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Abstract: Transaction management is an essential component of database manage-
ment systems. It enables multiple users to access the database concurrently while pre-
serving transactional properties such as atomicity, consistency, isolation, and durability.

In this paper, we propose a formal framework specification for transaction processing.
Our work can be seen as an extension of previous work by Gurevich et al. who have
presented a formalism for general database recovery processing. Based on this formal-
ism, we incorporate additional mechanisms that remove several explicit constraints,
support normal transaction processing, and, most importantly, apply the approach to
more advanced recovery mechanisms.
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1 Introduction

Transaction management is an essential component of any database management
system (DBMS). It enables multiple users to access the database (DB) concur-
rently. Considering that nowadays database systems (DBSs) commonly support
the processing of thousands of transactions each second, transaction throughput
is one of the key characteristics of such systems. Besides throughput, data con-
sistency, data availability and, thus, the ability to deal with failures are other
key properties.

In transactional environments, the ACID principles are often considered as
a vital set of properties that have to be preserved. In a transaction management
system, the transaction manager and the recovery manager together typically
ensure these properties. While the former is mainly concerned with normal pro-
cessing, the latter takes over in the case of a system failure. During normal
processing, concurrency control protocols are utilised to ensure the isolation
and consistency properties of transactions and the data accessed. Durability is
commonly ensured with the help of logging techniques. Rollback and recovery
processing are concerned with the fourth property, i.e. atomicity, but also help
with ensuring isolation, consistency, and durability along the way.

In a typical DBS, approaches such as two-phase locking, write-ahead log-
ging, redo and undo-based crash recovery are commonly deployed. The redo and
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undo-based ARIES (Algorithm for Recovery and Isolation Exploiting Seman-
tics) recovery algorithm [Mohan et al., 1992] has had a significant impact on the
current thinking of database transaction logging and recovery. The popularity
and significance of this algorithm goes well beyond the DBS domain. While there
have been several variants and adaptations of the ARIES approach, we are par-
ticularly interested in its concurrent incarnation C-ARIES [Speer and Kirchberg,
2007]. The C-ARIES algorithms extends the original ARIES algorithm with the
capability to perform transaction aborts during normal processing and crash
recovery in a highly concurrent manner. In addition, the database system can
be returned to normal processing at the end of the Analysis phase, rather than
waiting for the recovery process to complete.

In this paper, we will revisit the above mentioned properties as well as com-
mon transactional approaches. It is our aim to propose a formal framework speci-
fication for transaction processing. Our work can be considered as a continuation
of that by [Gurevich et al., 1997] (a formalisation of database recovery) and, to
some extent, [Kirchberg et al., 2008] (a formalisation of multi-level transaction
management). We will further refine previously proposed specifications and dis-
cuss additional support for two-phase locking, the ARIES recovery algorithm,
and ARIES’ concurrent counterpart C-ARIES.

This paper is organised as follows: Section 2 provides a brief introduction to
Abstract State Machines (ASMs) (formerly known as Evolving Algebras), which
provide a formal method for specification and verification. Subsequently, an ASM
ground model for transaction processing is presented in Section 3. Based on
this ground model, we discuss three refinement steps for normal transaction
processing (in Section 4) as well as for recovery processing (in Section 5). Finally,
Section 6 concludes our work.

2 A Brief Introduction to Abstract State Machines

In this section, we briefly introduce basic ASM definitions, which are mainly
based upon [Börger and Stark, 2003; Börger, 2003a; Börger, 2003b].

An Abstract State Machine (ASM) is a finite set of transition rules of the
form:

– if Condition then Updates fi (i.e. conditional transition);

– forall x with Properties do Rule done (i.e. synchronous parallelism); and

– choose x with Properties do Rule done (i.e. non-determinism),

which transform abstract states. The Condition is an arbitrary predicate
logic formula without free variables, whose interpretation evaluates to true or
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false. Updates is a finite set of assignments of the form f(t1, . . . , tn) := t whose
execution is to be understood as changing or defining in parallel the value of the
occurring functions f at the indicated arguments to the indicated value. Proper-
ties is a Boolean-valued expression that determines which x is / are applicable.
Rule is a rule. Typically, x will have some free occurrences in Rule which are
bound by the respective quantifier.

The notion of ASM states is the classical notion of mathematical structures
where data come as abstract objects, which are equipped with basic operations
and predicates. For the evaluation of terms and formulae in an ASM state, the
standard interpretation of function symbols by the corresponding functions in
that state is used.

The notion of ASM run is an instance of the classical notion of computation
of transition systems. An ASM computation step in a given state consists in
executing simultaneously all updates of all transition rules whose condition is
true in the state, if these updates are consistent, in which case the result of their
execution yields the next state. In the case of inconsistency, the computation
does not yield a next state – a situation which typically is reported by executing
engines with an error message. A set of updates is called consistent if it contains
no pair of updates with the same location. An ASM step is performed as an
atomic action with no side effects. Simultaneous execution provides a means to
locally describe a global state change, namely as obtained in one step through
executing a set of updates.

In addition, common notations like where, let, if-then-else-fi, case are
used without further explanation since they are easily reducible to the above
basic definitions.

For purposes of separation of concerns it is often convenient to impose for a
given ASM additional constraints on its runs to circumscribe those one wants to
consider as legal . Logically speaking, this means to restrict the class of models
satisfying the given specification.

In an ASM, there are no restrictions neither on the abstraction level nor on
the complexity nor on the means of definition of the functions used to compute
the arguments and the new value. In support of the principles of separation
of concerns, information hiding, data abstraction, modularization and stepwise
refinement, the ASM method exploits the following distinctions, which reflect
the different roles these functions (and, more generally, locations) can assume in
a given machine. The major distinction for a given ASM M is between its static
functions, which never change during any run of M , and dynamic functions,
which may change as a consequence of updates by M or by the environment.
By definition, static functions can be thought of as being given by the initial
state, so that where appropriate, handling them can be clearly separated from
the description of the system dynamics. Dynamic functions can be thought of
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as a generalization of array variables or hash tables. The dynamic functions are
further divided into four subclasses: Controlled functions (which are directly
updatable by and only by the rules of M), monitored functions (which are read
but not updated by M and directly updatable only by the environment), shared
functions (which are directly updatable by rules of M and by the environment
and can be read by both), and out functions (which are updated but not read
by M and are monitored, i.e. read but not updated, by the environment).

3 ASM Ground Model for Transaction Processing

Based on [Gurevich et al., 1997; Kirchberg et al., 2008], first, we will define an
ASM ground model for transaction processing. We consider a database (DB) as
a set of locations, each carrying a value. The database is managed by a DBMS,
which supports concurrent access by means of transactions. The DBMS contains
a transaction management system (TMS) component that oversees the possibly
concurrent execution of multiple transactions. The TMS mainly consists of two
components: The transaction manager (TM), which controls normal processing,
and the recovery manager (RM), which intervenes in the event of a failure. Both
components together, however, ensure that the database remains in a consistent
state and that transactional properties (i.e. the ACID principles) are preserved.

From a very general perspective, a transaction can be viewed as a sequence
of operations, which can be classified as read and write-type operations, each
accessing a single DB location. A transaction is considered complete if it contains
an abort (i.e. failure triggering the rollback of all actions associated with this
transaction) or a commit (i.e. success signalling that all of the transaction’s
effects will be preserved) as its final operation. Once an operation has been issued
to the TMS, the corresponding transaction remains active until it has either
been committed or aborted successfully. In the event of concurrent processing,
a transaction’s commit cannot be guaranteed – a transaction may be aborted
and restarted for a variety of reasons – the TMS is responsible for ensuring that
a transaction’s abort always succeeds (i.e. effects of uncommitted transactions
can always be undone).

A DB location may refer to persistent (i.e. stable1) storage only, volatile
storage only or both at the same time. In the latter case, the location’s value can
either be the same or different. If a location’s values differ between its stable and
volatile versions, the value on volatile storage is considered more recent. We refer
to the set of most recent values (over volatile and stable storage) as the current
database, and to the set of values in stable storage as the stable database. While
the cache manager moves data between volatile and stable storage implicitly, it
1 Analogous to [Gurevich et al., 1997], we restrict our considerations to recovery from

system failures only. Thus, persistent storage is assumed to be stable.
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is the task of the TMS to ensure that no effects of committed transactions are
lost even in the event of a system failure (that is, the durability property of the
ACID principles must be ensured). As a result, the TMS will flush the values of
all those DB locations that have been updated during the course of a transaction
to stable storage before the respective transaction may succeed (i.e. commit).

In the event of a system failure, all values on volatile storage may be lost
leaving the current as well as stable databases in a possibly inconsistent state.
A stable database may be in an inconsistent state if and only if the effect of
a write operation issued by a transaction that was still active at the time of
the failure had already been reflected to stable storage. As a result, we require a
third database notion: A committed database2 is the set of last committed values
over all locations in stable and volatile storage.

In general terms, we may say that:

– The goal of executing a transaction’s individual operations is to access and
evolve values of locations of the current database as efficiently as possible
while preserving the isolation and consistency properties (i.e. ensuring seri-
alisability) of the ACID principles.

As a consequence, individual operations only access values of locations from
the current database.

– The goal of committing a transaction is to ensure that the effects of all
operations of this transaction are stable. That is, atomicity and durability
properties of the ACID principles are the main concerns.

As a consequence, a transaction’s commit pushes the values of all modified
locations from the current database to the committed database.

– The goal of aborting a transaction is to ensure that none of the effects of a
transaction’s operations remain in the current database. That is, ensuring
atomicity is the main concern.

As a consequence, a transaction’s abort restores the values of all modi-
fied locations in the current database (using the values from the committed
database).

– The goal of recovery is to return the database to its most recent consistent
state3.

2 A committed database is a virtual database, i.e. those values do not necessarily exist
explicitly on stable storage. Depending on a system’s update model, we might have
to rely on shadow pages or log files to recover a location’s (most recently) committed
value. During the refinement process, we will consider one of these options. In [Prinz
and Thalheim, 2003], the three common update models together with their semantics
are discussed in greater detail.

3 It should be noted that some recovery algorithms such as the shadow page algorithm
relax this property. In the event of a failure, the database can only be returned to
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As a consequence, recovery restores the current database based on the com-
mitted database.

Our ground model (refer below) will reflect these observations. First, we
require two nullary functions for the main rule of a TMS. These are: fail? and
mode. While fail? is a monitored nullary function that indicates whether the
system is running (i.e. fail? is defined) or not, mode is a controlled nullary
function that allows the TM and the RM to coordinate their activities. If mode
is undefined the RM is handed over control, otherwise, the TM oversees normal
processing.

MAIN: if fail? = undef then
FAIL

else
FLUSH
if mode �= undef then
TM_MAIN

else
RM_MAIN

fi
fi

TMS’s main rule contains four sub-rules: FAIL, FLUSH, TM MAIN, and RM MAIN.
The former two sub-rules are concerned with moving values of DB locations
between volatile storage and stable storage. The FLUSH rule utilises a monitored
unary function flush? (controlled by the CM) to determine which locations have
to be made persistent. The FAIL rule re-initialises the entire volatile storage after
a failure has been encountered and then forces the TMS into recovery mode.

Before considering these rules, we introduce four more functions that model
the set of all DB locations as well as the three previously discussed database
types. These functions are the monitored nullary function db locs (i.e. the set
of all DB locations), the controlled unary functions curr db and comm db (i.e.
the current database and the committed database, respectively), and the shared
unary function stable db (i.e. the stable database).

FAIL: forall l with l ∈ db_locs do
curr_db(o) := stable_db(o)

done
mode := undef

FLUSH: forall l with l ∈ db_locs ∧ flush?(l) �= undef do
stable_db(l) := curr_db(l)

done

its last preserved consistent state, which is not necessarily its most recent consistent
state. As a consequence, ACID principles are violated. For the purpose of this paper,
we will restrict ourselves to recovery algorithms that preserve the ACID principles.
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Based on the value of mode, the TMS rule either branches into TM’s main
rule or RM’s main rule. Let us consider the more common case, i.e. normal
processing, first. During normal transaction processing, incoming operations are
read, verified and then executed. In order to do so in a meaningful way, we define
three more nullary functions: new , new op, and next . new is a shared function
that indicates whether or not a new operation is waiting to be processed. If
so, the monitored function next can be utilised to read the operation. In the
event of a previous transaction abort, next could potentially read an operation
of an aborted transaction. The VERIFY sub-rule ensures that such operations
are skipped. The third controlled function new op assists with this task. An
operation is only executed if its corresponding new op function is defined.

TM_MAIN: if new �= undef then
VERIFY(next ) || new := undef
if new_op �= undef then
EXEC(next )

fi
fi

As previously mentioned, the VERIFY sub-rule ensures that only operations
of non-aborted transactions are processed. In order to keep track of the status
of a transaction the shared unary function trans tab is introduced. Its value is
either undefined, Active, Aborted , or Committed . There exists one such entry
for each transaction in the transaction table. Such entries are indexed by means
of a unique transaction identifier, which is obtainable via the monitored nullary
tid function defined on operations.

VERIFY(op ): if trans_tab(op.tid) = undef then
trans_tab(op.tid) := ‘Active’

fi

if trans_tab(op.tid) = ‘Active’ then
new_op := true

else
new_op := undef

fi

Once an operation has been verified, we can execute the particular operation.
As there are different types of operations, we introduce the monitored nullary
function type defined on operations. op.type returns one of the four predefined
operation types as indicated below:

EXEC(op ): if op.type = read then READ(op )
elseif op.type = update then WRITE(op )
elseif op.type = commit then COMMIT(op.tid )
else ABORT(op.tid )
fi
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The execution of a read operation has no effect on the state of the database.
This, of course, is different for the other three types of operations. We already
explained, in general terms, what the goals and consequences of the execution of
these operations are (refer above). In ASM terms, we obtain the following four
rules with two previously unused monitored nullary functions loc (that identifies
the location which an operation affects) and val (that returns the value to be
written by a write-type operation) and a previously unused controlled unary
function w set (that keeps track of all DB locations modified by a particular
transaction):

READ(op ):

WRITE(op ): curr_db(op.loc) := op.val
w_set(op.tid) := w_set(op.tid) ∪ {op.loc}

COMMIT(tid ): forall l with l ∈ db_locs ∧ l ∈ w_set(tid) do
comm_db(l) := curr_db(l)

done
trans_tab(tid) := ‘Committed’

ABORT(tid ): forall l with l ∈ db_locs ∧ l ∈ w_set(tid) do
curr_db(l) := comm_db(l)

done
trans_tab(tid) := ‘Aborted’

The main TM rule together with its six sub-rules define the ground model
of the transaction manager. In Section 4, we will discuss several refinements for
these rules.

A ground model for the RM, on the other hand, is much simpler. In the event
of a failure, recovery is triggered at the end of the FAIL rule. Subsequently, we
have to inspect every DB location and reset its associated value to its most
recent consistent state. This can be achieve as follows:

RM_MAIN: forall l with l ∈ db_locs do
curr_db(l) := comm_db(l)

done
mode := ‘Normal’

Similar to the TM ground model, we will also discuss a number of refinements
for the RM ground model later on in Section 5.

As previously mentioned, the proposed TMS ground model is based on that
by [Gurevich et al., 1997]. Main differences affect the TM’s main rule, in par-
ticular we have proposed a different means of reading incoming operations and
a new means of verifying operations in the TM ground model. Corresponding
changes have been inspired by [Kirchberg et al., 2008]. In addition, [Gurevich
et al., 1997] constraints all runs to be strict, serialisable and recoverable. While
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the same applies to our ground model, we will later see how the TM can be
refined to ensure that only strict, serialisable schedules that are also recoverable
are permitted (without the necessity for any explicit constraints).

Analogous to [Gurevich et al., 1997], it can be shown that the TMS ground
model preserves the atomicity and durability properties of the ACID principles.
Refinements of the TM main rule will later result in also meeting the consistency
and isolation properties and, thus, conflict-serialisability and recoverability.

4 ASM Refinements Part 1: The Transaction Manager

Having proposed a ground model for a DBMS’s transaction management system
component, we will now discuss several refinements of its transaction manager.
Later on, in Section 5, we will detail corresponding refinement steps for the
recovery manager.

4.1 The Strict Two-phase Locking Refinement

As previously mentioned, the TM mainly oversees normal processing and, thus,
ensures serialisability and recoverability in the presence of concurrent transac-
tions. Serialisability, i.e. equivalence to a serial schedule, can be tested efficiently
only by considering the notion of conflicts4. So, we restrict ourselves to conflict-
serialisability, which is a true sub-class of serialisability. Besides ensuring the
correct ordering of competing activities, it is also essential to preserve recover-
ability, i.e. permit the abort of any active transaction in a way that all of its
operations’ effects can be undone. Informally, a schedule is recoverable if each
transaction commits only after the end (i.e. commit or abort) of all transactions
from which it reads.

A fine-grained TM refinement procedure would entail a first refinement for a
general notion of serialisability, followed by a refinement for conflict-serialisability,
followed by one or more refinements for a particular scheduling strategy. In
[Kirchberg et al., 2008], such a fine-grained approach is followed (for a more
complex transaction model). Here, however, we will skip several steps and pro-
pose a refinement for the most commonly used scheduling strategy, i.e. strict
two-phase locking (str-2PL).

str-2PL follows a pessimistic approach towards ensuring conflict-serialisability
and recoverability. Two types of locks are introduced, i.e. shared locks (S-locks)
and exclusive locks (X-locks). While multiple read operations may access the

4 Two operations are said to be in conflict if they belong to different transactions,
access the same object (i.e. DB location), and at least one of the two is a write-type
operation. If we can ensure that the conflict ordering of concurrent transactions is
equivalent to that of a serial schedule over the same transactions, we achieve conflict-
serialisability.
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same DB location concurrently (i.e. sharing access), a write operation must al-
ways be executed in isolation (i.e. requires exclusive access). Thus, a transaction
may be granted:

– A shared lock on a DB location iff there is no other transaction that holds
an exclusive lock on this location; and

– An exclusive lock on a DB location iff there is no other transaction that
holds a shared or an exclusive lock on this location.

However, locks alone are not sufficient to ensure recoverability or conflict-
serialisability. We also require a strategy on how locks must be requested, held
and relinquished. In order to do so, str-2PL defines the following two rules:

1. If a transaction wants to read or update the value of a DB location, it must
obtain a corresponding shared or exclusive lock on the location first.

2. All locks held by a transaction are released only when the transaction com-
mits or aborts (and not before).

We can capture the properties of str-2PL by applying the following refine-
ments:

1. The main rule of the TM is refined by adding a new sub-rule that captures
the first principle, i.e. the aquisition of locks, of the scheduling strategy of
str-2PL:

TM_MAIN: if new �= undef then
VERIFY(next ) || new := undef
if new_op �= undef then
SCHEDULE(next )
EXEC(next )

fi
fi

That is, before executing any arriving operation it is ensured that the opera-
tion’s effects may not lead to a non-serialisable or non-recoverable schedule.

2. The new scheduling rule SCHEDULE first tests for the type of an operation.
If an abort or commit is detected, no additional actions have to be taken
and we exit the scheduling rule. If, however, a read or write-type opera-
tion is encountered, it has to be determined whether or not the respective
transaction has sufficient access privileges (i.e. locks). If a transaction holds
the necessary lock on the affected DB location, execution is initiated. Oth-
erwise, another sub-rule is entered that tries to extend the privileges of the
respective transaction in a way that its execution may continue.
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In order to specify this scheduling rule, we require an additional controlled
ternary function lock table that models a locking table. lock table entries are
of the form (loc, mode, tid), where loc is a DB location, i.e. loc ∈ db locs,
mode is either ‘S’ for shared or ‘X’ for exclusive, and tid is a transac-
tion identifier of a transaction with a valid entry in the transaction table
trans tab. If, for example, (l43, S, t25) ∈ lock table is defined, it means that
DB location l43 is locked in shared mode by a transaction with identifier t25.

SCHEDULE(op ): if op.type = write then
if lock_table(op.loc, ‘X’, op.tid) = undef then
REQU_LOCK(op )

fi
else if op.type = read then
if lock_table(op.loc, ‘S’ ∨ ‘X’, op.tid) = undef then
REQU_LOCK(op )

fi
fi

According to this scheduling rule, only those read and write operations are
passed on to the REQU LOCK sub-rule for which its issuing transaction has
no or not sufficient access privileges. No access privileges means that there
is no lock table entry for the respective DB location held by the issuing
transaction. As a result a new lock has to be requested. Not sufficient means
that there is only a shared lock on the respective DB location held by the
issuing transaction but exclusive access is required. Thus, we have to request
for a lock upgrade5 handing over exclusive access permission to the issuing
transaction.

Requesting a new or upgrading an existing lock has to be done in a way that
conflict-serialisability is preserved6. As such, each DB location should have
only two or more entries in the locking table if and only if:

(a) All entries for this DB location correspond to shared locks; or

(b) All entries for this DB location are held by the same transaction.

If a transaction’s request for access to a DB location cannot be fulfilled, the
transaction will have to either wait until all conflicting locks are released or
abort (i.e. it has to wait or it ‘dies’). Once a waiting transaction has been
woken up, it is not guaranteed that access to the desired DB location will

5 The lock upgrade approach presented in this paper is rather inefficient since we do
not remove the weaker, and thus unnecessary, shared lock entry from the locking
table until the end of the transaction. A further refinement could easily improve our
approach.

6 Note, compatibility of locks is derived from compatibility of their corresponding
operations.
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be granted. It only means that the transaction may compete again to obtain
access.

REQU_LOCK(op ):
forall t with trans_tab(t) �= undef ∧ t �= op.tid do
if op.type = write then
if lock_table(op.loc, ‘S’ ∨ ‘X’, t) �= undef then
WAIT-OR-DIE(op )

else
lock_table := lock_table ∪ {(op.loc, ‘X’, op.tid)}

fi
else
if lock_table(op.loc, ‘X’, t) �= undef then
WAIT-OR-DIE(op )

else
lock_table := lock_table ∪ {(op.loc, ‘S’, op.tid)}

fi
fi

done

WAIT-OR-DIE(op ): wait_until_woken_up_or_timeout_reached
if timeout_reached then
ABORT(op.tid )

else
REQU_LOCK(op )

fi

In the WAIT-OR-DIE rule, we assume a general understanding of concepts
such as waiting, waiting conditions, timeout, etc. This is a basic, powerful
and, also, convenient mechanism supported by the ASM approach.

3. So far, we have modelled only the first part of the str-2PL strategy, i.e. the
acquisition of locks. The second part of str-2PL (which also addresses the
recoverability property) requires further refinements of both the COMMIT rule
and the ABORT rule.

In order to ensure recoverability, str-2PL holds on to all locks until the
outcome of a transaction is certain. Thus, locks must only be released after
the effects of a transaction’s operations have been made durable. That is,
only strict schedules are permitted.

COMMIT(tid ): forall l with l ∈ db_locs ∧ l ∈ w_set(tid) do
comm_db(l) := curr_db(l)

done
trans_tab(tid) := ‘Committed’
forall l, m with lock_tab(l, m, tid) �= undef do
lock_tab := lock_tab − {(l, m, tid)}
WAKE_WAITING_TRANSACTIONS(l )

done
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ABORT(tid ): forall l with l ∈ db_locs ∧ l ∈ w_set(tid) do
curr_db(l) := comm_db(l)

done
trans_tab(tid) := ‘Aborted’
forall l, m with lock_tab(l, m, tid) �= undef do
lock_tab := lock_tab − {(l, m, tid)}
WAKE_WAITING_TRANSACTIONS(l )

done

WAKE_WAITING_TRANSACTIONS(loc ): wake_up_all_transactions_that_wait_
for_a_lock_on_db_location(loc)

Once an abort or a commit has been processed, the above rules ensure that
the respective transaction has no entries remaining in the lock table.

The resulting refined model does no longer require any explicit constraints
on its rules. Instead, the refined rules themselves ensure that strictness, serialis-
ability and recoverability are preserved (during normal processing).

It should be noted that the above rules do not remove entries from the
transaction table. Rather it is assumed that a maintenance routine, which is
executed periodically, takes care of this task (this may also explain the need for
a shared trans tab function).

Now that we have proposed our first set of refinement rules, it remains to
show that the original and the refined rules are equivalent. That is, the refined
rules must behave in the same way as their corresponding original rules [Gurevich
et al., 1997]. Hence, we have to show that:

1. All updates to comm db, curr db, and stable db that occur in the ground
model also occur in the refined model; and

2. Only the updates from the ground model also occur in refined model.

In general, proving the first part is more challenging while the second part
is rather straightforward but tedious.

Proposition 1. The TM ground model and the first TM refinement are equiva-
lent.

Sketch of Proof. The first refinement corresponds to a pure extension. In par-
ticular, support for scheduling has been added that removes explicit constraints
placed on TMS rules. So, in order to proof the proposition, it suffices to show that
str-2PL has been modelled correctly as str-2PL is known to ensure serialisability,
recovery and strictness.
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4.2 The Caching and ARIES-Logging Refinement

Having refined the ground model and removed all associated explicit constraints,
next, we will focus on adding support for caching and logging. While this has
also been discussed in [Gurevich et al., 1997]7, again, we aim at omitting explicit
constraints as far as possible and, we will also discuss a logging approach that
forms the basis of a very sophisticated recovery algorithm.

The TMS ground model as well as the first TM refinement considered the
current and the committed databases in an abstract manner. In fact, neither
of the two exists explicitly in a DBS. In this second refinement, we will address
these short-comings. We will model the current database as a combination of DB
locations held on stable storage and locations maintained in main memory (i.e.
volatile storage)8. Before being able to execute a read or a write-type operation,
it must be ensured that the affected DB location is available in main memory.
Thus, a means of caching is introduced. In addition, modern DBMSs never di-
rectly migrate updated DB locations from volatile storage to stable storage at the
time of a transaction’s commit (however, the durability property requires that
all of the transaction’s effects must be preserved). Instead, a means of logging is
utilised that preserves the durability property while enhancing performance.

This refinement also forms the ground works for modelling recovery (refer to
Section 5) in a more realistic fashion.

Similar to [Gurevich et al., 1997], we will support a very general and non-
restrictive approach to caching. In fact, no-force9 and steal10 caching properties
[Gray and Reuter, 1992] are guaranteed. While this seems to have a heavy im-
pact on the recovery procedure, it is the state-of-the-art in today’s DBS domain.
For logging, we will follow the widely adopted Write-Ahead Logging (WAL) ap-
proach, which requires updates to be reflected to stable storage before values
7 The caching and logging refinement presented in [Gurevich et al., 1997] only places

one restriction on the CM’s flush policy: Cached DB locations must be fixed before
and unfixed after their respective values are being read or written. That is, a fix-
use-unfix (also known as pin-use-unpin) protocol [Gray and Reuter, 1992] must be
adopted. We will follow the same approach. However, [Gurevich et al., 1997] places
two additional constraints on TM rules: 1) Log records must exist on stable storage
for all committed writes; and 2) There must not exist any DB location for which
there is no entry in the log file. Similar to our first refinement, the second refinement
proposed in the section will not require any such constraints but include rules that
enforce them implicitly.

8 curr db := {l | l ∈ db locs ∧ cache(l) = undef} ∪ {l | cache(l) �= undef}.
9 No-force means that it is left up to the CM to decide about the point in time at

which a DB location is removed from the cache. That is, at commit time it is not
guaranteed that updated DB locations are reflected to stable storage.

10 Steal means that the CM may decide to remove an updated location from the cache
(and, thus, result in an update of the location’s incarnation on stable storage) even
though the TMS has not yet determined whether the transaction that updated the
location’s value will commit. As a result, the recovery process must be able to detect
uncommitted updates on stable storage and have the capability to return the values
of these DB locations into their most recent consistent state in the event of a failure
(or transaction abort).
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of the affected DB locations are propagated to stable storage. Hence, the log
on stable storage can be utilised in order to decide whether or not a given DB
location holds a value in a committed or uncommitted state. Even more, the
WAL-based ARIES recovery algorithm [Mohan et al., 1992] has not only been
designed to work with a no-force, steal caching approach but also ensures that
any uncommitted DB location can be returned into its most recent commit-
ted state during normal or recovery processing. Besides the WAL principle, the
ARIES algorithm also adopts the following two additional principles:

– Repeating history during Redo: When recovering from a failure, ARIES re-
traces the actions of a DBMS before the failure and brings the DB back to
the exact state that it was in before the failure. Subsequently, it undoes the
effects of transactions that have been active at the time of the failure.

– Logging changes during Undo: Updates performed while undoing effects of
active transactions are logged. This is done to ensure that, in the event of
another failure, the same effect is not undone twice but exactly once.

In this section, however, we mainly focus on the WAL principle. Later on in
Section 5, the remaining ARIES principles are modelled.

In order to capture caching and logging, we require several additional func-
tions. First, let us introduce a shared unary function cache that corresponds to
the set of all cached DB locations. Initially, cache(l) is set to undef for each
location l ∈ db locs. If cache(l) = undef holds, it means that l ’s current version
is the same as its stable version. Otherwise, i.e. cache(l) �= undef, l ’s current
version resides in volatile storage and may be different from its stable version in
stable db. In the event of a failure, we have to re-initialise the state of all cached
DB locations and trigger recovery.

FAIL: forall l with l ∈ db_locs do
cache(l) := undef

done
mode := undef

Secondly, we model the log as two controlled functions log and log tail . The
former corresponds to the log on stable storage while the latter is its in-memory
counterpart. During normal and recovery processing, log records are appended
to the log tail , which is moved (i.e. appended to log and then re-initialised)
periodically to the log on stable storage.

Thirdly, we have to support cache replacement. That is, in the event that
there is no in-memory space left to hold a required DB location that currently
does not reside in the cache, at least one of the cached locations has to be ejected
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from main memory. Since this decision is made by the CM11, we only monitor
a unary function cache replace? defined over cached DB locations. In order to
capture the properties of WAL, we have to refine the FLUSH rule as well as the
EXEC rule:

FLUSH: forall l with cache(l) �= undef ∧ flush?(l) �= undef do
if l ∈ log_tail then
FLUSH_LOGTAIL

fi
stable_db(l) := cache(l)
if cache_replace?(l) �= undef then
cache(l) := undef

fi
done

FLUSH_LOGTAIL: log := log ∪ log_tail
log_tail := undef

It should be noted that the log tail is reflected to stable storage only if we
encounter a steal, i.e. are instructed to reflect uncommitted effects to stable
storage.

Before we discuss the refinement of the EXEC rule, we will have to introduce
ARIES’s logging approach in greater detail. ARIES maintains log entries for all
updates. It uses a log sequence number (LSN) that is stored with each DB loca-
tion to correlate the location’s state with its logged updates. Thus, by examining
a DB location’s LSN (called the PageLSN ) it can be determined easily which
logged updates are reflected in a DB location’s value. As previously mentioned,
this is critical in particular while repeating history (since each update must only
be applied once and only once). Updates performed during normal (or, to be
more precise, forward) processing are described by Update Log Records (ULRs).
However, logging is not restricted to forward processing. Instead, ARIES also
logs, using Compensation Log Records (CLRs), updates (i.e. compensations of
updates of aborted transactions) performed during partial or total transaction
rollbacks. By appropriate chaining of CLR log records to log records written
during forward processing, a bounded amount of logging is ensured during roll-
backs, even in the event of repeated failures during crash recovery. This chaining
is achieved by: 1) Assigning LSNs in ascending sequence; and 2) Adding a pointer
(called the PrevLSN ) to the most recent preceding log record written by the same
transaction to each log record. When the undo of a log record causes a CLR log
record to be written, a pointer (called the UndoNextLSN ) to the predecessor of
the log record being undone is added to the CLR log record. The UndoNextLSN
field keeps track of the progress of a rollback. It tells the system from where
11 The CM employs a single or a pool of cache replacement policies that decide about

the location or locations, which should be replaced from main memory.
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to continue the rollback of the transaction, if a system failure were to interrupt
the completion of the rollback. Later on, in Section 5, we will see how these log
records are utilised to perform crash recovery in an efficient way that preserves
serialisability, recoverability and, thus, the ACID principles.

As a consequence of utilising the ARIES algorithm, the ‘virtual’ comm db is
replaced by a mixture of undo and redo actions, which are based on log entries.
These undo and redo actions are applied to DB locations residing on stable
storage or in the cache (depending on the state of the DBS).

Based on the ARIES algorithm, log records are of the following format:

– All log records have four fields in common. These are:

• A monotonically increasing log sequence number;

• The log record’s type, which is either ‘ULR’ , ‘CLR’ , ‘CommitLR’ ,
‘AbortLR’ , or ‘EndLR;

• The identifier of the transaction (i.e. tid) that issued the described op-
eration; and

• PrevLSN, a reference to the LSN of the preceding log record written
by the same transaction (i.e. providing a backward chaining of all log
records written by a transaction).

Log records of type ‘CommitLR’ , ‘AbortLR’ or ‘EndLR’ only consist of these
four fields;

– CLR and ULR log records have a reference to the updated DB location (i.e.
PageID) as their fifth field;

– CLR log records also contain a reference to the LSN of the ULR log record
(written by the same transaction) that has to be undone next (i.e. Un-
doNextLSN);

– As their last field(s), CLR and ULR log records contain a description of
the data that is required to redo and / or undo the effects of the update de-
scribed by the log record. While ULR log records include both redo and undo
information, CLR log records only require the redo information (since they
already describe the effects of an undo action, which, in turn, is not permit-
ted to be aborted or undone. Instead, the recoverability property guarantees
that an abort or undo always succeeds).

In order to compose ARIES-style log records, we require one additional func-
tion and one refined function. Firstly, we introduce a new controlled nullary func-
tion lsn that holds the value of the most recently assigned log sequence number.
The value of lsn is initialised to 0. Secondly, we must be able to keep track of
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the LSN of the most recent log record for each transaction. A refinement of the
trans tab function is sufficient to capture this information. We extend the previ-
ously shared unary function trans tab to a shared ternary function trans tab(tid,
status, last lsn) with the following properties:

– trans tab entries remain indexed on the monitored nullary tid function de-
fined on operations;

– The value previously associated with a trans tab(op.tid) entry becomes its
associated status that is accessible as trans tab(op.tid).status; and

– The last lsn field holds an LSN value describing the most recent log record
written by this transaction. It is accessible via trans tab(op.tid).last lsn.

Before we will refine the EXEC rule to reflect those changes and general ARIES
requirements, we introduce two new rules that will be utilised to append log
records to the log tail and read from the log , respectively.

WRITE_LOGRECORD(type, tid, op, undo_next_lsn, img_old, img_new ):
lsn := lsn + 1
if type = ‘ULR’ then
let data := generate_logical_or_physical_log_data(type, op,
img_old, img_new)

let r := (lsn, type, tid, trans_tab(tid).last_lsn,
cache(op.loc).page_id, data)

cache(op.loc).page_lsn := lsn
else if type = ‘CLR’ then
let data := generate_logical_or_physical_log_data(type, op,
img_old, img_new)

let r := (lsn, type, tid, trans_tab(tid).last_lsn,
cache(op.loc).page_id, undo_next_lsn, data)

cache(op.loc).page_lsn := lsn
else if type = ‘CommitLR’ then
let r := (lsn, type, tid, trans_tab(tid).last_lsn)

else if type = ‘AbortLR’ then
let r := (lsn, type, tid, trans_tab(tid).last_lsn)

else if type = ‘EndLR’ then
let r := (lsn, type, tid, trans_tab(tid).last_lsn)

fi

if log_tail = undef
log_tail := r

else
log_tail := log_tail ⊕ r

fi

trans_tab(tid).last_lsn := lsn

READ_LOG: cached_log := log
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The READ LOG rule only reads the log into main memory. Once this has been
accomplished, individual log records may be accessed using the log’s index, i.e.
LSN values. For instance, log.(trans tab(tid).last lsn) returns the most recently
written log record by a transaction with identifier tid .

As a consequence of the refined trans tab definition, we have to propose a
minor refinement of the VERIFY rule. The only change concerns the means of
accessing and setting the value of the status field:

VERIFY(op ): if trans_tab(op.tid) = undef then
trans_tab(op.tid).status := ‘Active’

fi

if trans_tab(op.tid).status = ‘Active’ then
new_op := true

else
new_op := undef

fi

The original ARIES algorithm utilises fuzzy checkpoints to speed up recovery
processing. As a result, it requires a dirty page table to be maintained. This table
keeps track of all those DB locations that have a different value in volatile storage
compared to their stable storage incarnation. In addition, a reference to the
oldest log record that caused this difference (i.e. ‘dirtied’ the cached DB location)
is maintained. For simplicity, we omit checkpointing here. However, it should
be noted that a further refinement supporting checkpointing would require an
additional controlled binary function dpt that captures this information during
normal processing. Without checkpointing, the dirty page table is only required
for recovery processing as we will see in Section 5.

At last, we will propose the necessary refinements of the EXEC rule. While
the rule itself remains unchanged, some of its sub-rules need to be amended in
order to support caching and logging:

READ(op ): RETRIEVE(op.loc )

WRITE(op ): RETRIEVE(op.loc )
WRITE_LOGRECORD(‘ULR’, op.tid, op, undef, cache(op.loc),
op.val )

cache(op.loc) := op.val

RETRIEVE(l ): if cache(l) = undef then
cache(l) := stable_db(l)

fi

COMMIT(tid ): WRITE_LOGRECORD(‘CommitLR’, tid, undef, undef, undef, undef)
FLUSH_LOGTAIL
trans_tab(tid).status := ‘Committed’
forall l, m with lock_tab(l, m, tid) �= undef do
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lock_tab := lock_tab − {(l, m, tid)}
WAKE_WAITING_TRANSACTIONS(l )

done
WRITE_LOGRECORD(‘EndLR’, tid, undef, undef, undef, undef)

ABORT(tid ): trans_tab(tid).status := ‘Aborted’
WRITE_LOGRECORD(‘AbortLR’, tid, undef, undef, undef, undef)
ROLLBACK(tid )
forall l, m with lock_tab(l, m, tid) �= undef do
lock_tab := lock_tab − {(l, m, tid)}
WAKE_WAITING_TRANSACTIONS(l )

done
WRITE_LOGRECORD(‘EndLR’, tid, undef, undef, undef, undef)

The previously empty READ sub-rule now supports caching, i.e. it ensures
that the required DB location resides in the cache prior to executing the read.
In contrast to [Gurevich et al., 1997], we also require this caching support for
write-type operations. Without this support, update operations must always be
preceded by an adequate read operation (i.e. excluding the occurrence of blind
writes) in order to ensure that the location’s original value resides in the cache
- only then logging can be done12.

Logging is supported in the WRITE, COMMIT and ABORT sub-rules. Among
those, the COMMIT sub-rule ensures the durability property by flushing the log tail
to stable storage before all DB locations updated by the committing transaction
are released (i.e. unlocked). All three refined rules no longer utilise the w set
function, which is no longer required. Instead, the WAL approach together with
ARIES recovery processing ensure that a location’s committed version can al-
ways be restored. While the exact recovery procedure will only be discussed in
Section 5, we still have to define the ROLLBACK sub-rule, which supports the roll-
back of individual transactions during normal processing. In order to undo all
effects of an incomplete or aborting transaction, we will have to rely on log en-
tries. Thus, we start off by reading the log into main memory13. Subsequently, the
most recent log record written by the aborting transaction is retrieved and un-
done. Undo continues following the transaction’s prev lsn-based backward chain
until a log record is encountered with prev lsn = undef. This log record describes
the first update of the aborting transaction. Once it has been undone, rollback is
complete and we flush log tail . We will utilise a recursive sub-rule UNDO in order
to model this sequential rollback behaviour.

12 Apparently, [Gurevich et al., 1997] does not support caching of update operations
nor do the authors assume the existence of an adequate preceding read operation.
Instead, it is assumed that a location’s before image can be accessed from stable
storage directly. However, this is not feasible considering today’s computer systems.

13 We assume that the entire log fits into main memory, which is rather unlikely in a
real system. However, it is straightforward to utilise a portion of the existing cache
to buffer log records. We omit corresponding details in this paper.
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ROLLBACK(tid ): FLUSH_LOGTAIL
READ_LOG
let lr := cached_log.(trans_tab(tid).last_lsn)
if lr �= undef then
UNDO(lr )

fi
FLUSH_LOGTAIL

UNDO(lr ): let comp_op := compose_compensating_op_from_log_record(lr)
RETRIEVE(comp_op.loc)
WRITE_LOGRECORD(‘CLR’, lr.tid, comp_op, lr.prev_lsn, undef,
comp_op.val)

cache(comp_op.loc) := comp_op.val
if cached_log.(lr.prev_lsn) �= undef then
UNDO(cached_log.(lr.prev_lsn))

fi

This completes our second refinement. Again, it remains to verify that both
TM refinements are equivalent.

Proposition 2. The first TM refinement and the second TM refinement are
equivalent.

Sketch of Proof. Equivalence of the basic approach to logging and caching has
been shown in [Gurevich et al., 1997]. While we have discussed a more sophisti-
cated recovery algorithm, the properties of the underlying logging and caching
mechanisms (i.e. support of steal, no-force and WAL) have been shown to be
equivalent. In addition to the proof from [Gurevich et al., 1997], we would have
to show that further ARIES-based refinements have preserved this equivalence.
Since the general correctness of the ARIES recovery algorithm has already been
proven [Kuo, 1996] (using a different formalism), we omit repeating this verifi-
cation exercise.

4.3 The C-ARIES Refinement

The original ARIES recovery algorithm had a huge impact on the state-of-the-art
of transaction processing. Various adaptations have been proposed that support
different transaction models or different computing environments [Mohan, 1999].
Most recently, a highly concurrent version of the ARIES algorithm, referred to
as C-ARIES [Speer and Kirchberg, 2007], emerged. C-ARIES extends the orig-
inal algorithm with the capability to perform transaction aborts during normal
processing and crash recovery in a highly concurrent manner. Concurrency is
achieved by performing transaction aborts and the Redo and Undo crash re-
covery passes on a page-by-page (or, in this paper’s terms, location-by-location)
basis. In addition, C-ARIES allows normal processing to commence at the end
of the Analysis phase, rather than waiting for the recovery process to complete.
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As a final refinement, we will adopt our proposed ASM specification to sup-
port the C-ARIES algorithm. C-ARIES supports two modes during normal pro-
cessing: On one hand, we have support for strict schedulers that avoid cascading
aborts by definition and, on the other hand, there is a much more complex nor-
mal processing mode that deals with the pitfalls of non-strict approaches, which
may cause aborts to cascade. Since our previous considerations have only con-
sidered strict schedules, we can omit the second case. As a consequence, there
are only little modifications during normal processing.

Similar to the ARIES algorithm, C-ARIES requires that LSNs increase mono-
tonically. This, by the way, is not a burden but rather a benefit. It allows a direct
correspondence between a log record’s physical and logical addresses to be main-
tained. However, in order to adopt a location-by-location approach to recovery,
a number of modifications must be made to the way log records are chained
together. Most significantly, C-ARIES affects CLR log records both in terms of
the information they contain and the way in which they are used. Changes are
as follows:

– A new UndoneLSN field replaces the existing UndoNextLSN field. Whereas
the UndoNextLSN field recorded the LSN of the next operation to be undone,
the UndoneLSN records the LSN of the operation that was undone.

– The PrevLSN field is no longer required for the CLR log record.

– CLR log records are now used to record undo operations during normal
processing only. A newly defined SCR log records (refer below) is used to
record undo operations during crash recovery.

The new log record type Special Compensation Log Record (SCR) is almost
identical to the modified version of the CLR log record, with the only differences
being its type and the point in time at which SCR log records are written.
During normal rollback processing, operations are undone in the reverse order
to which they were performed by individual transactions. However, during crash
recovery, operations are undone in reverse order on a location-by-location basis.
Separating log records for compensation during recovery and normal rollback
allows us to exploit this fact.

As a final modification, C-ARIES logging adds a PageLastLSN field to all
CLR, SCR and ULR log records. This field refers to the LSN of the log record
that last updated the same DB location. Recording these PageLastLSN pointers
provides an easy method for tracing all modifications made to a particular set
of data (stored in the same DB location).

In order to accommodate these changes, we must refine two rules. Firstly, the
WRITE LOGRECORD rule is amended in order to support the new SCR log record
and adjust the way other log records are composed.
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WRITE_LOGRECORD(type, tid, op, undone_lsn, img_old, img_new ):
lsn := lsn + 1
if type = ‘ULR’ then
let data := generate_logical_or_physical_log_data(type, op,
img_old, img_new)

let r := (lsn, type, tid, trans_tab(tid).last_lsn,
cache(op.loc).page_lsn, cache(op.loc).page_id, data)

cache(op.loc).page_lsn := lsn
else if type = ‘CLR’ then
let data := generate_logical_or_physical_log_data(type, op,
img_old, img_new)

let r := (lsn, type, tid, cache(op.loc).page_lsn,
cache(op.loc).page_id, undone_lsn, data)

cache(op.loc).page_lsn := lsn
else if type = ‘SCR’ then
let data := generate_logical_or_physical_log_data(type, op,
img_old, img_new)

let r := (lsn, type, tid, cache(op.loc).page_lsn,
cache(op.loc).page_id, undone_lsn, data)

cache(op.loc).page_lsn := lsn
else if type = ‘CommitLR’ then
let r := (lsn, type, tid, trans_tab(tid).last_lsn)

else if type = ‘AbortLR’ then
let r := (lsn, type, tid, trans_tab(tid).last_lsn)

else if type = ‘EndLR’ then
let r := (lsn, type, tid, trans_tab(tid).last_lsn)

fi

if log_tail = undef
log_tail := r

else
log_tail := log_tail ⊕ r

fi

trans_tab(tid).last_lsn := lsn

And, secondly, the UNDO rule is refined simply by passing a different parameter
to the WRITE LOGRECORD rule in order to reflect the change from maintaining
UndoNextLSN values to UndoneLSN values.

UNDO(lr ): let comp_op := compose_compensating_op_from_log_record(lr)
RETRIEVE(comp_op.loc)
WRITE_LOGRECORD(‘CLR’, lr.tid, comp_op, lr.lsn, undef,
comp_op.val)

cache(comp_op.loc) := comp_op.val
if cached_log.(lr.prev_lsn) �= undef then
UNDO(cached_log.(lr.prev_lsn))

fi

This already completes our third and final TM refinement. With C-ARIES,
rollback processing itself does not change in the presence of a strict scheduler.
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It should be easy to see that the second and third TM refinements are equiv-
alent. In fact, normal processing is not affected. Only differences being the log
records that are written.

Proposition 3. The second TM refinement and the third TM refinement are
equivalent.

Sketch of Proof. In order to prove the proposition, it has to be shown that:

1. The WRITE LOGRECORD rule from the second refinement is equivalent to that
of the third refinement.

2. The UNDO rule from the second refinement is equivalent to that of the third
refinement.

In both cases, the only differences affect the chaining of the log records that
are relevant for crash recovery processing. Log record fields utilised during trans-
action rollback have not been changed.

Transaction rollback is based on the backward chaining of log records writ-
ten during normal processing. In both refinements, the crucial prev lsn field is
preserved except for CLR and SCR log records in the third refinement. It can be
shown easily that neither of those two log records can be encountered during the
course of a rollback. If a CLR log record would be encountered, it means that
there was a previous unsuccessful rollback of this transaction. Recoverability,
however, ensures that a transaction’s rollback is always successful with the ex-
ception of a system failure. In the event of a system failure, the TMS’s MAIN rule
initialises recovery processing, which will return the database to its most recent
consistent state (and, thus, complete the abortion of any incomplete or aborting
transactions). A SCR log record cannot be encountered for the following two
reasons: 1) It does not form a part of the prev lsn-based backward chain; and 2)
It is only written during recovery processing, which ensures that the effects of
all incomplete or aborted transactions are undone.

5 ASM Refinements Part 2: The Recovery Manager

Analogously to Section 4, we will now discuss the step-wise refinement of RM’s
ground model.

5.1 The Strict Two-phase Locking Refinement

The introduction of str-2PL does not have a strong impact on recovery process-
ing. In fact, it suffices to re-initialise the newly introduced functions lock table
and trans tab:
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RM_MAIN: forall l with l ∈ db_locs do
curr_db(l) := comm_db(l)
lock_tab(l) := undef

done
trans_tab := undef
mode := ‘Normal’

It is obvious that this first refinement preserves equivalence. Thus, we can
easily deduce the equivalence of the whole first TMS refinement:

Corollary 4. The TMS ground model and the first TMS refinement are equiv-
alent.

5.2 The Caching and ARIES-Logging Refinement

Analogous to Section 4.2, we focus on adding support for caching and logging
next. The main focus will be on restoring a committed database version after
a failure. While this was rather straightforward up until now, the support of
no-force and steal caching properties as well as WAL make it necessary to em-
ploy a much more sophisticated recovery mechanism. Recovery is usually split
in multiple phases. The log has to be analysed, missing updates have to be
redone and actions of uncommitted transactions have to be undone. This is a
common approach underlying several recovery algorithms [Lindsay et al., 1979;
Weikum et al., 1990; Mohan et al., 1992]. However, these approaches differ in the
sequence in which these steps are executed as well as to what extend updates
(and, optionally, compensations) are redone. Recall that ARIES’ properties in-
clude repeating history during redo and logging of changes during undo. At the
end of recovery, a committed database is reconstructed. Subsequently, normal
processing may commence again.

Caching on the other hand has only a minor impact on recovery processing.
In short, it is only required that refined RM MAIN rules utilise the READ LOG (prior
to accessing log records from the log on stable storage) and RETRIEVE (prior to
accessing a DB location) rules from the TM refinement.

When performing crash recovery, ARIES makes three passes (i.e. Analysis,
Redo and Undo) over the log. During Analysis, ARIES scans the log in forward
direction until the end of the log is reached. In the process, it determines: 1)
The starting point of the Redo pass by keeping track of dirty pages; and 2) The
list of transactions to be rolled back in the Undo pass by monitoring the state
of transactions. During Redo, ARIES repeats history. It is ensured that updates
(and, if any, compensations) of all transactions have been executed once and
only once. Thus, the DBS is returned to the state it was in immediately before
the failure occurred. Finally, Undo rolls back all updates of transactions that
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have been identified as active at the time the failure occurred. This behaviour
leads to the following refined RM MAIN rule:

RM_MAIN: forall l with l ∈ db_locs do
lock_tab(l) := undef

done
READ_LOG
ANALYSIS_PASS
REDO_PASS
UNDO_PASS
FLUSH_LOGTAIL
mode := ‘Normal’

In contrast to the first refinement, we move the initialisation of the trans-
action table trans tab to the Analysis pass. More importantly, the current and
committed databases are no longer utilised / maintained explicitly. As already
discussed in Section 4.2, the current DB is a combination of DB locations held on
stable storage and DB locations maintained in the cache. Analogously, the com-
mitted DB is a combination of stable and cached DB locations together with
redo and undo routines that support the recovery of a location’s most recent
consistent version.

Based on our omission of checkpointing, we will commence recovery by read-
ing the entire log from stable storage into main memory. Subsequently, the three
ARIES passes are modelled (each with its own sub-rule as described below).

The Analysis pass scans the log in forward direction log record-by-log record.
Upon encountering a transaction’s log record, the corresponding transaction ta-
ble entry is updated in the same way as it is done during normal processing.
In addition, we remove a transaction’s trans tab entry if we come across a cor-
responding EndLR log record. Whenever an ULR or CLR log record is found,
it is determined whether the affected DB location is already listed in the dirty
page table14. If this is not the case, the DB location together with the LSN of
the current log record (as RecLSN ) are added to the dirty page table.

In order to model this behaviour, we introduce an additional controlled binary
function dpt , the dirty page table. dpt entries are of the form (page id, rec lsn),
where page id15 refers to a DB location and rec lsn to a log record describing
an update or compensation on this location. Since the original ARIES algorithm
executes in serial manner, we model its ASM version using recursion:

14 Recall, the dirty page table keeps track of all those DB locations that have a different
value in volatile storage compared to their stable storage incarnation. In addition, a
reference to the oldest log record that caused this difference (i.e. ‘dirtied’ the cached
DB location) is maintained.

15 For the sake of conformity, we retain the ARIES terminology. That is, we use page id
as a synonym for location identifier as we have already done in Section 4.
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ANALYSIS_PASS: trans_tab := undef
dpt := undef
ANALYSE(cached_log.1)

ANALYSE(lr ): if lr.type = (‘ULR’ ∨ ‘CLR’) then
if dpt = undef then
dpt := {(lr.page_id, lr.lsn)}

else
if dpt(lr.page_id).rec_lsn = undef then
dpt := dpt ∪ {(lr.page_id, lr.lsn)}

fi
fi
if trans_tab = undef then
trans_tab := {(lr.tid, ‘Active’, lr.lsn)}

else
if trans_tab(lr.tid) = undef then
trans_tab := trans_tab ∪ {(lr.tid, ‘Active’, lr.lsn)}

else
trans_tab(lr.tid).last_lsn := lr.lsn

fi
fi

else if lr.type = ‘CommitLR’ then
if trans_tab(lr.tid) �= undef then
trans_tab(lr.tid).status := ‘Committed’

fi
else if lr.type = ‘AbortLR’ then
if trans_tab(lr.tid) �= undef then
trans_tab(lr.tid).status := ‘Aborted’

fi
else if lr.type = ‘EndLR’ then
if trans_tab(lr.tid) �= undef then
trans_tab := trans_tab − {(lr.tid, *, *)}

fi
fi

if cached_log.(lr.lsn + 1) �= undef then
ANALYSE(cached_log.(lr.lsn + 1) )

fi

At the end of this pass, we obtain a list of dirty locations (or pages) as well as
a list of transactions that are under suspicion of having been active at the time
of the failure. During the second pass, i.e. Redo, we will ensure that all dirty
locations are returned into the state they have been at the time of the failure.
In addition, transaction table entries are removed if it can be ensured that the
corresponding transactions had been committed prior to the failure.

Similar to the Analysis pass, the Redo pass also scans the log in forward
direction. However, the first log record considered is the one referenced by the
smallest rec lsn value from dpt . Whenever an ULR or CLR log record is found, it
has to be determined whether or not the update (or compensation, respectively)
has already been reflected to the affected DB location. An action must be redone
unless one of the following conditions holds [Ramakrishnan and Gehrke, 2003]:
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– The affected DB location is not in dpt ;

– The affected DB location is in dpt but its associated rec lsn value is greater
than the LSN of the considered log record; or

– After reading the DB location into main memory, the location’s associated
PageLSN value is greater than or equal to the LSN if the considered log
record.

It should be noted that the first two conditions avoid fetching the DB location
from disk.

REDO_PASS: lr := cached_log.smallest_rec_lsn_value_from_dpt
if lr �= undef then
REDO(lr )

fi

forall t with trans_tab(t).status �= ‘Active’ do
WRITE_LOGRECORD(‘EndLR’, lr.tid, undef, undef, undef, undef)
trans_tab := trans_tab − {(lr.tid, *, *)}

done

REDO(lr ): if lr.type = (‘ULR’ ∨ ‘CLR’) then
if dpt(lr.page_id) �= undef ∧
dpt(lr.page_id).rec_lsn ≤ lr.lsn then
RETRIEVE(lr.page_id)
if cache(lr.page_id).page_lsn < lr.lsn then
let redo_op := compose_redoable_op_from_log_record(lr)
cache(redo_op.loc) := redo_op.val

fi
fi

fi

if cached_log.(lr.lsn + 1) �= undef then
REDO(cached_log.(lr.lsn + 1) )

fi

Now, the DBS is returned into the state it was in immediately before the
failure occurred. Finally, it remains to abort all transactions that have not com-
mitted, i.e. those that have an entry in trans tab.

In order to do so, the Undo pass performs a backward scan through the
log visiting only those log records that are associated with transactions, which
have an entry in the transaction table. A reference to the LSN of the next log
record that has to be undone is maintained in the ToUndo set. During the Undo
pass, we keep processing the largest LSN value from the ToUndo set. Once a
log record has been undone, its corresponding ToUndo entry is either removed
(i.e. the transaction has been undone entirely) or replaced (i.e. the transaction
had previous actions that still have to be undone) by the LSN of the preceding
log record from the same transaction. The undo behaviour itself is modelled
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on the one that was already introduced for transaction rollbacks during normal
processing. Undo, and thus recovery, terminates once the ToUndo set becomes
empty.

UNDO_PASS: let to_undo := {}
forall t with trans_tab(t).status �= undef do
to_undo := to_undo ∪ {trans_tab(t).last_lsn}

done

if to_undo �= {} then
UNDO_LR(to_undo, cached_log.largest_value_from_to_undo_set)

fi

UNDO_LR(to_undo, lr ): if lr.type = ‘ULR’ then
let comp_op := compose_compensating_op_from_log_record(lr)
RETRIEVE(comp_op.loc)
WRITE_LOGRECORD(‘CLR’, lr.tid, comp_op, lr.prev_lsn, undef,
comp_op.val)

cache(comp_op.loc) := comp_op.val
fi

if lr.type �= ‘CLR’ then
if lr.prev_lsn = undef ∧ to_undo − {lr.lsn} = {} then
to_undo := undef

else
to_undo := to_undo − {lr.lsn}
if lr.prev_lsn �= undef then
to_undo := to_undo ∪ {lr.prev_lsn}

fi
fi

else
if lr.undo_next_lsn = undef ∧ to_undo − {lr.lsn} = {} then
to_undo := undef

else
to_undo := to_undo − {lr.lsn}
if lr.undo_next_lsn �= undef then
to_undo := to_undo ∪ {lr.undo_next_lsn}

fi
fi

fi

if to_undo �= undef then
UNDO_LR(to_undo, cached_log.largest_value_from_to_undo_set)

fi

At the end of ARIES crash recovery, the DB is returned into a consistent
state. For this short moment, the current database corresponds to the committed
database (which is no longer maintained explicitly).

This completes our second refinement. Again, it remains to verify that both
RM refinements are equivalent.

Proposition 5. The first RM refinement and the second RM refinement are
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equivalent.

Sketch of Proof. Similar to the second TM refinement, equivalence of the basic
approach to logging and caching has been shown in [Gurevich et al., 1997]. While
we have discussed a more sophisticated recovery algorithm, the properties of the
underlying logging and caching mechanisms (i.e. support of steal, no-force and
WAL) have been shown to be equivalent. In addition to the proof from [Gurevich
et al., 1997], we would have to show that further ARIES-based refinements have
preserved this equivalence. In particular, it has to be shown that the state of the
explicitly maintained committed database from the first refinement is equivalent
to that of the virtual committed database (which, at the end of crash recovery,
is the same as the current database) from the second refinement.

Since the general correctness of the ARIES recovery algorithm has already
been proven [Kuo, 1996] (using a different formalism), we omit repeating this
verification exercise.

Now, we can easily deduce the equivalence of the whole second TMS refine-
ment:

Corollary 6. The first TMS refinement and the second TMS refinement are
equivalent.

5.3 The C-ARIES Refinement

With C-ARIES, recovery remains split into three phases, i.e. Analysis, Redo and
Undo. However, as previously mentioned, recovery takes place on a location-by-
location basis, where updates are reapplied (Redo pass) and removed from (Undo
pass) multiple DB locations concurrently. The Redo pass reapplies changes to
each DB location in the exact order that they were logged and the Undo pass un-
does changes to each DB location in the reverse order that they were performed.
Since the state of each DB location is accurately recorded (via PageLSN), the
consistency of the database will be maintained during such a process.

C-ARIES requires several additional data structures to be maintained during
recovery processing. We will briefly introduce them (for more details refer to
[Speer and Kirchberg, 2007]) below:

– The page link (PLink) list provides a linked list of log records for each mod-
ified DB location. This list is used during Redo to navigate through the
log.

– The page start (PStart) list determines, for each DB location, from where
to commence recovery. During the forward scan of the log, the first time a
log record for a DB location is encountered its PStart list entry is created.
This list captures all DB locations that are to be visited during the Redo
and Undo passes.
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– The undone list stores a list of all operations that have been undone previ-
ously. During the scan of the log, whenever the algorithm encounters a CLR
log record, a corresponding entry is added to the undone list.

Accordingly, three controlled functions are utilised during C-ARIES recovery
processing. These are:

– The binary function plink , which associates a DB location with a list of
‘linked’ LSN values identifying the sequence of updates that this particular
DB location has seen;

– The nullary function pstart , which holds a set of DB location identifiers for
which redo and undo passes have to be initialised; and

– The binary function undone, which associates a DB location identifier with
an UndoneLSN value (i.e. the LSN of the log record that has been undone).

The recovery manager’s main rule sees only two minor but vital changes.
First, the point in time at which normal processing is allowed to commence is
brought forward. With C-ARIES, normal processing may commence at the end
of the Analysis pass. Second, sub-rules for redo and undo processing are merged.
This is necessary in order to allow for a more efficient location-by-location based
approach to recovery.

RM_MAIN: forall l with l ∈ db_locs do
lock_tab(l) := undef

done
READ_LOG
ANALYSIS_PASS
mode := ‘Normal’
REDO_UNDO_PASSES
FLUSH_LOGTAIL

In addition, the ANALYSIS PASS sub-rule will be refined. During the Analysis
pass, the C-ARIES algorithm, analogous to ARIES, collects all data that is
required to restore the DB to a consistent state. The refined Analysis pass is
comprised of three steps being: Initialisation, data collection, and completion.

In the Initialisation step, the transaction table is initialised. It should be
noted that the previously used function dpt is no longer required.

During the Data Collection step, the log is scanned in forward direction and
data for all previously introduced data structures is collected. Encountering an
AbortLR, CommitLR or EndLR log record triggers the same actions as in the
original ARIES algorithm. Whenever a SCR or ULR log record is encountered,
we update (or, if none exists, create) the transaction’s trans tab entry, add an
entry to the DB location’s plink list and extend the pstart collection if the
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affected DB location is not yet a member. The same applies to CLR log records
with the additional step of adding an entry to undone.

Finally, in the Completion step, the recovery algorithm acquires an exclusive
lock on all DB locations that are in pstart . Subsequently, the DBS can already
commence normal processing. Only those pages that are locked for recovery will
remain unavailable.

ANALYSIS_PASS: trans_tab := undef
plink := undef
pstart := undef
undone := undef
ANALYSE(cached_log.1)
forall l with l ∈ pstart do
lock_tab := lock_table ∪ {(l, ‘X’, 0)}

done

ANALYSE(lr ): if lr.type = (‘CLR’ ∨‘SCR’ ∨‘ULR’) then
if plink = undef then
plink := {(lr.page_id, [lr.lsn])}

else
if plink(lr.page_id) = undef then
plink := plink ∪ {(lr.page_id, [lr.lsn])}

else
plink(lr.page_id).lsn_seq :=
plink(lr.page_id).lsn_seq ⊕ lr.lsn

fi
fi

if pstart = undef then
pstart := {lr.page_id}

else
if lr.page_id /∈ pstart then
pstart := pstart ∪ {lr.page_id}

fi
fi

if lr.type = ‘CLR’ then
if undone = undef then
undone := {(lr.page_id, lr.lsn)}

else
undone := undone ∪ {(lr.page_id, lr.lsn)}

fi
fi

if trans_tab = undef then
trans_tab := {(lr.tid, ‘Active’, lr.lsn)}

else
if trans_tab(lr.tid) = undef then
trans_tab := trans_tab ∪ {(lr.tid, ‘Active’, lr.lsn)}

else
trans_tab(lr.tid).last_lsn := lr.lsn

fi
fi
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else if lr.type = ‘CommitLR’ then
if trans_tab(lr.tid) �= undef then
trans_tab(lr.tid).status := ‘Committed’

fi
else if lr.type = ‘AbortLR’ then
if trans_tab(lr.tid) �= undef then
trans_tab(lr.tid).status := ‘Aborted’

fi
else if lr.type = ‘EndLR’ then
if trans_tab(lr.tid) �= undef then
trans_tab := trans_tab − {(lr.tid, *, *)}

fi
fi

if cached_log.(lr.lsn + 1) �= undef then
ANALYSE(cached_log.(lr.lsn + 1) )

fi

Now, all DB locations that have not been locked exclusively (i.e. those that
are already in a consistent state) by the recovery manager are available for nor-
mal processing. Redo and Undo passes are performed on the exclusively locked
DB locations only. Another significant difference is that both remaining passes
are no longer performed in sequential manner. While Redo still precedes Undo
it does so only for each individual DB location. That is, redo (as well as the
subsequent undo) is performed concurrently across all exclusively locked DB
locations.

REDO_UNDO_PASSES: forall loc with loc ∈ pstart do
let llsn := (plink(loc).lsn_seq).largest_value
REDO_PASS(loc )
UNDO_PASS(cached_log.llsn)

done

forall t with trans_tab(t).status �= ‘Active’ do
WRITE_LOGRECORD(‘EndLR’, t, undef, undef, undef,
undef)

trans_tab := trans_tab − {(t, *, *)}
done

Once the recovery algorithm has completed the Redo pass for all DB loca-
tions, an EndLR log record is written for all transactions whose status is Commit
in trans tab. For expediency, this can be deferred until after the Undo pass as
indicated above.

The Redo pass is still responsible for returning the remaining DB locations to
the state they were in immediately before the failure. For each location in pstart ,
the redo algorithm ‘repeats history’ concurrently. In short, history is repeated
by performing the following tasks:
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1. Consider the oldest log record that was written after PageLSN16;

2. Using a DB location’s plink list, move forward through the log until no more
records for this location exist;

3. Each time a CLR, SCR or ULR log record is encountered, reapply the de-
scribed changes.

REDO_PASS(loc ): RETRIEVE(loc )
forall v with v ∈ plink(loc).lsn_seq do
if v ≤ cache(loc).page_lsn then
plink(loc).lsn_seq := plink(loc).lsn_seq − v

fi
done

if plink(loc).lsn_seq �= empty then
REDO(cached_log.((plink(loc).lsn_seq).smallest_value))

fi

REDO(lr ): if lr.type = (‘CLR’ ∨ ‘SCR’ ∨ ‘ULR’) then
let redo_op := compose_redoable_op_from_log_record(lr)
RETRIEVE(lr.page_id)
cache(redo_op.loc) := redo_op.val

fi

plink(lr.page_id).lsn_seq := plink(lr.page_id).lsn_seq − lr.lsn

if plink(lr.page_id).lsn_seq �= empty then
REDO(cached_log.((plink(lr.page_id).lsn_seq).smallest_value))

fi

The Undo phase is still responsible for undoing the effects of all updates that
were performed by uncommitted transactions. For the concerned DB location,
processing continues by:

1. Working backwards through the log using the PageLastLSN pointers;

2. Each time a SCR or ULR log record is encountered, take the following ac-
tions:

– (SCR): Jump to the log record immediately preceding the log record
pointed to by the UndoneLSN field. The UndoneLSN field indicates
that during a previous invocation of the recovery algorithm, the updates
recorded by the log record at UndoneLSN have already been undone;

– (ULR): If the update was not written by an uncommitted transaction or
has previously been undone, then no action is taken. Otherwise:

16 It should be noted that this requires fetching the DB location from stable storage
into main memory.
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(a) Write an SCR log record that describes the undo action to be per-
formed with the UndoneLSN field set equal to the LSN of the ULR
log record whose updates have been undone; and

(b) Execute the undo action described in the written SCR log record.

At the end of undo processing, the DB location can be unlocked and, thus,
made available for normal processing again. Hence, DB locations are unlocked
individually and returned to normal processing as quickly as possible.

UNDO_PASS(lr ): UNDO_LR(lr )
lock_tab := lock_tab − {(lr.page_id, ‘X’, 0)}
WAKE_WAITING_TRANSACTIONS(lr.page_id)

UNDO_LR(lr ): if trans_tab(lr.tid) = ‘Active’ ∧
(lr.page_id, lr.lsn) /∈ undone then
if lr.type = ‘ULR’ then
let comp_op := compose_compensating_op_from_log_record(lr)
RETRIEVE(lr.page_id)
WRITE_LOGRECORD(‘SCR’, lr.tid, comp_op, lr.lsn, undef,
comp_op.val)
cache(comp_op.loc) := comp_op.val

fi

if lr.type �= ‘SCR’ then
let lr_next := (cached_log.(cached_log.(lr.undone_lsn))).
page_last_lsn

else
let lr_next := cached_log.(lr.page_last_lsn)

fi
fi

if lr.page_last_lsn �= undef then
UNDO_LR(lr_next )

fi

This completes our third and final RM refinement. However, it should be
noted that the complete C-ARIES recovery algorithm has further improvements.
In particular, a Page End list, which determines, for each DB location, the
earliest point in time at which the Undo pass may terminate, is introduced.

As usual, it remains to verify that the second and third refinements are
equivalent.

Proposition 7. The second RM refinement and the third RM refinement are
equivalent.

Sketch of Proof. In order to prove the proposition, it has to be shown that:

– Commencing normal processing at the end of the Analysis pass does not
affect the capability to restore the DB to its most recent consistent state.
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– The committed database from the second refinement correspond to the col-
lection of DB locations at the time they are released for normal processing
in the third refinement.

The former is easier to prove. We can proof by contradiction that no DB
location that is required during either the Redo or the Undo pass is being made
available for normal processing. The Analysis pass would have added such a DB
location to pstart and, thus, aquired an exclusive lock on that location.

The latter requires us to verify that redo and undo processing from the second
refinement execute exactly the same actions in exactly the same order per DB
location compared to the third refinement.

Now, we can easily deduce the equivalence of the whole third TMS refinement:

Corollary 8. The second TMS refinement and the third TMS refinement are
equivalent.

It should be noted that the correctness proof of ARIES [Kuo, 1996] and the
equivalence of the ARIES and C-ARIES refinements form the basis for proving
the correctness of C-ARIES.

6 Conclusions

In this paper, we presented a formal specification of database transaction pro-
cessing. Starting from a more general, high-level ASM model, implementation
and architecture-specific refinements have been incorporated following a uni-
form pattern. This suggests the refinement-based ASM-method as a promising
approach to further develop other concurrency control protocols and recovery al-
gorithms, where each refinement step is motivated by a single or a few desirable
properties. For instance, our first refinement step was motivated by removing
explicit constraints on runs. Subsequently, support of logging and caching tech-
niques resulted in a second refinement. The final refinement step presented in
this paper verified that C-ARIES can be considered as a refinement of the widely
popular ARIES recovery algorithm.

In continuation of the work reported in this paper and our previous work
[Kirchberg et al., 2008], we intend to use this formal framework to:

– Further optimise the C-ARIES recovery algorithm;

– Capture general transaction processing properties in distributed computing
environments – we are particularly interested in shared-disk systems and its
corresponding ARIES-variant, i.e. D-ARIES [Speer and Kirchberg, 2005];
and
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– Verify transactional properties in more advanced transaction models such
as the multi-level transaction models – we are particularly interested in
overcoming difficulties that arise when deploying ARIES-variants such as
ARIES/ML [Schewe et al., 2000] with optimisations inspired by the C-ARIES
recovery algorithm.
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