
WHERE existsNode(s.OBJECT_VALUE,'//articlesTuple

[initPage="144" or initPage="114"]')= 1;

Attribute Queries Experimentation. “Retrieve Attributes associated with C/D
element when the selection is on a parent/ancestor element.”

Based on the projection and the selection nodes, we can classify this query into 6
categories [Pardede, 2007]. For our case study, figure 6 represents one category
(denoted with C), in which the selection pred. at the first level ancestor element and
the projection predicate is at lowest level of hierarchy. In this case, we retrieve the
AuthorPosition descendant attribute when the attribute textValue2 (ancestor element)
is 51 or 52.

The following queries represent the possible structures to perform the operation.
Query 8 and 11 are written using XPath extract attribute query. Query 9 is written
using XMLTABLE attribute XQuery. Query 10 is written using XMLQuery attribute
XQuery.

Query 8:
SELECT extract(s.OBJECT_VALUE, '//@AuthorPosition')

"AUTHORPOSITION"
FROM SIGMOD s
WHERE existsNode(s.OBJECT_VALUE,'//articlesTuple

[@textValue2="51" or @textValue2="52"]')= 1;

Query 9:
SELECT xtab.COLUMN_VALUE "AUTHORPOSITION"
FROM SIGMOD, XMLTABLE

('for $a in //articlesTuple
 where $a/@textValue2 = "51" or $a/@textValue2 = "52"
 return $a//@AuthorPosition'

2068 Pardede E., Rahayu J.W., Aujla R., Taniar D.: SQL/XML Hierarchical Query ...

 PASSING OBJECT_VALUE)xtab;

Query 10:
SELECT XMLQuery

('for $a in //articlesTuple
 return $a//@AuthorPosition'
 PASSING OBJECT_VALUE RETURNING CONTENT)"AUTHORPOSITION"

FROM SIGMOD s
WHERE existsNode(s.OBJECT_VALUE,'//articlesTuple

[@textValue2="51" or @textValue2="52"]')= 1;

Query 11:
SELECT extract(s.OBJECT_VALUE, '/SigmodRecord/*//

articlesTuple/*//@AuthorPosition') "AUTHORPOSITION"
FROM SIGMOD s
WHERE existsNode(s.OBJECT_VALUE,'/SigmodRecord/*//

articlesTuple[@textValue2="51" or @textValue2="52"]')=
1;

Parent Element(s) Queries Experimentation. “Retrieve Parent Element when the
selection is on Child Element.”

The query for this problem can be categorized into nine, based on different
combinations of projections and selections in the hierarchy [Pardede, 2008b]. For our
case study, Figure 6 (denoted with D) represents the selection predicate at attribute
associated with projected element and the projection predicate presents at the
bottom-most level of the hierarchy. In this case, we “retrieve authors element when its
AuthorPosition attribute is located at the lowest level of the tree hierarchy”.

The following queries represent the possible structures to perform the operation.
Queries 12 and 15 are written using XPath extract Query. Query 13 is written using
XMLTABLE XQuery. Query 14 is written using XMLQuery XQuery.

Query 12:
SELECT extract(s.OBJECT_VALUE, '//authors')"AUTHORS"
FROM SIGMOD s
WHERE existsNode(s.OBJECT_VALUE,

'//authors[(author/@AuthorPosition="89" and
author/@AuthorPosition="67") or
author/@AuthorPosition="100"]')= 1;

Query 13:
SELECT xtab.COLUMN_VALUE "AUTHORS"
FROM SIGMOD, XMLTABLE

('for $a in //authors
 where ($a/author/@AuthorPosition="89"
 and $a/author/@AuthorPosition="67")
 or $a/author/@AuthorPosition="100"
 return $a'
 PASSING OBJECT_VALUE)xtab;

Query 14:
SELECT XMLQuery

('for $a in //authors

2069Pardede E., Rahayu J.W., Aujla R., Taniar D.: SQL/XML Hierarchical Query ...

 return $a'
 PASSING OBJECT_VALUE
 RETURNING CONTENT)"AUTHORS"

FROM SIGMOD s
WHERE existsNode(s.OBJECT_VALUE,'//

authors[(author/@AuthorPosition="89" and
author/@AuthorPosition="67") or
author/@AuthorPosition="100"]')= 1;

Query 15:
SELECT extract(s.OBJECT_VALUE, '/SigmodRecord/*//authors')

“AUTHORS"
FROM SIGMOD s
WHERE existsNode(s.OBJECT_VALUE,'/SigmodRecord/*//authors

[(author/@AuthorPosition="89" and
author/@AuthorPosition="67") or
author/@AuthorPosition="100"]')= 1;

Parent Attribute Queries Experimentation. “Retrieve Attribute associated with
Parent Element when the selection is on Child Element.”

The query for this problem can be categorized into four, based on different
combinations of projections and selections in the hierarchy [Pardede, 2008b]. For our
case study, figure 6 (denoted with E) represents the selection predicate in the attribute
associated with child element and the projection predicate present at the middle level
of the hierarchy category. In this case, we “retrieve textValue1 attribute while the
selection predicate is textValue2 attribute“.

The following queries represent the possible structures to perform the operation.
The queries include those written using XPath attribute query (Queries 16 and 19),
using XMLTABLE (Query 17) and using XMLQuery (Query 18).

Query 16:
SELECT extract(s.OBJECT_VALUE,

'//articles/@textValue1')"TEXTVALUE1"
FROM SIGMOD s
WHERE existsNode(s.OBJECT_VALUE,'//articles

[articlesTuple/@textValue2="51"and
articlesTuple/@textValue2="52"]')= 1;

Query 17:
SELECT xtab.COLUMN_VALUE "TEXTVALUE1"
FROM SIGMOD, XMLTABLE

('for $a in //articles
 where $a/articlesTuple/@textValue2="51"
 and $a/articlesTuple/@textValue2="52"
 return $a/@textValue1'
 PASSING OBJECT_VALUE)xtab;

Query 18:
SELECT XMLQuery

('for $a in //articles
 return $a/@textValue1'
 PASSING OBJECT_VALUE
 RETURNING CONTENT)"TEXTVALUE1"

2070 Pardede E., Rahayu J.W., Aujla R., Taniar D.: SQL/XML Hierarchical Query ...

FROM SIGMOD
WHERE existsNode(s.OBJECT_VALUE,'//

articles[articlesTuple/@textValue2="51"and
articlesTuple/@textValue2="52"]')= 1;

Query 19:
SELECT extract(s.OBJECT_VALUE,

'/SigmodRecord/*//articles/@textValue1') "TEXTVALUE1"
FROM SIGMOD s
WHERE existsNode(s.OBJECT_VALUE,'/SigmodRecord/*//

articles[articlesTuple/@textValue2="51" and
articlesTuple/@textValue2="52"]')= 1;

Ancestor Element(s) Queries Experimentation. “Retrieve Ancestor Element when
the selection is on Descendant Element.”

The query for this problem can be categorized into nine, based on different
combinations of projections and selections in the hierarchy [Pardede, 2008b]. For our
case study, figure 6 (denoted with F) represents the selection predicate at the bottom-
most descendant element and the projection predicate presents in one level down to
the middle level of hierarchy category. In this case, we “ retrieve textValue2 attribute
while the selection predicate is AuthorPosition attribute“.

The following list shows possible query structures for this category. Like in Parent
Element(s) Query, there are four ways to writes this query, using XPath attribute
Query, XMLTABLE attribute XQuery and XMLQuery attribute XQuery.

Query 20:
SELECT extract(s.OBJECT_VALUE, '//articlesTuple')

"ARTICLESTUPLE"
FROM SIGMOD s
WHERE existsNode(s.OBJECT_VALUE,'//articlesTuple

[(.//@AuthorPosition="67" and
//@AuthorPosition="89") or
.//@AuthorPosition="100"]')= 1;

Query 21:
SELECT xtab.COLUMN_VALUE "ARTICLESTUPLE"
FROM SIGMOD, XMLTABLE

('for $a in //articlesTuple
 where (($a/authors/author/@AuthorPosition = "67"
 and $a/authors/author/@AuthorPosition = "89")
 or $a/authors/author/@AuthorPosition = "100")
 return $a'PASSING OBJECT_VALUE) xtab;

Query 22:
SELECT XMLQuery

('for $a in //articlesTuple
 return $a'
 PASSING OBJECT_VALUE
 RETURNING CONTENT) "ARTICLESTUPLE"

FROM SIGMOD s
WHERE existsNode(s.OBJECT_VALUE,'//

articlesTuple[(.//@AuthorPosition="67" and

2071Pardede E., Rahayu J.W., Aujla R., Taniar D.: SQL/XML Hierarchical Query ...

.//@AuthorPosition="89") or

.//@AuthorPosition="100"]')= 1;

Query 23:
SELECT extract(s.OBJECT_VALUE,

'/SigmodRecord/*//articlesTuple') "ARTICLESTUPLE"
FROM SIGMOD s
WHERE existsNode(s.OBJECT_VALUE,'/SigmodRecord/*//

articlesTuple[(.//@AuthorPosition="67" and
.//@AuthorPosition="89") or
.//@AuthorPosition="100"]')= 1;

Ancestor Attribute Queries Experimentation. “Retrieve Attribute associated with
Ancestor Element when the selection is on Descendant Element.”

The query for this problem can be categorized into nine, based on different
combinations of projections and selections in the hierarchy [Pardede, 2008b]. For our
case study, figure 6 (denoted with G) represents the selection predicate at the bottom-
most descendant attribute and the projection predicate presents at top level of the
hierarchy category. In this case, we “retrieve issuesTuple attribute while the selection
predicate is title element“. We show the possible queries on the list below.

Query 24:
SELECT extract(s.OBJECT_VALUE, '//issuesTuple/@textValue')

"TEXTVALUE"
FROM SIGMOD s
WHERE existsNode(s.OBJECT_VALUE,'//issuesTuple

[.//title="XML QUERIES" and
.//title="Interim Report: ANSI/X3/SPARC Study Group on

Data Base Management Systems 75-02-08."]')= 1;

Query 25:
SELECT xtab.COLUMN_VALUE "TEXTVALUE"
FROM SIGMOD, XMLTABLE

('for $a in //issuesTuple
 where $a//articlesTuple/title = "XML QUERIES"
 and $a//articlesTuple/title = "Interim Report:

ANSI/X3/SPARC Study Group on Data Base Management
Systems 75-02-08."

 return $a/@textValue'PASSING OBJECT_VALUE) xtab;

Query 26:
SELECT XMLQuery

('for $a in //issuesTuple
 return $a/@textValue'
 PASSING OBJECT_VALUE
 RETURNING CONTENT) "TEXTVALUE"

FROM SIGMOD s
WHERE existsNode(s.OBJECT_VALUE,'//

issuesTuple[.//title="XML QUERIES" and
.//title="Interim Report: ANSI/X3/SPARC Study Group on

Data Base Management Systems 75-02-08."]')= 1;

2072 Pardede E., Rahayu J.W., Aujla R., Taniar D.: SQL/XML Hierarchical Query ...

Query 27:
SELECT extract(s.OBJECT_VALUE,

'/SigmodRecord/*//issuesTuple/@textValue') "TEXTVALUE"
FROM SIGMOD s
WHERE

existsNode(s.OBJECT_VALUE,'/SigmodRecord/*//issuesTuple
[.//title= "XML QUERIES" and
.//title="Interim Report: ANSI/X3/SPARC Study Group on

Data Base Management Systems 75-02-08."]')= 1;

5.3 Experimental Results

While in out experiment, we run all queries in possible categories for each query
classification, in this section we show the results in seven categories.

Each of the categories can be written in different ways shown in the previous
section. The analysis of the Execution Plan of C/D Queries is explained below:

• Type of operation. All the execution plans consist of full table access. Execution

plan for queries 4, 7 and 11 (in C/D queries) and queries 15, 19, 23 and 27 (in
Parent and Ancestor queries) are a subset of all other queries

• Number of Steps. The execution plan of queries 4, 7 and 11 (in C/D queries)and
queries 15, 19, 23 and 27 (in Parent and Ancestor queries) involve only one step,
fewer than for any other execution plan

• Number of rows. In queries 4, 7 and 11 (in C/D queries) and queries 15, 19, 23
and 27 (in Parent and Ancestor queries), only one row is being accessed and
retrieved in the execution plan. It is less when compared with execution plans of
other queries. The execution plan of these three queries involves full table access,
whereas in others, several steps had to be performed in order to obtain the
required output.

From the analysis of the execution plan, it can be concluded that the execution

plan for queries 4, 7 and 11 (in C/D queries) and queries 15, 19, 23 and 27 (in Parent
and Ancestor queries) are the most cost effective for its respective query type and
category. A comparative analysis of total elapsed time using TKPROF, Total CPU
time and total elapsed time using DBMS timing property is graphically represented in
figures 7 and 8. We can see how these queries incur the smallest cost for each
respected category in each comparative term.

2073Pardede E., Rahayu J.W., Aujla R., Taniar D.: SQL/XML Hierarchical Query ...

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Elapsed Time

CPU Time

Total Time Comparison using TKPROF

Parent

Element

Ancestor

Element Query

Parent

Attribute Query

Ancestor Attribute

Query

Ti
m

e
(m

se
c)

Query

Subtree

C/D Query

Text Node

C/D Query
Attribute

C/D

Figure 7: TKPROF Total Time Comparison

0.0

20.0

40.0

60.0

80.0

100.0

120.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Total Elapsed Time Comparison using Timing Facility

Parent

Element

Query

Ancestor

Element

Query

Parent

Attribute

Query

Ancestor

Attribute

Query

Ti
m

e
(m

se
c)

Query

Subtree C/D

Query

Text Node

C/D Query

Attribute

C/D Query

Figure 8: Timing Facility Total Elapsed Time Comparison

Based on the performance experimentations, we can derive some analysis for
writing SQL/XML Query in XED.

• From the graphs, we can see XQuery written in terms of XPath Expressions using

extract SQL function is more cost effective than XQuery written in terms of
FLOWR Expressions using XMLTABLE and XMLQuery SQL Functions. XPath
extract query yields good performance even when the selection is at bottom of
hierarchy

• In various query types, having the selection predicate at the top level of the
hierarchy performs better than having the predicate at the bottom. The
performance for the queries having selection at top or bottom can be performed
by writing the path //element as /root_node_element/*//element in both selection
and projection

• For all of the queries and different categories, XPath extract query performed
better when path in the selection and projection predicates are written as

2074 Pardede E., Rahayu J.W., Aujla R., Taniar D.: SQL/XML Hierarchical Query ...

/root_node_element/*//projected_or_selected_element. The performance of the
XMLTABLE XQuery and XMLQuery XQuery can also be improved by writing
the path as the same way.

6 Conclusion and Future Work

While many popular Relational Database Systems have enabled the storage of XML
documents and its management using SQL/XML queries, very few database users
aware that difference query structure performs significantly different. SQL/XML
supports various structures to perform similar operations. The main structures are
queries using (i) XPath extract query, (ii) XMLTABLE XQuery, (iii) XMLQuery
XQuery and (iv) XPath XMLSequence query.

In this paper we experiments the performance of these queries with the aim of
finding most optimized query structure for any particular query operations. We
applied these queries for two main classifications based on selection and projection
predicates, namely child/descendant queries and parent/ancestor queries.

We analysed the performance of each query by using the statistics generated by
the database. The most optimized query structure was identified in terms of cost
associated with the execution of the query.

For the future work, a benchmark study of different XED can also be performed
to help database users determine the storage option for their XML data. In addition,
the same classification can be used to analyse the most optimised query structure for
Native XML Database using XQuery or other proprietary query languages.

Another area that we can embark is the development of query rewriting tool,
which performs automatic rewriting of a query structure into the most optimum
structures possible.

References

[Bruno, 2002] Bruno, N., Koudas, N., Srivastava, D., Holistic twig joins: optimal
XML pattern matching. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD’02). ACM Press. 263-274. (2002).

[De Meo, 2004] De Meo, P., Terracina, G., Ursino, D., X-Global: a System for the
"Almost Automatic" and Semantic Integration of XML Sources at Various Flexibility
Levels. In Journal of Universal Computer Science 10(9). 1065-1109. (2004).

[Florescu, 1999] Florescu, D., Kossmann, D., Storing and Querying XML Data using
an RDMBS. In IEEE Data Engineering Bulletin 22(3). IEEE-CS. 27-34. (1999).

[Grinev, 2005] Grinev, M., Pleshachkov, P., Rewriting-based Optimization for
XQuery Transformational Queries. In Proceedings of The International Database
Engineering & Applications Symposium (IDEAS’05). IEEE-CS. 163-174. (2005).

[ISO/IEC, 2003] Information Technology – Database Languages – SQL – Part 14:
XML-Related Specifications (SQL/XML). ISO/IEC 9075-14 (2003).

2075Pardede E., Rahayu J.W., Aujla R., Taniar D.: SQL/XML Hierarchical Query ...

[Jagadish, 2004] Jagadish, H.V., Lakshmanan, L.V.S., Scannapieco, M., Srivastava,
D., Wiwatwattana, N.,. Colorful XML: One Hierarchy Isn't Enough. In Proceedings
of the ACM SIGMOD International Conference on Management of Data
(SIGMOD’04). ACM Press. 251-262. (2004).

[Lapis, 05] Lapis, G., XML and Relational Storage-Are they mutually exclusive. IBM
Corporation. (2005).

[Le, 2007] Le, D.X.T., Bressan, S., Taniar, D., Rahayu, J.W., Semantic XPath Query
Transformation: Opportunities and Performance. In Proceedings of The International
Conference on Database Systems for Advanced Applications (DASFAA’07). Springer.
994-1000. (2007).

[Le, 2009] Le, D.X.T, Pardede, E., On Using Semantic Transformation Algorithms
for XML Safe-Update. In Proceedings of the 8th International Conference on
Information Systems Technology and its Applications (ISTA’09), Springer, 367-378.
(2009).

[Oracle, 2007] Oracle, Introduction to Oracle XML DB. Oracle XML DB
Developer’s Guide, 10g Release 2. Available at http://download-
west.oracle.com/docs/cd/B19306_01/appdev.102 /b14259/xdb01int.htm#i1047170.
(2007).

[Pardede, 2004] Pardede, P, Rahayu, J.W., Taniar, D., On using collection for
aggregation and association relationships in XML object-relational storage. In
Proceedings of the 2004 ACM Symposium on Applied Computing (SAC), ACM Press,
703-710. (2004).

[Pardede, 2007] Pardede, E., Rahayu, J.W., Taniar, D., and Aujla, R.K., "Performance
Analysis of Child/Descendant Queries in an XML-Enabled Database". In Proceedings
of the International Conference on Computational Science and its Applications
(ICCSA’07), Springer, 749-762. (2007)

[Pardede, 2008a] Pardede, E., Rahayu, J.W., and Taniar, D., "XML Update
Management in XML-Enabled Relational Database". In Journal of Computer and
System Sciences, 74(2), Elsevier Science, 170-195.(2008).

[Pardede, 2008b] Pardede, E., Rahayu, J.W., Taniar, D., and Aujla, R.K., "SQL/XML
Performance Analysis of Parent/Ancestor Queries". In Proceedings of the
International Conference on Computational Science and its Applications (ICCSA’08),
Springer, 1258-1273. (2008)

[Shanmugasundaram, 1999] Shanmugasundaram, J., Tufte, K., Zhang, C. He, G.,
DeWitt, D.J., Naughton, J.F., Relational Databases for Querying XML Documents:
Limitations and Opportunities. In Proceedings of International Conference on Very
Large Databases (VLDB), Morgan-Kauffman. 302-314 (1999)

[Srivastavas, 2002] Srivastava, P.G., Performance Evaluation Tools on Oracle,
Department of Computer Science and Computer Engineering, La Trobe University.
(2002).

2076 Pardede E., Rahayu J.W., Aujla R., Taniar D.: SQL/XML Hierarchical Query ...

[Sun, 2006] Sun, W., Liu, D., Using Ontologies for Semantic Query Optimization of
XML Databases. In Proceedings of the First International Workshop on Knowledge
Discovery from XML Documents (KDXD’06), Springer, 64-73. (2006).

[W3C, 2007] World Wide Web Consortium, XQuery 1.0: An XML Query Language,
W3C Recommendation 23 January 2007, available from:
http://www.w3.org/TR/xquery/.

[Wang, 2003] Wang, G., Liu, M., Yu, J.X., Sun, B., Yu, G., Lv, J., Lu, H., Effective
schema-based XML query optimization techniques. In Proceedings of The
International Database Engineering & Applications Symposium (IDEAS’03). IEEE-
CS. 230-235. (2003).

[Wang, 2005] Wang, L., Wang, S. Murphy, B., Rundensteiner, E., Order-sensitive
XML Query Processing over Relational Sources: An Algebraic Approach. In
Proceedings of The International Database Engineering & Applications Symposium
(IDEAS’05). IEEE-CS. 175-184. (2005).

[Zhang, 2001] Zhang, C., Naughton, J., Dewitt, D., Luo., Q., Lohman, G., OHMAN.
On Supporting Containment Queries in Relational Database Management Systems. In
Proceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD’01). ACM Press. 425-436. (2001).

[Zhang, 2002] Zhang, X., Pielech, B., Rundesnteiner, E., Honey, I Shrunk the
XQuery! — An XML Algebra Optimization Approach. In ACM International
Workshop on Web Information and Data Management (WIDM’02). ACM Press. 15-
22. (2002).

2077Pardede E., Rahayu J.W., Aujla R., Taniar D.: SQL/XML Hierarchical Query ...

