
Reasoning about Nonblocking Concurrency

Lindsay Groves
(School of Mathematics, Statistics and Computer Science

Victoria University of Wellington, New Zealand
lindsay.groves@vuw.ac.nz)

Abstract: Verification of concurrent algorithms has been the focus of much research
over a considerable period of time, and a variety of techniques have been developed that
are suited to particular classes of algorithm, for example algorithms based on message
passing or mutual exclusion. The development of nonblocking or lock-free algorithms,
which rely only on hardware primitives such as Compare And Swap, present new
challenges for verification, as they allow greater levels of currency and more complex
interactions between processes.

In this paper, we describe and compare two approaches to reasoning about nonblock-
ing algorithms. We give a brief overview of the simulation approach we have used in
previous work. We then give a more detailed description of an approach based on Lip-
ton’s reduction method, and illustrate it by verifying two versions of a shared counter
and two versions of a shared stack. Both approaches work by transforming a concur-
rent execution into an equivalent sequential execution, but they differ in the way that
executions are transformed and the way that transformations are justified.

Key Words: concurrency, shared memory, nonblocking algorithms, lock-free algo-
rithms, verification, linearisability, atomicity, simulation relation, reduction

Category: D.1.3, D.2.4, F.3.1

1 Introduction

Shared memory concurrency is becoming more and more important, as pro-
gramming languages such as Java and C# make multi-threading accessible to
applications programmers, and programmers develop software architectures that
depend on concurrency. This trend promises to continue with the development
of multi-core processors, and the realisation that further increases in speed will
only be gained through parallelism. Increased use of concurrency has in turn
highlighted the problems associated with traditional approaches to designing
concurrent programs, based on mutual exclusion, which are prone to problems
such as deadlock, priority inversion and convoying.

To avoid these problems, researchers have sought to develop concurrent al-
gorithms which do not rely on mutual exclusion, or associated mechanisms such
as locks and semaphores, but instead are designed to work correctly in the pres-
ence of interference [Shavit and Moir, 2004; Fraser and Harris, 2007]. These
algorithms use intricate mechanisms to obtain good performance under differ-
ent workloads, posing significant challenges to ensure correct behaviour. In this

Journal of Universal Computer Science, vol. 15, no. 1 (2009), 72-111
submitted: 27/3/08, accepted: 3/9/08, appeared: 1/1/09 © J.UCS



paper, we describe and compare two approaches to verifying nonblocking algo-
rithms: one based on simulation relations between labelled transitions systems;
the other based on Lipton’s reduction method.

The simulation approach has been studied in a variety of contexts [Jifeng
et al., 1986; Lynch and Vaandrager, 1995; de Roever and Engelhardt, 1998], and
we have used it in joint work to verify several nonblocking algorithms [Doherty
et al., 2004b; Doherty et al., 2004a; Colvin and Groves, 2005; Colvin et al., 2005;
Colvin et al., 2006; Colvin and Groves, 2007]. While this approach has been
successful, the resulting proofs are hard to understand and to describe in an
accessible way, primarily because the proof obligations obtained are hard to
relate to the pseudo-code form of the algorithm and involve reasoning about one
atomic step of the algorithm at a time.

Lipton’s reduction method was developed for reasoning about deadlock free-
dom in concurrent systems based on locks [Lipton, 1975], and has been extended
to handle other safety and liveness properties [Lamport and Schneider, 1989;
Cohen and Lamport, 1998], and to handle systems based on message passing
[Lamport, 1990]. In recent work, we have investigated how this approach can
be extended to verify nonblocking algorithms [Groves, 2007; Groves, 2008]. This
approach is attractive because it allows us to separate reasoning about the cor-
rectness of the implementation in the absence of interference from reasoning
about the effect of interference. We do this by showing that every concurrent
execution is equivalent to one in which all operations on the shared object are ex-
ecuted without interruption in a way that preserves the order of non-concurrent
operations, and that this execution correctly implements the abstract operations.

This paper aims, firstly, to give an overview of these two approaches and
compared them, and secondly, to explain how we have extended the reduction
method to handle nonblocking algorithms and show how it can be used to ex-
plain the correctness, or incorrectness, of some nonblocking algorithms. We begin
in Section 2 by introducing the class of nonblocking algorithms, explaining the
strong synchronisation primitives (such as CAS) they rely on, and discussing
some aspects of the design of such algorithms. In Section 3, we introduce lin-
earisability, the standard correctness criterion for shared objects, and discuss
how linearisability can be proved using simulation. In Section 4, we introduce
the notion of atomicity, show how it can be used to prove linearisability, and
discuss how we can prove atomicity by building on Lipton’s reduction method.
In Sections 5 and 6, we apply our version of reduction to two forms of shared
counter, and to a shared stack — the latter showing how issues relating to dy-
namic memory are handled. Finally, in Section 7, we summarise our results, and
make some observations about related and future work.

73Groves L.: Reasoning about Nonblocking Concurrency ...



2 Nonblocking algorithms and strong synchronisation
primitives

We are concerned with concurrent programs in which multiple processes (or
threads — at this level of abstraction, there is no need to distinguish between
processes and threads) communicate via shared data structures, generally called
shared objects. Processes may run on separate processors, or share a single
processor, and may run at different speeds — the correctness of the program
should not depend upon assumptions about the number or speeds of processors,
or about scheduling.

The fundamental problem encountered in designing such programs is how
to deal with the interference that arises when multiple processes try to access
a shared object at the same time. In particular, we need to avoid the scenario
where a process reads a shared object, computes a new value, and stores the new
value into the shared object, but the new value is now invalid because another
process has updated the shared object in the interim.

The traditional approach to this problem is to avoid interference between
processes by using locks, or similar mechanisms such as semaphores or monitors,
to ensure that shared objects are updated under mutual exclusion. To avoid the
scenario outlined above, a lock is associated with each shared object. A process
wanting to update a shared object must first acquire the lock for that object,
and then holds the lock until it has completed its update. Any other process
wanting to update the object must wait until the first process has completed its
update in order to acquire the lock. This approach is called blocking, because
processes wishing to access a shared object while another process holds the lock
are forced to wait until the lock is released. The use of locks has several inherent
problems which make it undesirable. For example, if a process dies while holding
a lock, the entire system may deadlock, and a slow process holding a lock causes
all other processes needing that lock to be blocked. These problems becomes
more acute as the number of processes increases, and lock-based solutions are
thus regarded as non-scalable.

Nonblocking algorithms, in which no process is ever forced to wait for an-
other to complete an operation, have been developed as an alternative approach
aimed at achieving scalable designs (e.g. [Treiber, 1986; Michael and Scott, 1996;
Michael and Scott, 1998; Shann et al., 2000; Hendler et al., 2004; Moir et al.,
2005]). These algorithms are designed to work correctly in the presence of inter-
ference from other processes, rather than to avoid it by using locks. Typically,
to avoid the scenario outlined above, a strong synchronisation primitive such as
LL/SC or CAS (see Section 2.1) is used to perform an update provided that no
interference has occurred. When interference is detected, the operation is usually
attempted again, however, in some cases a process will “help” a slower process
by completing part of its operation (e.g. [Michael and Scott, 1996; Michael and

74 Groves L.: Reasoning about Nonblocking Concurrency ...



Scott, 1998; Shavit and Zemach, 1999; Shann et al., 2000]).
Different classes of nonblocking algorithms have been identified, according to

the progress conditions that they guarantee. Wait-free algorithms [Herlihy, 1991]
ensure that every operation completes within a finite number of its own steps.
While this is clearly a desirable property, very few efficient wait-free algorithms
are known for implementing common shared objects such as stacks and queues.
Lock-free algorithms ensure that some operation will always complete within a
finite number of steps of the system. This weaker condition ensures that the
system as a whole makes progress even though individual operations may not
terminate, and efficient lock-free algorithms are known for many common data
structures [Shavit and Moir, 2004]. Lock-free algorithms are guaranteed to be
free from deadlock and livelock; wait-free algorithms, in addition, are free from
individual starvation.

The terms nonblocking and lock-free are often used interchangeably. We use
nonblocking as a general term to describe algorithms that do not rely on mutual
exclusion, and lock-free as a more specific term to describe algorithms that satisfy
this progress condition.

2.1 Strong synchronisation primitives

These nonblocking progress conditions preclude the use of locks, and nonblocking
algorithms typically rely instead on the use of strong synchronisation primitives
such as Load Linked/Store Conditional (LL/SC) or Compare and Swap (CAS),
which allow a process to atomically update a shared location only if no harmful
interference has occurred. These primitives differ in the kind of interference that
can be detected.

A Load Linked instruction, LL(loc), reads the contents of a shared loca-
tion, loc. A subsequent Store Conditional instruction, SC (loc,new), stores a
new value, new , into loc and succeeds (returning true) if no SC has been per-
formed on loc since the last LL on loc performed by that process, and otherwise
fails (returning false and leaving loc unchanged). Thus, a process can load the
value in loc using LL, compute a new value, and update loc by storing the new
value only if loc has not changed since that process performed its LL.

A Compare And Swap instruction, CAS(loc, old ,new), tests whether a shared
location loc contains the value old and if so replaces the value by new and suc-
ceeds (returning true); otherwise it fails (returning false and leaving loc un-
changed). Thus, a process can load the value in a shared location, using an
ordinary load, compute a new value, and update the location by storing the
new value only if the location contains the same value that it had when that
process performed its load. Some versions of CAS store the current value of loc
in old when the comparison fails, or return the current value of loc rather than

75Groves L.: Reasoning about Nonblocking Concurrency ...



a Boolean; the version described above is sometimes (and more aptly) called
Compare And Set.

The key difference between LL/SC and CAS is that SC checks whether the
shared variable has been updated since the corresponding LL was performed
(assuming that all updates on the location are performed using SC), whereas
CAS only checks whether the location has the same value that it was previously
observed to have. Thus, CAS cannot detect a situation where a shared location
is seen to have a value, say A, its value is then changed to some other value, say
B , and then back to A again. There are some cases where the check provided by
CAS is appropriate, and even preferable to that provided by LL/SC, and other
cases where the check provided by LL/SC is required. We will see examples of
both in later sections.

Unfortunately, implementations of LL/SC on current hardware are very lim-
ited — for example, it may only be possible for one LL to be active at a time
and an SC may be allowed to fail spuriously in a way that prevents progress
from being guaranteed. CAS, on the other hand, is available on most modern
architectures, and is now supported by the Java Virtual Machine.

Herlihy [Herlihy, 1991] showed that any sequential data structure can be
turned into a wait-free, or lock-free, implementation using either LL/SC or CAS,
and that this is not so for other instructions such as Fetch And Add which
can sometimes be used to implement concurrent algorithms. Unfortunately, the
resulting algorithms are typically very inefficient, and considerable ingenuity is
required to obtain efficient and scalable nonblocking algorithms.

2.2 Example

As a simple example, consider a shared counter, with a single operation which
increments the counter and returns its new value. This can be implemented using
a module in which the shared counter, c, is encapsulated (so it cannot be accessed
by any other code) and initialised to 0. The module exports the procedure inc,
which can be defined (using a Pascal-like pseudo-code) using either LL/SC or
CAS, as shown in Fig. 1.

In both versions, we read the shared counter (c) into a local variable (a)
and use it to compute the new value (a + 1) which is then stored in another
local variable (b). We then attempt to update the shared variable using an SC
or CAS. In this case, the fact that c has the same value it had when it was
read into a is sufficient to ensure that setting c to b will give the correct result,
so both versions will increment the counter correctly. Moreover, if we ignore
the possibility of wraparound, the two versions will retry in exactly the same
situations — since the counter can only be incremented, there is no way that
the counter can be modified and then return to its previous value, so the SC

76 Groves L.: Reasoning about Nonblocking Concurrency ...



inc(out r : nat) =̂

var a, b : nat ;

repeat

a := LL(c);

b := a + 1

until SC (c, b);

r := b

inc(out r : nat) =̂

var a, b : nat ;

repeat

a := c;

b := a + 1

until CAS(c, a, b);

r := b

Figure 1: Code for inc using LL/SC and CAS

and CAS will succeed (and fail) for exactly the same interleavings with other
processes.

This algorithm is not wait-free, since it is possible for a process performing
an inc operation to continually experience interference, and so never complete
its operation. The algorithm is lock-free, assuming that we have a finite number
of processes, since some process will always complete an inc operation within a
finite number of steps of the counter implementation. This is because the CAS
(or SC) in one process can only fail if another process performs a successful
CAS (or SC), and since there are a finite number of processes, the counter
implementation cannot take an infinite number of steps without completing an
operation.1 We will not discuss progress conditions any further in this paper.

2.3 Designing nonblocking algorithms

The code in Fig. 1 illustrates a common pattern found in many simple lock-free
algorithms, where we use a loop to repeatedly attempt an operation on a shared
object until the operation is able to be completed without interference. Within
the loop body, we take a snapshot (in this case, a), of the shared location to
be updated (c), and use it to compute the new value (b). We then attempt to
update the shared variable, using an SC or CAS to ensure that the update is
safe.

In the shared counter example, the value of the variable being updated is the
entire shared object, so the guarantee provided by CAS (i.e. that the current
value is equal to the snapshot) is sufficient to ensure that the correct update
is made. Indeed, if a module implementing an integer-valued counter provided
1 If there were an infinite number of processes, it would be possible for the counter

implementation to take an infinite number of steps in which an infinite number of
processes each took one or two steps but did not perform its CAS, and so no operation
would complete.

77Groves L.: Reasoning about Nonblocking Concurrency ...



both an inc operation, as above, and a dec operation to decrement the counter
(which would be identical to inc with the assignment to b replaced by b := a−1),
the LL/SC and CAS versions would both behave correctly. However, the LL/SC
semantics would disallow perfectly acceptable executions, in which one process
reads the value of c, then another process completes an inc and a dec before
the first process performs its SC: the SC would fail and force the process to
retry its operation, even though it would have assigned c the correct value. In
this situation, a CAS would succeed, and so in this case, a CAS is preferable to
LL/SC. This example demonstrates that not all interference is harmful.

In modifying a larger data structure, we have to consider carefully what
updates need to be made and when they are safe. A key issue in designing
nonblocking algorithms is to identify a small enough part of the state to use as
the snapshot so that it can be conditionally updated using a CAS or SC, which
usually operates on a single or double word, and to determine when such an
update is safe. Ideally, we would like to be able to construct any new values that
are required using local variables, and heap locations to which the process has
the only pointer, and then update a single shared location. We then wish to be
able to infer from a successful SC or CAS that the update is safe. In some cases,
knowing that the shared variable has the same value as the snapshot is sufficient
and we can use a CAS, as in the shared counter example discussed in Section 2.2,
but in others we need to know that the shared variable has not changed since
the snapshot was taken so the stronger guarantee provided by LL/SC is needed.

Because of the limitations of current hardware mentioned in Section 2.1,
LL/SC tend not to be used in practical nonblocking algorithms, and CAS is more
widely used even though LL/SC semantics is often more appropriate. There has
been recent work on synthesising a more practical LL/SC using CAS instructions
[Doherty et al., 2004c; Michael, 2004], but most practical nonblocking algorithms
still use CAS. We thus concentrate on algorithms using CAS instructions, though
our techniques could easily be applied to LL/SC as well (cf. [Wang and Stoller,
2005]).

Things become more difficult if more than one shared location needs to be
updated. A common solution in this case is to place the part of the state that
needs to be updated into a dynamically allocated record, perform the required
updates on a newly allocated record and then update the global state by as-
signing a global pointer variable to point to this record. We will see an example
of this in Section 6, and discuss the problems that arise in deciding when the
update is safe.

In more sophisticated algorithms, the implementation may not retry the op-
eration immediately. For example, it may choose to delay before retrying, as
part of a back-off scheme, or may try some other way of achieving its purpose,
such as finding another process attempting to perform a complementary oper-

78 Groves L.: Reasoning about Nonblocking Concurrency ...



ation [Hendler et al., 2004; Moir et al., 2005]. If the object interface provides
operations that may fail when interference is detected, the caller may choose to
perform some other application task before retrying the operation.

3 Linearisability

We now consider what it means to say that an implementation of a concurrent
data structure, such as a shared counter, is correct. Since the data structure
may change many times between when a process begins an operation and when
it completes that operation (if, indeed, it does), we can’t use the standard notions
of pre- and postconditions applying to the state before and after execution of
an operation. Instead, we take the view that an implementation of a concurrent
data structure is correct if each operation performed by any process appears, to
other processes, as though it occurred atomically at some point during its exe-
cution, and that the sequence of operations thus obtained respect the sequential
semantics for the data type.

This property is called linearisability [Herlihy and Wing, 1990], and is the
standard safety condition for shared objects; the point at which an operation ap-
pears to occur is called its linearisation point. The requirement that operations
appear to occur instantaneously means that in reasoning about programs that
use shared objects, we can ignore the effects of concurrency within the imple-
mentation of the objects and treat these operations as though they were atomic.
The requirement that the linearisation point is within the operation’s execution
(technically, between its invocation and its response) ensures that the order of
non-concurrent operations is preserved.

The notion of linearisability is formalised in [Herlihy and Wing, 1990] in
terms of histories. A history for a shared object O is a sequence of events cor-
responding to invocations and responses of operations in some execution of a
program operating on O. For each operation op that can be applied to O, we
write op invp(args) to denote process p invoking operation op with arguments
args, and op respp(res) to denote process p returning response resp with result
res. An execution is modelled by a history in which the first action of each ex-
ecution of an operation op with arguments args by a process p is replaced by
op invp(args), the last action of each completed execution of operation op with
result res by process p is replaced by op respp(res), and all other actions are
deleted. Two histories are equivalent if, in both histories, each process performs
the same sequence of invocations and responses.

A response matches a preceding invocation by the same process, provided
there are no intervening events involving that process. An invocation and its
matching response represent a completed operation; an unmatched invocation
represents an uncompleted or pending operation. complete(H ) is the maximal
subsequence of history H consisting only of invocations and matching responses.

79Groves L.: Reasoning about Nonblocking Concurrency ...



A sequential history is a sequence of alternating invocations and responses,
possibly ending with an unmatched invocation, in which each response matches
the preceding invocation. A sequential specification for O is a prefix-closed set
of histories for O. A sequential history H is legal if it belongs to the sequential
specification for O.

A history H induces a partial order, <H , on completed operations such that
op <H op′ if the response for op occurs in H before the invocation for op′.
Operations not related by <H are concurrent. H is sequential iff <H is a total
order.

A history H is linearisable if it can be extended, by adding zero or more
response events, to give a history H ′ such that complete(H ′), is equivalent to
some legal sequential history S , called a linearisation of H , with <H ′ ⊆ <S . A
shared object O is linearisable if every history for O is linearisable with respect
to the sequential specification for O.

The definition in [Herlihy and Wing, 1990] is generalised in a straightforward
way to apply to a system acting upon a set of shared objects. It is sufficient for
our purposes to consider a single shared object.

3.1 Example

Consider the shared counter described in Section 2.2. There is only one op-
eration, inc, which takes no arguments, and it only ever returns one kind of
response, which returns an integer result. We will thus denote an invocation of
inc by process p as inv incp , and its responses returning result c as inv okp(c).

The sequential specification for a shared counter contains alternating occur-
rences of inv inc and inv ok by the same process, where successive occurrences
of inv ok return contiguous values. Thus, for all processes p and q , the sequen-
tial specification contains the histories: 〈〉, 〈inv incp〉, 〈inv incp , inv okp(0)〉,
〈inv incp , inv okp(0), inv incq〉, 〈inv incp , inv okp(0), inv incq , inv okq(1)〉, etc.

Now, consider a program with three processes operating on a shared counter.
Fig. 2 shows the part of a possible execution of this program, showing only the ac-
tions involved in executing inc. For convenience, actions are arranged in columns
corresponding to processes, but they should be understood as comprising a sin-
gle sequence of actions (one action per row), as shown in the first column of
Fig. 3. We write + or − beside a CAS to indicate whether it succeeded or failed
(likewise later, we will write B+ or B− to indicate that a test B succeeded or
failed, respectively). The effect of an action performed by a given process can be
understood by adding the process number as a subscript on each local variable
referenced; for example, in Fig. 2, (a := c)1 becomes a1 := c and CAS(c, a, b)+2
becomes CAS(c, a2, b2)+.

This execution corresponds to the following concurrent history:

80 Groves L.: Reasoning about Nonblocking Concurrency ...



Step Process 1 Process 2 Process 3
1 (a := c)1
2 (a := c)2
3 (b := a + 1)2
4 CAS(c, a, b)+2
5 (a := c)3
6 (b := a + 1)3
7 (b := a + 1)1
8 CAS(c, a, b)+3
9 (r := b)3

10 CAS(c, a, b)−1
11 (r := b)2
12 (a := c)2
13 (a := c)1
14 (b := a + 1)2
15 (b := a + 1)1
16 CAS(c, a, b)+1
17 CAS(c, a, b)−2
18 (r := b)1

Figure 2: Execution for shared counter

H = 〈inc inv1, inc inv2, inc inv3, inc ok3(2), inc ok2(1), inc inv2, inc ok1(3)〉

All executions of inc in this history are completed, except for process 2’s
second inc, which is pending. This pending operation has not yet “taken effect”,
so in constructing a linearisation, we do not add a response for it, and take
H ′ = H . Thus, we have:

complete(H ′) = 〈inc inv1, inc inv2, inc ok2(1), inc inv3, inc ok3(2), inc ok1(3)〉

We obtain an equivalent sequential history by taking the successful CAS to
be the linearisation point for each completed inc operation, which gives us:

S = 〈inc inv2, inc ok2(1), inc inv3, inc ok3(2), inc inv1, inc ok1(3)〉

Now, the partial order induced by H ′ requires that the first operation of
process 2 precedes process 3’s operation, and this order is respected by the
above sequential history. Thus, this particular execution is linearisable.

81Groves L.: Reasoning about Nonblocking Concurrency ...



3.2 Proving linearisability

We can show that a shared object O is linearisable by showing how to translate
an arbitrary execution into a corresponding legal sequential history. In previous
collaborative work (see [Doherty, 2003; Doherty et al., 2004b; Colvin et al., 2005;
Colvin and Groves, 2005; Colvin et al., 2006; Colvin and Groves, 2007]), we have
proved linearisability using simulation techniques [Lynch and Vaandrager, 1995]
to transform any concurrent execution of a set of processes operating on a shared
object into an equivalent augmented history, which is trivially linearisable.

Given a history H for a shared object O, an augmented history [III and Scott,
2004] is a sequence H ′ containing invocations and responses for operations on
O, along with linearisation events, written do opp , such that: (i) H is identical
to H ′ with all linearisation events deleted, and (ii) replacing every subhistory of
the form:2

op invp(args) φ do opp ψ op respp

where φ and ψ are any sequences of actions not involving p, by:

φ op invp(args) op respp ψ

gives a legal sequential history which is a linearisation of H . It follows from this
definition that if we can construct an augmented history corresponding to any
concurrent execution, then O is linearisable.

The implementation of an object O is modelled using a simplified form of
input/output automaton or IOA [Lynch, 1996; Lynch and Vaandrager, 1995] (es-
sentially a labelled transition system whose actions are partitioned into internal
and external actions), which generates augmented executions. These are possi-
ble concurrent executions of a set of processes operating on O, with invocation
and response actions inserted before and after the first and last action of each
execution of an abstract operation. The specification is modelled by a similar
transition system, which generates augmented histories. In its basic form, the
simulation technique shows how to construct an equivalent augmented history
by stepping through an arbitrary augmented execution, one step of the imple-
mentation IOA at a time, directing the specification IOA to take steps that force
it to generate the required augmented history.

An alternative approach would be for the implementation IOA to generate
executions without adding invocations and responses, and for the simulation to
match the first action of the operation (a := c, in the shared counter example)
with an invocation in the augmented history and the final action of the operation
2 In describing histories and executions, we often omit sequence brackets and other

punctuation (commas and concatenation operators) and use juxtaposition to com-
bine both sequences and individual elements.

82 Groves L.: Reasoning about Nonblocking Concurrency ...



(r := b) with a response, as is done in [Derrick et al., 2008]. However, this
requires special treatment if the first or last action of an operation occurs in a
loop, as in the case of pop for a shared stack (see Section 6).

3.3 Example

For the execution shown in Fig. 2, the implementation IOA would insert an in-
vocation, inc invp , before the first action (a := c) performed by each operation
that is begun, and a response, inc okp(r), following the last action (r := b) of
each operation completed. These invocation and response actions inserted by the
execution IOA need not occur immediately before and after the first and last ac-
tions performed by the operation; it is only necessary that an invocation occurs
after the response for the previous operation executed by the same process (if
any) and that a response occurs before the invocation for the next operation ex-
ecuted by the same process (if any). Thus, for instance, the invocations inc inv1,
inc inv2 and inc inv3 could occur in any order before the first action shown in
Fig. 2.2. The second column of Fig. 3 shows one possible augmented execution
for the execution in Fig. 2.

In constructing the equivalent augmented history, invocations and responses
are copied as is, and a linearisation event, do incp , is inserted each time the
execution performs a successful CAS, since this is the linearisation point at
which the effect of the operation becomes visible to other processes. All other
actions of the augmented execution are discarded. Thus, the augmented history
constructed from the execution in Fig. 2 might be:

inc inv1 inc inv2 do inc2 inc inv3 do inc3 inc ok2(1) inc inv2

do inc1 inc ok1(3) inc ok3(2)

as shown in the third column of Fig. 3.
Applying the construction in condition (ii) of the definition of augmented

history gives the same linearisation as shown in Section 3.1 (see fourth column
of Fig. 3).

3.4 Applying simulation

In our simulation proofs, each action in an augmented execution generated by the
implementation IOA is either an invocation or response, which must be matched
by an identical action in the augmented history generated by the specification
IOA, or a primitive action of the implementation. Usually, one such implemen-
tation action will correspond to the linearisation event in the augmented history,
and must be shown to preserve an abstraction relation relating the concrete data
structure to the abstract value of O. All other actions are internal, and thus un-
observable, so do not correspond to any action of the specification IOA, but must

83Groves L.: Reasoning about Nonblocking Concurrency ...



Concurrent
execution

Augmented
execution

Augmented
history

Sequential
history

inc inv1 inc inv1

inc inv2 inc inv2

(a := c)1 (a := c)1
(a := c)2 (a := c)2
(b := a + 1)2 (b := a + 1)2

CAS(c, a, b)+2 CAS(c, a, b)+2 do inc2
inc inv2

inc ok2(1)
inc inv3 inc inv3

(a := c)3 (a := c)3
(b := a + 1)3 (b := a + 1)3
(b := a + 1)1 (b := a + 1)1

CAS(c, a, b)+3 CAS(c, a, b)+3 do inc3
inc inv3

inc ok3(2)
(r := b)3 (r := b)3
CAS(c, a, b)−1 CAS(c, a, b)−1
(r := b)2 (r := b)2

inc ok2(1) inc ok2(1)
inc inv2 inc inv2

(a := c)2 (a := c)2
(a := c)1 (a := c)1
(b := a + 1)2 (b := a + 1)2
(b := a + 1)1 (b := a + 1)1

CAS(c, a, b)+1 CAS(c, a, b)+1 do inc1
inc inv1

inc ok1(3)
CAS(c, a, b)−2 CAS(c, a, b)−2
(r := b)1 (r := b)1

inc ok1(3) inc ok1(3)
inc ok3(2) inc ok3(2)

Figure 3: Simulation for shared counter

also be shown to preserve the abstraction relation (in this case showing that the
abstract value does not change), along with various invariant properties that are
required to ensure that only legal executions (and thus histories) are generated
and to support the proof that the abstraction relation is preserved.

While this approach has proved to be effective, and is amenable to mecha-
nisation (we have mechanised our proofs using PVS), a large proportion of the
effort is devoted to verifying the proof obligations for implementation actions
that are not linearisation points. Many of these are only required to ensure that

84 Groves L.: Reasoning about Nonblocking Concurrency ...



executions are well formed, while others are required to show that they preserve
various invariants required for the verification of the few interesting cases which
correspond to linearisation points.

Whereas, in the shared counter example, we could construct the required
augmented history using forward simulation, i.e. by stepping forwards through
the augmented execution, it is sometimes necessary to use backward simulation
[Jifeng et al., 1986; Lynch and Vaandrager, 1995; de Roever and Engelhardt,
1998], in which we step backwards through the augmented execution. This is
typically required because we cannot always tell, when an action is executed,
whether it is a linearisation point or not. Sometimes we need (or choose, for
convenience) to combine forward and backward simulation, so the augmented
execution is translated into an intermediate history using forward simulation,
and the intermediate history is translated into the required augmented history
using backward simulation. Since backward simulation tends to be less intuitive,
and more complex to verify, we try to make the intermediate history as close
to the augmented history as we can so that more of the work is done in the
simpler forward simulation (see [Doherty, 2003; Doherty et al., 2004b; Colvin
and Groves, 2005; Colvin et al., 2006]).

There are also further subtleties in the identification of linearisation points.
While in many cases the linearisation point for an operation is an action of that
operation which updates a shared variable, this is not always the case. Firstly,
if the operation does not change the data structure (for example, an operation
to test whether a shared counter has a particular value, test whether a stack or
queue is empty, or whether a set contains a particular value, or an operation
that fails, such as a pop on an empty stack), the linearisation point is an action
that read the part of the data structure from which its outcome is determined.
Secondly, the linearisation point may be an action performed by another process,
and a step of one process may be the linearisation point for an arbitrary number
of operations performed by other processes. For example, in the elimination
stack algorithm [Hendler et al., 2004; Colvin and Groves, 2007], in which push
and pop operations can be paired off and “eliminated” without altering the
stack data structure, the linearisation point for an eliminated operation is a step
performed by another process which selects it as an elimination partner. And in
the lazy list algorithm [Heller et al., 2005; Colvin et al., 2006], which provides a
highly concurrent linked list set implementation, one step of an operation which
deletes an element from the set can be the linearisation point for any number of
operations by other processes which are testing whether that element is in the
set.

85Groves L.: Reasoning about Nonblocking Concurrency ...



4 Atomicity

We will now investigate an alternative approach in which linearisability is proved
in two steps: first, we show that every concurrent execution of the implementa-
tion is equivalent to a serial execution, in which each operation is executed with-
out interruption; and second, we show that when executed without interruption
the implementation of each operation satisfies its sequential specification.

The property established in the first step, that every concurrent execution of
the implementation is equivalent to one in which each operation is executed with-
out interruption, is called atomicity.3 The second step is equivalent to proving
that the abstract specification is satisfied by a sequential implementation.

It is easy to see that atomicity plus sequential correctness implies linearis-
ability. A serial execution is a concatenation of several sequences of actions, each
comprising the execution of one abstract operation by some process. Construct-
ing a history from such an execution, as described in Section 3 will result in
each such sequence being replaced by an invocation-response pair. The resulting
history will already be a legal sequential history and thus provide the lineari-
sation required by the definition of linearisability. Since this history is already
sequential, the partial order it induces is already a total order.

Separating these steps allows us to address concurrent and sequential as-
pects of the implementation separately. In particular, showing that the abstract
specification is satisfied can be addressed using standard sequential reasoning
techniques, and we may choose to take a lightweight approach, using techniques
such as code inspection, testing or model checking, rather than full formal veri-
fication. As we will see, we can also use a combination of static analysis, model
checking and deductive verification in verifying atomicity.

In the rest of this paper, we will assume that sequential reasoning is well
understood. We therefore focus on showing that a concurrent (and usually non-
blocking) implementation of a shared data structure is atomic, and only reason
informally about sequential correctness of these implementations.

4.1 Example

In the shared counter example, we might show that the concurrent execution
shown in Fig. 2.2 is equivalent to the serial execution shown in Fig. 4. Notice
that we have deleted the steps of the pending operation of process 2, and that
each process otherwise performs the same steps in the same order. It is easy to
see that the effects of the first two operations (by processes 2 and 3) are both

3 Although atomicity is widely used with this meaning (e.g. [Lamport and Schnei-
der, 1989; Flanagan and Qadeer, 2003; Sasturkar et al., 2005]), it is also sometimes
equated with linearisability (e.g. [Lynch, 1996; Hesselink, 2002]), so care must be
taken when referring to different works.

86 Groves L.: Reasoning about Nonblocking Concurrency ...



equivalent to c := c + 1, and thus correctly implement the inc operation. The
effect of the operation by process 1 is not quite so straightforward, and we will
show how this is handled in Section 5.

Step Process 1 Process 2 Process 3
1 a2 := c
2 b2 := a2 + 1
3 CAS(c, a2, b2)+

4 r2 := b2

5 a3 := c
6 b3 := a3 + 1
7 CAS(c, a3, b3)+

8 r3 := b3

9 a1 := c
10 b1 := a1 + 1
11 CAS(c, a1, b1)−

12 a1 := c
13 b1 := a1 + 1
14 CAS(c, a1, b1)+

15 r1 := b1

Figure 4: Execution for shared counter

Using a similar construction to that outlined above, we can see that this
serial execution is represented by the sequential history:

inc inv2 inc ok2(1) inc inv3 inc ok3(2) inc inv1 inc ok1(3)

which is the same as the sequential history S constructed in Section 3.1. Thus,
we can show that a shared object is linearisable by showing that every concurrent
execution is equivalent to a serial execution, and that such executions correctly
implement the abstract operations.

4.2 Lipton’s reduction method

We begin by considering the idea of reduction, originally described by Lipton
[Lipton, 1975], and then show how it can be extended to handle a wider range
of algorithms. In later sections, we look at further examples.

The reduction method was first proposed by Lipton [Lipton, 1975] as a way
of proving safety properties of concurrent programs using semaphores for syn-
chronisation. The main idea is that in order to establish some property of a

87Groves L.: Reasoning about Nonblocking Concurrency ...



concurrent program P containing a statement R, we prove that any execution
of P is “equivalent” to one in which R is executed without interruption, and
that the desired property holds of the reduction of P by R, denoted by P/R, in
which R is treated as an atomic action.

To show that any execution of P is equivalent to one in which R is executed
without interruption, we show that any execution of P can be transformed into
an equivalent execution in which the atomic steps of R are contiguous. This is
done by analysing the effects of atomic operations to see how the steps of different
processes can be reordered without affecting the result of the execution.

We write σ
a→ τ , to mean that execution of action a may take the system

from state σ to state τ . An action a is enabled in a state σ if there exists a state
τ such that σ

a→ τ .
For actions a and b, and states σ and τ , we write σ

ab→ τ if there is a state
ρ such that σ

a→ ρ and ρ
b→ τ . We extend this notation to sequences of actions,

and write α ≤ β to mean that for any reachable states σ and τ , σ
α→ τ implies

σ
β→ τ , and say that α approximates β. When α ≤ β and β ≤ α, we say that α

is equivalent to β.4

If ab ≤ ba, we say that a right commutes with b, and b left commutes with
a. If a right commutes and left commutes with b, we just say a commutes with
b. We can show that for sequences of actions, α = a1 . . . am and β = b1 . . . bn , if
aibj ≤ bjai for all i ∈ 1 . . m and j ∈ 1 . . n, then αβ ≤ βα.

In the context of a given program, P , an action a is called:

– a right mover if it right commutes with every action of every other process,
i.e. apxq ≤ xqap for all actions x of P and distinct processes p and q ,

– a left mover if it left commutes with every action of every other process,
i.e. xqap ≤ apxq for all actions x of P and distinct processes p and q , and

– a both mover if it is both a right mover and a left mover.

If an execution of statement R by process p consists of actions a1, . . . , an ,
where for some k , actions a1, . . . , ak−1 are right movers and actions ak+1, . . . , an

are left movers, then any execution, E , of program P containing this execu-
tion of R is equivalent to an execution, E ′, in which R is executed without
interruption. More precisely, if E = β0 a1 β2 . . . an βn , where β0 . . . βn are se-
quences of actions and β2 . . . βn−1 contain no p-actions, then E ≤ E ′, where
E ′ = β0 . . . βk−1 a1 . . . an βk+1 . . . βn .

Since Lipton was concerned with synchronisation based on semaphores, his
results show when P and V operations on semaphores can be treated as right and
left movers, respectively. Lamport and Schneider [Lamport and Schneider, 1989]
4 Note that, for largely historical reasons, we often talk about executions being equiv-

alent when strictly speaking we only require approximation.

88 Groves L.: Reasoning about Nonblocking Concurrency ...



extend the range of safety properties that can be handled. Lamport [Lamport,
1990] extends these results to distributed systems, showing when receive and
send actions can be treated as right and left movers, respectively, and Lamport
and Cohen [Cohen and Lamport, 1998] extend the method to handle liveness
properties. Cohen [Cohen, 2000] presents an algebraic approach to proving re-
ductions, based on omega-algebra. Back [Back, 1993] integrated reduction for
terminating operations into the refinement calculus.

The reduction idea has also been used as a basis for tools for verifying atom-
icity, and related properties, using static analysis [Flanagan and Qadeer, 2003;
Flanagan and Freund, 2004; Sasturkar et al., 2005], run-time checking [Wang
and Stoller, 2006] and model checking [Hatcliff et al., 2004]. While these tools
are necessarily limited in the cases they can handle, and are also prone to false
alarms, they can be useful for detecting some common errors, and the underlying
theory is applicable to more rigorous verification techniques. For example, some
of this work includes techniques for detecting when a process holds a unique
pointer to a heap location, in which case operations on that location can be
treated as local actions, and when pointers “escape”, i.e. become visible to other
processes.

4.3 Applying reduction to nonblocking concurrency

To apply the reduction approach to a shared object, such as a stack or queue,
we must show that any execution of a program involving that shared object
is equivalent to one in which every operation on the shared object is executed
without interruption. Thus, the component R in the above description of the
reduction method is always the body of a procedure implementing an abstract
operation on that shared object.

We need to consider carefully what we mean by an “equivalent”, or approxi-
mating, execution. Lipton’s definition of ≤ in terms of identical states is clearly
too strong, since we can obviously ignore the effects of some assignments to local
variables, and we can ignore the order in which dynamic storage locations are
allocated. Ultimately, what we care about is whether two executions produce
the same result, and this can be captured in terms of histories. Thus, we adopt
the more general definition that α ≤ β iff for any sequences φ and ψ, if φαψ is
a valid execution, then φβ ψ is also a valid execution and has the same history
as φαψ. Of course, if two sequences of actions do lead to identical states, that
is still sufficient to prove atomicity.

Since all of the actions of R are grouped at the position of some action ak ,
any operation that begins before a1 (ends after an) in E also begins before a1

(ends after an) in E ′. Thus, the order of non-current operations is preserved, as
required for linearisability, and ak can be taken as the linearisation point for R.

89Groves L.: Reasoning about Nonblocking Concurrency ...



We assume that the shared object being implemented is encapsulated in
some kind of module structure, so the variables used to implement the object
can only be accessed via the procedures exported by that module. In the case
of algorithms that use dynamic memory, we assume that storage is allocated by
a new operation which returns a pointer to a piece of storage to which no other
pointer exists (in this program or any other program or process running on the
same system), and that the only way to create a pointer to a piece of storage is
via the new operation (so there is no pointer arithmetic or any way of converting
a number into a pointer, etc.). Thus, the only concurrency we need to consider
is concurrent execution of these procedures by other processes.

To apply the reduction approach to nonblocking concurrency, we need to
identify commutativity properties of the concurrency primitives and other ac-
tions used. It is easy to see that actions that only affect local variables are both
movers. This justifies the common assumption (which we make in our examples)
that any test or assignment containing no more than one reference to a shared
location can be treated as an atomic action [Lamport and Schneider, 1989]. Be-
cause of this result, in the code for inc in the shared counter (Fig. 1), we can
omit the assignment to b and write the CAS as CAS(c, a, a + 1), and replace
the final assignment by r := a + 1.

More generally, we can see that:

– An action that only accesses local variables, immutable shared variables,
and heap locations accessed via a unique pointer in a local variable is a both
mover.

– An action that reads a shared variable commutes with any action that does
not assign to that variable.

– An action that assigns to a shared variable commutes with any action that
does not affected by the change to that variable.

The first case is generally easy to apply, and places where this rule can be
applied can often be detected using static analysis techniques (e.g. [Flanagan
and Qadeer, 2003; Flanagan and Freund, 2004; Sasturkar et al., 2005]).

The second case requires ways of showing that a particular sequence of actions
does not alter a shared variable. In Lipton’s method, this is done by appealing to
properties of locks. In the absence of locks, we have to appeal to other information
about the program. Sometimes the outcome of a CAS is sufficient; sometimes
we have to appeal to more general behavioural properties of the program, and
an interesting aspect of our verifications is to identify the properties that are
required and consider how they can be verified.

In most nonblocking algorithms, shared variables are usually updated using
CAS (or SC), and updates to shared variables are often linearisation points so

90 Groves L.: Reasoning about Nonblocking Concurrency ...



we do not need to show that they can be moved. There are, however, some cases
where updates to shared variables are not linearisation points (and sometimes
not performed using CAS or SC), and in these cases we need to be able to show
that these actions can be moved. The interesting issue then is what we mean by
saying that an action is “not affected” by a change to a shared variable.

In addition to these issues, we find that we don’t need retain exactly the
same execution steps — we may need to delete or perhaps modify some steps —
so long as the result is an equivalent (or approximating) sequential execution of
the implementation code.

5 Counters

We will now illustrate the reduction approach by considering two variants of the
simple shared counter introduced in Section 2.

5.1 A simple counter

First, consider a shared counter, which may be operated on by a finite set of
processes P, where the only operation is inc, as shown in Section 2.2. A com-
pleted execution of inc consists of one or more iterations of the loop, followed
by an execution of r := b. To describe this more precisely, let A, B and R stand
for the assignments a := c, b := a + 1 and r := b, and C+ and C− stand for
a successful and unsuccessful CAS, respectively, performed by process p. Each
loop iteration is either a failed iteration, consisting of A followed by B followed
by C−, or a successful iteration, consisting of A followed by B followed by C+.
So, any completed execution of inc by process p consists of zero or more failed
iterations of the loop, followed by one successful iteration, followed by a R, i.e.
(AB C−)n AB C+ R, for some n ≥ 0.

In a program execution containing a completed execution of inc by process p,
these steps may be interleaved with actions of other processes (indeed, in order
for a failed iteration to occur, they must be). So, such an execution is of the
following form, where the actions comprising the execution of inc are underlined
for contrast:

α A β1 B γ1 C− δ1 · · · A βn B γn C− δn A βn+1 B γn+1 C+ γn+1 R ε

for some n ≥ 0, where α, βi , γi , δi and ε are sequences of atomic actions of inc,
i.e. sequences over {Aq ,Bq ,Rq ,C+

q ,C−
q | q ∈ P}, where βi , γi and δi contain no

p-actions and any p-action in α is part of an operation contained entirely within
α (this condition ensures that we are reducing all of the actions comprising this
execution of inc).

We now wish to show that this execution is equivalent to one in which inc is
executed without interruption. Following Lipton’s approach, we need to identify

91Groves L.: Reasoning about Nonblocking Concurrency ...



a step (i.e. a linearisation point) such that all preceding steps are right movers
and all subsequent steps are left movers.

In this algorithm, a successful CAS is clearly the linearisation point for an
inc. We can see this intuitively from the fact that this is where the counter is
updated, and thus where the effect of the operation becomes visible to other
processes; it is also indicated by the fact that two successful CAS actions will
never commute. Thus, we want to show that all steps of this inc before the
successful CAS are right movers and all steps after it are left movers.

The only step after the successful CAS is R (i.e. r := a + 1), which is a both
mover, and thus also a left mover, as it only involves local variables. So we have:

γn+1 R ≤ R γn+1 (1)

since R commutes with every action in γn+1.
Now consider the loop body. The assignment b := a + 1 only involves local

variables so is a both mover and can be moved right over any actions between
it and the next action of process p, which is a CAS. Thus, for i = 1, · · · ,n + 1,
we have:

B γi ≤ γi B (2)

since B commutes with every action in γi .
The assignment a := c is not so easy because it reads a shared variable. To

justify moving it right, we need to show that the steps between it and the next
action of process p (which is B) do not alter c — or, at least, that any changes
to c do not affect the outcome of the operation.

In the last (successful) iteration of the loop, the successful CAS finds that c
has the same value that it had when it was read in the preceding occurrence of
A. As noted in Section 2.2, this is sufficient to ensure that the update performed
by the CAS is correct. Thus, in this context, A right commutes with βn+1 γn+1:

A βn+1 γn+1 B C+ ≤ βn+1 γn+1 A B C+ (3)

So long as inc is the only operation on the shared counter, C+ is the only
action that can modify the counter, and no sequence of actions by other processes
can modify the counter and return it to its previous value (ignoring possible
wrap-around), so we can infer that no action in βn+1 γn+1 changes the counter. If
we add a dec operation to the shared counter, however, as outlined in Section 2.3,
we cannot show that βn+1 γn+1 does not change the counter, but the fact that
any such change returns the counter to the value it had when the snapshot was
taken means that reading c after execution of βn+1 γn+1 will lead to the same
result. Thus, in this case we argue that A can be moved over all of βn+1 γn+1,
rather than showing that it can be moved over each action of βn+1 γn+1.

92 Groves L.: Reasoning about Nonblocking Concurrency ...



Now consider a failed iteration of the loop. We want to move the steps of
these iterations right over the steps of other processes (i.e. βi and γi). We can
move B right over γi , as before. However, in such an iteration, the steps between
the A that loads c and the failed CAS must alter c, so we can’t move A right over
those steps. More precisely, it is not the case that Aβi γi B C− ≤ βi γi AB C−,
because in the latter, the CAS will not fail, so C− will not be enabled. If we make
this change, we will get a different execution, and possibly a different history,
because the CAS will succeed, since Aβi γi B C− ≤ βi γi AB C+ does hold. The
CAS then becomes the linearisation point, and the rest of the execution of inc
will not happen.

Similarly, we can’t usually move a failed CAS right over steps of other
processes, since those steps may alter c, so the value of c tested may change,
so it may not be the case that C− γi ≤ γi C− (in fact, this does not create a
problem in this example, but in general it may).

We can avoid the problem by observing that in constructing the serial exe-
cution, we do not have to retain exactly the same steps. So long as the reduced
execution is still an execution of the code for that operation and produces the
same result, we will obtain the same history. In this case, iterations in which the
CAS fails have no observable effect — A and B assign to local variables which
are not live at the end of the loop body, since the next accesses to them are
assignments in the next iteration (this means that a and b could have been de-
clared as local to the loop body, so each iteration gets different local variables).
Thus, we can obtain an equivalent execution by simply deleting them; i.e. for
i = 1, · · · ,n, we have:

A βi B γi C− ≤ βi γi (4)

Combining (1), (2), (3) and (4), with an induction on the number of failed
iterations (n), we get:

α A β1 B γ1 C− δ1 · · · A βn B γn C− δn A βn+1 B γn+1 C+ γn+1 R ε

≤ α β1 γ1 δ1 · · · βn γn δn A B C+ R ε

which shows that the implementation of inc is atomic.
Thus, we obtain an equivalent execution in which the implementation of inc is

executed without interruption, in which case the loop will only ever perform one
iteration as the CAS will succeed. The observable effect of an inc which retries
n times is the same as if it did not make the failed attempts, but waited until
it was able to execute without interruption. Repeating this transformation for
every operation execution will reduce the execution to an equivalent sequential
execution.

It is easy to show that this execution correctly implements the abstract oper-
ation of incrementing the counter. For example, we can prove this using a simple

93Groves L.: Reasoning about Nonblocking Concurrency ...



relational semantics. Let the semantics of an assignment x := e be given by the
relation x ′ = e, and CAS(loc, old ,new) by loc = old ∧ loc′ = new ∨ loc �=
old ∧ loc′ = loc (we will assume implicitly that any variable not appearing in
primed form remains unaltered), then the sequence AB C+ R is equivalent to
(a ′

p = c)o
9(b′p = ap+1)o

9(c = ap)o
9(r ′

p = bp), which implies c′ = c+1 ∧ r ′
p = c+1.

5.2 A bounded counter

Next, consider a shared bounded counter, which is constrained to be between 0
and N , for some natural number N . To avoid the possibility of an inc operation
blocking when the counter reaches its bound, we extend the definition of inc so
that when it would produce a result that is out of range, it leaves the counter
unchanged and returns a special value to indicate that this occurred. We write
this value as ⊥ (where ⊥ �∈ nat) and change the result type of inc to be nat⊥ =
nat∪{⊥}. To simplify the example, we will exploit the result given in Section 4.3
to omit the assignment to b and replace its remaining occurrences by a +1. The
resulting code is shown in Fig. 5.

inc(out r : nat⊥) =̂

var a : nat ;

repeat

a := c;

if a = N then r := ⊥; return fi

until CAS(c, a, a + 1);

r := a + 1

Figure 5: inc operation for bounded counter

We now need to consider three kinds of executions of the loop. We have
successful and failed iterations, as in the previous example. We also have new
kind of iteration, which returns from the operation without altering the shared
object. We call this an exceptional iteration.

A failed iteration is of the form:

(a := c)p β (a = N )−p γ C−
p

As before, the steps of an unsuccessful iteration have no observable effect (since
a is not live at the end of the loop body) and can be discarded:

94 Groves L.: Reasoning about Nonblocking Concurrency ...



(a := c)p β (a = N )−p γ C−
p ≤ β; γ (5)

A successful iteration, along with the final assignment, is of the form:

(a := c)p β (a = N )−p γ C+
p δ (r := a + 1)p

Since a := c, a = N and r := a + 1 only involve local variables, we can move
the a := c and a = N right and r := a + 1 left to the position of the CAS:

(a := c)p β (a = N )−p γ C+
p δ (r := a + 1)p

≤ β γ (a := c)p (a = N )−p C+
p (r := a + 1)p δ

(6)

An exceptional iteration is of the form:

(a := c)p β (a = N )+p γ (r := ⊥)p

This time we cannot move a := c right over β, since β might alter c in a way
that invalidates the result of the test a = N . We can, however, move (a = N )p
and (r := ⊥)p left over β and β γ, respectively:

(a := c)p β (a = N )+p γ (r := ⊥)p ≤ (a := c)p (a = N )+p (r := ⊥)pβ γ (7)

Thus, the linearisation point is the assignment which reads c. This is a com-
mon pattern for (cases of) operations that do not change any shared data —
but one that is often handled incorrectly in informal proofs of linearisability. In
this case, the effect is the same as if the value of c was tested as soon as it was
loaded.

Thus, we can reduce any execution containing a complete execution of inc
to one in which inc is executed without interruption, so the implementation of
inc is atomic.

In the case of a successful iteration, the sequence of p-actions is equivalent
to c �= N ∧ c′ = c + 1 ∧ r ′

p = c + 1, which correctly implements inc for the case
where the counter has not reached its bound.

In the case of an exceptional iteration, the sequence of p-actions is equivalent
to c = N ∧ c′ = c ∧ r ′

p = ⊥, which correctly implements inc for the case where
the counter has reached its bound.

If the only operation provided for the counter is inc, if the counter reaches
its bound it will remain there indefinitely. If the counter also provided a dec
operation, as outlined earlier, it would be possible for the counter to reach its
bound and at some later stage be reduced so that it is again below the bound.
In this case the fact that inc returns ⊥ would just mean that it saw c = N at
some stage, not that c is equal to N when the operation returns. Similarly, the
fact that inc does not return ⊥ does not mean that c has not reached its bound

95Groves L.: Reasoning about Nonblocking Concurrency ...



when the operation returns, just that it had not reached its bound at the point
where it was read. Both of these behaviours are perfectly acceptable under the
definition of linearisability.

6 A Simple Lock-Free Stack

We now consider a simple lock-free stack, based on that described by Michael
and Scott [Michael and Scott, 1998] and attributed to Treiber [Treiber, 1986].5

The stack implementation employs a simple linked list representation, using the
declarations shown in Fig. 6.

The implementations of the stack operations are also shown in Fig. 6. We
assume automatic dereferencing; for example, we write n.val to refer to the val
field of the node pointed to by n.

type Ptr = pointer to Node

type Node = (val : T ; next : Ptr)

var Top : Ptr := null

push(in x : T ) =̂

var n, ss : Ptr ;

n := new Node();

n.val := x ;

repeat

ss := Top;

n.next := ss

until CAS(Top, ss,n)

pop(out y : T⊥) =̂

var ss, ssn : Ptr ;

repeat

ss := Top;

if ss = null then y := ⊥; return fi;

ssn := ss.next

until CAS(Top, ss, ssn);

y := ss.val

Figure 6: Lock-free stack implementation

These operations both have the same structure as the inc operation discussed
earlier. They each repeatedly take a snapshot, ss, of the top of the stack, use
it to prepare a new value, and then use a CAS to update the top of the stack,
providing it has the same value it had when the snapshot was taken.
5 Treiber’s version is given in System/370 assembler code; our version is based on the

pseudocode version presented in [Michael and Scott, 1998].

96 Groves L.: Reasoning about Nonblocking Concurrency ...



A push operation allocates a new node and stores the value to be pushed in
its val field. On each iteration of the loop, push reads the current top of stack,
stores it in the next field of the new node, and attempts to make Top point to
the new node.

A pop operation repeatedly reads the current top of the stack and tests to
see if the stack is empty, in which case pop returns ⊥. If the stack is not empty,
pop reads the next field from the first node and attempts to make Top point to
that node. When the loop exits, the val field of the node just removed from the
list is returned as the popped value.

We will now consider how to show that push and pop are atomic.

6.1 Atomicity of push

A completed execution of push consists of two initial assignments, followed by
zero or more failed iterations of the loop, followed by a successful iteration.

A failed iteration again has no visible effect — it assigns to a local variable
(ss) and a field of a heap location to which the process has a unique pointer
(n.next), neither of which is live at the end of the loop body since the next
accesses to them are assignments in the next iteration — so can be deleted.

(ss := Top)p α (n.next := ss)p β CAS(Top, ss,n)−p ≤ α β (8)

Thus, we only need to consider an execution consisting of the two initial
assignments and a successful iteration of the loop. The successful CAS is clearly
the linearisation point, so we want to show that the other statements can be
moved right over steps of other processes.

The assignments to n.val and n.next are both movers, and thus right movers,
since n is a unique pointer.

(n.val := x )p α ≤ α (n.val := x )p
(n.next := ss)p α ≤ α (n.next := ss)p

(9)

Two executions of either of these assignments by different processes can commute
because they must be assigning to fields of different nodes. Likewise, an execution
of y := ss.val or ss := ss.next by another process can commute with n.val := x
or n.next := ss, respectively, since ss and n must point to different nodes. This
is a consequence of our assumption that the storage allocator always returns a
new node to which no other pointer exists.

The assignment which allocates a new node can also be treated as a both
mover, and thus a right mover. It clearly commutes with any action other than
another storage allocation. Two storage allocating assignments performed by
different processes commute since we assume that nodes are allocated nondeter-
ministically. Thus, if there is an execution in which p is allocated pointer l1 and

97Groves L.: Reasoning about Nonblocking Concurrency ...



q is later allocated pointer l2, there is also an execution in which q is allocated
l2 and p is later allocated l1.6

(n := new Node())p α ≤ α (n := new Node())p (10)

Finally, in a successful iteration, we know that the value of Top when the
successful CAS is executed is the same as it was when Top was read into ss.
We can therefore move ss := Top right over any steps between it and the next
execution of n.next := ss by that process, which we have already shown can be
moved right to be next to the subsequent CAS.

(ss := Top)p α (n.next := ss)p CAS(Top, ss,n)+p
≤ α (ss := Top)p (n.next := ss)p CAS(Top, ss,n)+p

(11)

In order for the CAS to update the stack correctly, we require that ss and
ss.next are both equal to Top. The former is guaranteed by the CAS; the latter is
guaranteed by the fact that we can commute assignments to n.next by different
processes, which follows from the fact that n is guaranteed to be a unique pointer
because storage is not reused.

Notice that in this case, we argue that ss := Top can be moved over all of α,
not over individual steps of α. In this implementation, it is possible for elements
to be pushed onto the stack and then popped off again between p reading its
snapshot and performing its CAS, so the stack data structure (and thus the
abstract stack) has changed to a different value and back the its former value.
This is similar to the case of a counter with inc and dec operations, and in this
case the guarantee provided by CAS is just what we want — using LL/SC would
cause the operation to retry unnecessarily in this situation.

Combining (8), (9), (10) and (11), we conclude that the implementation of
push is atomic, since any execution containing a completed execution of push
can be reduced to one in which the following sequence is executed serially:

n := new Node(); n.val := x ; ss := Top; n.next := ss; CAS(Top, ss,n)+

This sequence is equivalent to executing the obvious sequential implementa-
tion of push shown in Fig. 7. We thus conclude that the implementation of push
is linearisable.

6.2 Atomicity of pop

A completed execution of pop consists of zero or more unsuccessful iterations
of the loop, followed by either: a successful iteration and an occurrence of y :=
6 Alternatively, we can argue that changing the location that is allocated does not

alter the observable behaviour, so both executions have the same history.

98 Groves L.: Reasoning about Nonblocking Concurrency ...



push(in x : T ) =̂

var n : Ptr ;

n := new Node();

n.val := x ;

n.next := Top;

Top := n

pop(out y : T⊥) =̂

if Top = null then

y := ⊥
else

y := Top.val ;

Top := Top.next

fi

Figure 7: Sequential stack implementation

ss.val , returning a normal result which is an element of T ; or an exceptional
iteration, returning ⊥ because an empty stack has been detected.

As in push, an unsuccessful iteration has no visible effect — in this case, it
assigns to local variables ss, ssn and y , none of which is live at the end of the
loop body — so can be deleted.

(ss := Top)p α (ss = null)−p β (ssn := ss.next)p γ CAS(Top, ss, ssn)−p
≤ α β γ

(12)

In a successful iteration, the successful CAS is the linearisation point — it
is where the effect of the pop becomes visible to other processes, and we cannot
commute it with steps of other processes that access c. Thus, we have to show
that ss := Top, ss = null and ssn := ss.next are right movers. We also need
to show that the y := ss.val following a successful iteration (which we will
henceforth consider to be part of the successful iteration) is a left mover.

Again, as in push, the assignment ss := Top can be moved right over any
steps between it and the next execution of ss = null by that process because
the successful CAS guarantees that is reads the same value of Top. We will show
below that we can move ss = null and ssn := ss.next right so that they are
adjacent to the subsequent CAS, so the result we need is:

(ss := Top)p α (ss = null)−p (ssn := ss.next)p CAS(Top, ss,n)+p
≤ α (ss := Top)p (ss = null)−p (ssn := ss.next)p CAS(Top, ss,n)+p

(13)

The test ss = null only accesses local variables, so is a right (and left) mover:

(ss = null)p α ≤ α (ss = null)p (14)

The assignment ssn := ss.next is more subtle, since ss is not a unique pointer.
However, we can show that in this implementation, no process ever modifies the

99Groves L.: Reasoning about Nonblocking Concurrency ...



next field of a node once it has been assigned a non-null value, since the only
assignment to next is in push, when n is a unique pointer. This means that an
execution of ssn := ss.next cannot be followed by an execution of n.next := Top
in which ssn and n are equal. Thus, we can treat ssn := ss.next a right mover.

(ssn := ss.next)p α ≤ α (ssn := ss.next)p (15)

Finally, the assignment y := ss.val is a left (and right) mover because in this
implementation the val field of a node is never altered after it becomes visible
to other processes.

α (y := ss.val)p ≤ (y := ss.val)p α (16)

Combining (12), (13), (14), (15) and (16), we can see that any execution
containing a completed execution of pop which performs a successful iteration
can be reduced to one in which the following sequence is executed serially:

ss := Top; (ss = null)−; ssn := ss.next ; CAS(Top, ss,n)+; y := ss.val (17)

In order for the CAS to update the stack correctly, we require that ss be equal
to Top and that ssn be equal to Top.next . Again, the former is guaranteed by the
CAS. The latter is guaranteed by the fact that we can commute ssn := ss.next
with occurrences of n.next := ss, which follows from the fact that no action can
modify the next field of a node once it has been added to the stack by a push
operation.

In an exceptional iteration, we cannot treat the assignment ss := Top as a
mover, so we take it as the linearisation point, for the same reason that we took
a := c as the linearisation point for inc in Section 5.2, when the counter reached
its bound. We can now treat the ss = null and y := ⊥ as left movers, since they
are local.

α (ss = null)p ≤ (ss = null)p α

α (y := ⊥)p ≤ (y := ⊥)p α
(18)

Applying (18), we can see that any execution containing a completed exe-
cution of pop which performs an exceptional iteration can be reduced to one in
which the following sequence is executed serially:

ss := Top; (ss = null)+; y := ⊥ (19)

Since any completed execution of pop performs either a successful iteration or
a exceptional iteration, any execution containing a completed execution of pop
can be reduced to one containing either the serial code shown in (17) or that in

100 Groves L.: Reasoning about Nonblocking Concurrency ...



(19). Since both of these executions can be obtained by executing the code for
pop without interruption, it follows that the implementation pop is atomic.

The serial executions in (17) and (19) are equivalent, respectively, to:

(Top = null)−; y := Top.val ; Top := Top.next

and
(Top = null)+; y := ⊥

and these are precisely the executions we can obtain from the obvious sequential
implementation of pop shown in Fig. 7. We thus conclude that the implementa-
tion of pop is linearisable.

Note that in simplifying the equivalent sequential execution we have swapped
the order of y := Top.val and the CAS in order to get the correct value for y
without using an extra local variable. It is easy to see that we could have put
this assignment before the CAS, which would still be correct since y := ss.val
is also a right mover, but then it would be needlessly executed in every failed
iteration.

6.3 Memory management and the ABA problem

The above verification relied on the assumption that heap locations are never
reused. This is, of course, undesirable since it means that the storage used is
proportional to the total number of push operations executed — such a memory
leak is generally regarded as an error and renders the implementation impractical
for most applications. We will now explain why this assumption is important,
and explore some of the ways in which this assumption might be relaxed and
their consequences.

The fundamental problem is that when a node is popped off the stack, other
processes may hold pointers to it in their local variables. So if pop were to free
the popped node, as it would in a sequential implementation, another process
holding a pointer to that node may subsequently attempt to access a piece of
storage which is no longer part of this program’s memory space, in which case it
will probably get some kind of memory violation error. It is also possible that the
storage is reallocated to the program by a subsequent push operation, violating
our assumption that new returns a unique pointer and invalidating the parts of
the proof that relied on that assumption.

The easiest way to relax the assumption that heap locations are not reused
is to assume that the program is executed in an environment with automatic
garbage collection. In this case, we can assume that a node is only reclaimed if
there is no pointer to it within the program. We can therefore also continue to
assume that new returns a unique pointer, and our atomicity arguments are still
valid — assuming, of course, that the garbage collection mechanism is correct

101Groves L.: Reasoning about Nonblocking Concurrency ...



and does not interfere with heap locations to which the program still holds a
pointer.

6.3.1 Using a free list

If garbage collection is not available, we can avoid memory violations and reduce
memory usage by keeping our own free list. The pop operation can then place
the popped node on the free list, and the push operation can take nodes from
the free list when possible and only allocate new storage when the free list is
empty — thus, we would replace the statement n := new Node() by a call on
an operation which takes a node from the free list if there is one and otherwise
calls new Node() to allocate a new node, and add a call at the end of pop to
an operation which adds ss to the free list. In this case, the memory required is
proportional to the maximum size is that the stack reaches.

Unfortunately, this does not entirely solve the problem, because it is still
possible for a node to be popped from the stack and pushed onto it again, after
the rest of the stack has changed, while some process still holds a pointer to it.
Since we can no longer assume that push holds a unique pointer to the node it
allocates, we need to revisit parts of our atomicity proof that relied on it.

In push, we can no longer argue that two processes performing assignments
to n.next must be assigning to different nodes because the allocated pointers are
unique. We can, however, argue that it is not possible for two push operations
that have not yet performed a successful CAS to hold pointers to the same node.
This is because, in order for a second process to obtain a pointer to the node,
the node would have to become visible to a pop operation which can then pop
it, so that it can then be pushed again, and this can only happen after the first
pushing process completes a successful CAS.

Our argument that executions of n.next := ss and ssn := ss.next can com-
mute also fails, and in the case of pop, we can no longer guarantee correct
behaviour. It is now possible for a pop to read Top into ss, then for that node to
be popped off the stack, and appear again at the top of the stack with a different
next (and val) value. Thus, although the CAS in pop succeeds, we cannot be
sure that the stack is updated correctly — we may end up losing values from
the stack and/or incorrectly adding values to the stack.

This kind of situation is called an ABA problem since it arises when a variable
being updated using a CAS can change from one value, A, to another value, B ,
and then back to its former value, A (cf. Section 2.1). CAS can only tell whether
the value of a variable is the same as it was at some earlier point, but this is
not sufficient to ensure that the update performed by the CAS is correct. The
reason why this is a problem here is that, unlike the shared counter example, the
correctness of the operation relies on the fact that other things have not changed
— in this case, the next fields of certain nodes.

102 Groves L.: Reasoning about Nonblocking Concurrency ...



We could obtain a correct implementation by using LL/SC to read the snap-
shot and update Top. Since the SC would only succeed if Top had not changed
since it was read by the preceding LL, it would fail in the situation when a node
was popped off the stack and pushed onto it again between a process performing
its LL and its SC. This would cause the implementation to retry in some situa-
tions where it doesn’t need to, but this seems inevitable.7 As discussed earlier,
practical implementations of LL/SC are not widely available.

6.3.2 Adding modification counts

A popular pragmatic “solution” to the ABA problem is to emulate the behaviour
of LL/SC by associating a modification count with each pointer variable that is
to be updated using a CAS. Each time the variable is modified, its modification
count is incremented, and the CAS tests the pointer along with its modification
count. This way, if a pointer changes from pointing to a given node and later
changes back to pointing to it again, its modification count will have changed,
and the CAS will fail.

In the stack implementation, we only update the Top pointer, so we can
associate a modification counter with it, and increment it each time Top is
changed. Thus, in the scenario outlined above, where a node is popped from the
stack and later pushed onto it again while a process still has a pointer from a
snapshot taken before the node was popped, that process’s CAS will now fail
because Top’s modification count has changed. In terms of the atomicity proof,
we can once again argue that actions that read and write the next fields of nodes
can commute, because the CAS will always fail if anything changes that has the
potential to invalidate its update.

The resulting code is shown in Fig. 8. We have changed the type of Top to
a new type, PtrC , consisting of a pointer along with a modification count, and
replaced ss by ss.ptr in the places where we want to test or copy the pointer
value. In both CASes, the new value for Top now has a modification count,
computed by incrementing the modification count of the snapshot. We write
this as though it is computed in the call to CAS, as is common in presenting
such algorithms — the implementation may involve first constructing this value
in a local variable, but we know that this statement would be a right mover and
can thus be elided. We have also made the changes describe above to utilise a
free list.

With these modifications, we can again treat ss := Top as a right mover,
because we now know that it is not possible for Top to change from an earlier
7 This could be avoided by using a Double Compare and Swap (DCAS), or a variant of

CAS which tests two locations and updates one of them — it would then be possible
for pop to test that ssn is equal to Top.next , as well as testing that ss is equal to
Top.

103Groves L.: Reasoning about Nonblocking Concurrency ...



type Ptr = pointer to Node

type Node = (val : T ; next : Ptr)

type PtrC = (ptr : Ptr ; mc : int)

var Top : PtrC := (null , 0)

push(in x : T ) =̂

var n, ss : Ptr ;

n := new node();

n.val := x ;

repeat

ss := Top;

n.next := ss.ptr

until CAS(Top, ss, (n, ss.mc+1))

pop(out y : T⊥) =̂

var ss, ssn : Ptr ;

repeat

ss := Top;

if ss.ptr = null then y := ⊥; return fi;

ssn := ss.ptr .next

until CAS(Top, ss, (ssn, ss.mc+1));

y := ss.ptr .val ;

free node(ss)

Figure 8: Stack implementation with modification counts

value and back again, since if Top is changed its modification count will have
increased and can never be decreased to its earlier value. The rest of the atomicity
argument remains unchanged.

This argument, however, is only valid if we assume that modification counts
are unbounded, whereas to be practical the approach requires that a pointer
and its modification count can be tested and updated using a single CAS. If a
pointer requires 32 bits and a CAS operates on 64-bit values, we only have 32
bits for the modification count, so it is still possible for the modification count
to wrap around and return to the same value as the snapshot. The chance of
this actually occurring can be shown to be extremely small [Moir, 1997], and
is generally assumed to be small enough to make this solution acceptable for
practical purposes.

The implementation given in Fig. 8 is similar to the stack implementation
given in [Michael and Scott, 1998], attributed to Treiber [Treiber, 1986]; the
main difference being that their version associates modification counts with all
of the nodes in the linked list even though they are never used. Treiber’s version
is given in System/370 assembler language and actually implements a free list,
so nodes do not have values associated with them, and his equivalents of push

104 Groves L.: Reasoning about Nonblocking Concurrency ...



and pop take and return pointers and do no storage allocation.
Notice that, like LL/SC, this version will cause some operations to retry when

they don’t really need to, because the stack has changed in a way that leaves the
previous version intact, but this seems to be unavoidable. It does, however, serve
to emphasise that “ABA” situations are not always bad — and, for example,
it would be silly to add modification counts to the version in Fig. 6 where no
memory reuse is done or if automatic garbage collection is used.

An alternative approach that does not suffer from the boundedness of mod-
ification counts can be found in [Herlihy et al., 2002]. Efficient management of
dynamic storage in lock-free algorithms is the subject of on-going research (e.g.
[Detlefs et al., 2001]) and further discussion is beyond the scope of this paper.

7 Conclusions

We have discussed two approaches to proving linearisability of nonblocking im-
plementations of shared data structures. We began by presenting the simulation
approach which we have used before, but explaining it in terms of augmented
executions and augmented histories.

We then showed how Lipton’s reduction method can be extended to show
linearisability of nonblocking algorithm, and used a series of simple examples to
illustrate the kinds of properties required to show that a concurrent execution
can be transformed into an equivalent serial execution. We saw that for this kind
of algorithm, we need to treat the same action differently in different executions,
and had to remove actions that we could show had no observable effect. We also
saw that the commutativity and other transformations we used were justified
by a range of program properties. Some of these can be verified using simple
forms of static analysis (such as actions only accessing local variables or heap
locations accessed via unique pointers, or liveness analysis); others relied on
deeper dynamic properties, such as the fact that a field of a node is never changed
once it is assigned a non-null value, or that if a node that was in a stack earlier
is still in the stack, it has been there continuously since the first observation.
Some of these properties may also be amenable to static analysis, others may
be able to be verified using model checking, or may require the full strength of
deductive verification.

In these examples, it was straightforward to identify a linearisation point in
the code of each operation, but as we noted in Section 3, this is not always the
case. In a related paper [Groves and Colvin, 2006], we have shown that reduction
can be used in a constructive way and used it to derive a more complicated
stack implementation, based on the one in [Hendler et al., 2004], which uses
an elimination mechanism whereby push and pop operations that experience
interference can pair off and be eliminated without altering the central stack.

105Groves L.: Reasoning about Nonblocking Concurrency ...



In this case we had to reduce two operations at once — essentially, we had a
situation where a sequence of three actions performed by two processes, φp θq ψp ,
formed a joint action consisting of a push immediately followed by a pop.

We have also used this approach to verify Michael and Scott’s lock-free queue
algorithm [Michael and Scott, 1998]. In that verification [Groves, 2008] we needed
to alter the actions in an execution as well as rearranging and/or deleting them.
In this algorithm, the action of advancing the tail pointer after a node has been
appended in an enqueue operation may be done by a different process, so we
show that if there is an execution in which this is done by one process there is an
equivalent execution in which it is done by the process performing the enqueue.
More general treatment of this kind of situation (which also occurs in several
other algorithms, e.g. [Valois, 1995; Shann et al., 2000; Ladan-Mozes and Shavit,
2004]) may rely on identifying actions that are process independent, in the sense
that it doesn’t matter which process executes them.

Compared to the simulation approach described in Section 3, the reduction
approach allows us to work with algorithms in their original form, and utilises
their algorithmic structure, rather than translating them into a transition system
form where this structure is lost. The verification is also more directly concerned
with the behaviour of the algorithm, rather than with additional control mech-
anisms needed to ensure that only valid executions are considered. Whereas the
simulation approach translates an (augmented) execution into an equivalent se-
quential history by considering one step of the execution at a time, focusing on
invariants that are maintained, the reduction approach performs a similar trans-
lation by considering the entire execution of one abstract operation at a time,
focusing on interferences that may occur between processes.

The only published work we know of that addresses the application of re-
duction to nonblocking algorithms is [Wang and Stoller, 2005], which uses sta-
tic analysis to show atomicity. They give results claiming that a successful
SC (v , val) and its matching LL(v) can be treated as a left-mover and right-
mover, respectively,8 but do not consider CAS other than when used in conjunc-
tion with modification counts. They use a notion of purity, taken from [Freund
and Qadeer, 2005], to justify discarding failed executions which have no observ-
able effect.

While it is clear that many of the properties we have used in proving re-
ductions could not be detected by a static analyser, it would be interesting to
investigate whether some form of annotation system would allow a program-
mer to easily provide sufficient information for this kind of static analysis to be
applied more widely.

In future work, we intend to undertake further verifications to see what other
8 This result appears to be false, since SC (v , val) cannot be commuted with an LL(v)

performed by a different process.

106 Groves L.: Reasoning about Nonblocking Concurrency ...



extensions to the reductions method may needed, what kinds of program prop-
erties are required in order to justify the transformations required, and what
kinds of methods are best suited to verifying these properties. We also intend to
mechanise these proofs to allow a more direct comparison with our mechanised
simulation proofs.

Acknowledgements

Thanks are due to Sun Microsystems Laboratories for financial support, to Simon
Doherty and David Friggens for helpful comments and corrections on earlier
drafts, to Robert Colvin, Mark Moir and Victor Luchangco for helpful discussion
relating to our work, and to Ernie Cohen for helpful advice, references and
suggestions regarding reduction.

References

[Back, 1993] Back, R.-J. (1993). Atomicity refinement in a refinement calculus
framework. Reports on Computer Science and Mathematics 141, Åbo Akademi.

[Cohen, 2000] Cohen, E. (2000). Separation and reduction. In Proc. 5th In-
ternational Conference on Mathematics of Program Construction (MPC), pages
45–59, London, UK. Springer-Verlag.

[Cohen and Lamport, 1998] Cohen, E. and Lamport, L. (1998). Reduction in
TLA. In International Conference on Concurrency Theory (CONCUR), pages
317–331.

[Colvin et al., 2005] Colvin, R., Doherty, S., and Groves, L. (2005). Verifying
concurrent data structures by simulation. In Boiten, E. and Derrick, J., editors,
Proc. Refinement Workshop (REFINE 2005), volume 137(2) of Electronic Notes
in Theoretical Computer Science, pages 93–110, Guildford, UK. Elsevier.

[Colvin and Groves, 2005] Colvin, R. and Groves, L. (2005). Formal verification
of an array-based nonblocking queue. In Proc. International Conference on
Engineering of Complex Computer Systems (ICECCS), pages 92–101, New York,
NY, USA. ACM Press.

[Colvin and Groves, 2007] Colvin, R. and Groves, L. (2007). A scalable lock-free
stack algorithm and its verification. In SEFM, pages 339–348. IEEE Computer
Society.

[Colvin et al., 2006] Colvin, R., Groves, L., Luchangco, V., and Moir, M. (2006).
Formal verification of a lazy concurrent list-based set algorithm. In Ball, T. and
Jones, R. B., editors, Proc. 18th International Conference on Computer Aided

107Groves L.: Reasoning about Nonblocking Concurrency ...



Verification (CAV), volume 4144 of Lecture Notes in Computer Science, pages
475–488. Springer.

[de Roever and Engelhardt, 1998] de Roever, W.-P. and Engelhardt, K. (1998).
Data Refinement Model-Oriented Proof methods and their Comparison. Cam-
bridge University Press. (With the assistance of J. Coenen and K.-H. Buth and
P. Gardiner and Y. Lakhnech and F. Stomp).

[Derrick et al., 2008] Derrick, J., Schellhorn, G., and Wehrheim, H. (2008).
Mechanising a correctness proof for a lock-free concurrent stack. In 10th IFIP
International Conference on Formal Methods for Open Object-based Distributed
Systems (FMOODS’08). to appear.

[Detlefs et al., 2001] Detlefs, D. L., Martin, P. A., Moir, M., and Steel Jr, G. L.
(2001). Lock-free reference counting. In Proceedings of the 20th Annual ACM
Symposium on Principles of Distributed Computing,.

[Doherty, 2003] Doherty, S. (2003). Modelling and verifying non-blocking al-
gorithms that use dynamically allocated memory. Master’s thesis, School of
Mathematical and Computing Sciences, Victoria University of Wellington.

[Doherty et al., 2004a] Doherty, S., Detlefs, D., Groves, L., Flood, C. H.,
Luchangco, V., Martin, P. A., Moir, M., Shavit, N., and Jr., G. L. S. (2004a).
DCAS is not a silver bullet for nonblocking algorithm design. In Gibbons, P. B.
and Adler, M., editors, Proc. Sixteenth Annual ACM Symposium on Parallel
Algorithms (SPAA), pages 216–224. ACM.

[Doherty et al., 2004b] Doherty, S., Groves, L., Luchangco, V., and Moir, M.
(2004b). Formal verification of a practical lock-free queue algorithm. In
de Frutos-Escrig, D. and Núñez, M., editors, Formal Techniques for Networked
and Distributed Systems (FORTE), volume 3235 of Lecture Notes in Computer
Science, pages 97–114. Springer.

[Doherty et al., 2004c] Doherty, S., Herlihy, M., Luchangco, V., and Moir, M.
(2004c). Bringing practical lock-free synchronization to 64-bit applications. In
Chaudhuri, S. and Kutten, S., editors, PODC, pages 31–39. ACM.

[Flanagan and Freund, 2004] Flanagan, C. and Freund, S. (2004). Atomizer:
a dynamic atomicity checker for multithreaded programs. In Proc. 31st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), pages 256–267.

[Flanagan and Qadeer, 2003] Flanagan, C. and Qadeer, S. (2003). A type and
effect system for atomicity. In Proc. ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 338–349.

108 Groves L.: Reasoning about Nonblocking Concurrency ...



[Fraser and Harris, 2007] Fraser, K. and Harris, T. (2007). Concurrent program-
ming without locks. ACM Trans. Comput. Syst., 25(2).

[Freund and Qadeer, 2005] Freund, S. N. and Qadeer, S. (2005). Exploiting pu-
rity for atomicity. IEEE Trans. Softw. Eng., 31(4):275–291.

[Groves, 2007] Groves, L. (2007). Reasoning about nonblocking concurrency
using reduction. In ICECCS, pages 107–116. IEEE Computer Society.

[Groves, 2008] Groves, L. (2008). Verifying Michael and Scott’s lock-free queue
algorithm using trace reduction. In Harland, J. and Manyem, P., editors, Com-
puting: The Australasian Theory Symposium (CATS 2008), Wollongong, Aus-
tralia.

[Groves and Colvin, 2006] Groves, L. and Colvin, R. (2006). Derivation of a
scalable lock-free stack algorithm. In International Refinement Workshop (Re-
fine 2006), Electronic Notes in Theoretical Computer Science. Elsevier.

[Guerraoui, 2004] Guerraoui, R., editor (2004). Distributed Computing, 18th In-
ternational Conference, DISC 2004, Amsterdam, The Netherlands, October 4-7,
2004, Proceedings, volume 3274 of Lecture Notes in Computer Science. Springer.

[Hatcliff et al., 2004] Hatcliff, J., Robby, and Dwyer, M. B. (2004). Verifying
atomicity specifications for concurrent object-oriented software using model
checking. In Proc. Fifth International Conference on Verification, Model Check-
ing and Abstract Interpretation (VMCAI), pages 175–190.

[Heller et al., 2005] Heller, S., Herlihy, M., Luchangco, V., Moir, M., III, W.
N. S., and Shavit, N. (2005). A lazy concurrent list-based set algorithm. In
Anderson, J. H., Prencipe, G., and Wattenhofer, R., editors, OPODIS, volume
3974 of Lecture Notes in Computer Science, pages 3–16. Springer.

[Hendler et al., 2004] Hendler, D., Shavit, N., and Yerushalmi, L. (2004). A
scalable lock-free stack algorithm. In SPAA 2004: Proceedings of the Sixteenth
Annual ACM Symposium on Parallel Algorithms, June 27-30, 2004, Barcelona,
Spain, pages 206–215.

[Herlihy, 1991] Herlihy, M. (1991). Wait-free synchronization. ACM Trans. Pro-
gram. Lang. Syst., 13(1):124–149.

[Herlihy et al., 2002] Herlihy, M., Luchangco, V., and Moir, M. (2002). The
repeat offender problem: A mechanism for supporting dynamic-sized, lock-free
data structures. In 16th International Conference on Distributed Computing
(DISC 2002), volume 2508 of Lecture Notes in Computer Science, pages 339–
353, Toulouse, France.

109Groves L.: Reasoning about Nonblocking Concurrency ...



[Herlihy and Wing, 1990] Herlihy, M. P. and Wing, J. M. (1990). Linearizabil-
ity: a correctness condition for concurrent objects. TOPLAS, 12(3):463–492.

[Hesselink, 2002] Hesselink, W. H. (2002). An assertional criterion for atomicity.
Acta Informatica, 28(5):343–366.

[III and Scott, 2004] III, W. N. S. and Scott, M. L. (2004). Nonblocking con-
current data structures with condition synchronization. In [Guerraoui, 2004],
pages 174–187.

[Jifeng et al., 1986] Jifeng, H., Hoare, C., and Sanders, J. (1986). Data refine-
ment refined. In ESOP 86, volume 213 of Lecture Notes in Computer Science,
pages 187–196. Springer-Verlag.

[Ladan-Mozes and Shavit, 2004] Ladan-Mozes, E. and Shavit, N. (2004). An
optimistic approach to lock-free fifo queues. In [Guerraoui, 2004], pages 117–
131.

[Lamport, 1990] Lamport, L. (1990). A theorem on atomicity in distributed
algorithms. Distributed Computing, 4(2):59–68.

[Lamport and Schneider, 1989] Lamport, L. and Schneider, F. B. (1989). Pre-
tending atomicity. Technical Report TR89-1005, DEC, SRC.

[Lipton, 1975] Lipton, R. J. (1975). Reduction: a method of proving properties
of parallel programs. Communications of the ACM, 18(12):717–721.

[Lynch, 1996] Lynch, N. A. (1996). Distributed Algorithms. Morgan Kaufmann.

[Lynch and Vaandrager, 1995] Lynch, N. A. and Vaandrager, F. W. (1995).
Forward and backward simulations: I. Untimed systems. Inf. Comput.,
121(2):214–233.

[Michael, 2004] Michael, M. M. (2004). Practical lock-free and wait-free
LL/SC/VL implementations using 64-bit CAS. In [Guerraoui, 2004], pages 144–
158.

[Michael and Scott, 1996] Michael, M. M. and Scott, M. L. (1996). Simple, fast,
and practical non-blocking and blocking concurrent queue algorithms. In Sym-
posium on Principles of Distributed Computing, pages 267–275.

[Michael and Scott, 1998] Michael, M. M. and Scott, M. L. (1998). Nonblocking
algorithms and preemption-safe locking on multiprogrammed shared memory
multiprocessors. J. Parallel Distrib. Comput., 51(1):1–26.

[Moir, 1997] Moir, M. (1997). Practical implementations of non-blocking syn-
chronization primitives. In Proc. 15th Annual ACM Symposium on the Princi-

110 Groves L.: Reasoning about Nonblocking Concurrency ...



ples of Distributed Computing (PODC 1997), Santa Barbara, CA., pages 219–
228.

[Moir et al., 2005] Moir, M., Nussbaum, D., Shalev, O., and Shavit, N. (2005).
Using elimination to implement scalable and lock-free fifo queues. In Proc. 17th
Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA
2005), pages 253–262, Las Vegas, Nevada, USA. ACM Press.

[Sasturkar et al., 2005] Sasturkar, A., Agarwal, R., Wang, L., and Stoller, S. D.
(2005). Automated type-based analysis of data races and atomicity. In PPoPP
’05: Proceedings of the tenth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 83–94, New York, NY, USA. ACM
Press.

[Shann et al., 2000] Shann, C.-H., Huang, T.-L., and Chen, C. (2000). A prac-
tical nonblocking queue algorithm using compare-and-swap. In Seventh Inter-
national Conference on Parallel and Distributed Systems (ICPADS), pages 470–
475.

[Shavit and Moir, 2004] Shavit, N. and Moir, M. (2004). Concurrent data struc-
tures. In Mehta, D. and Sahni, S., editors, Handbook of Data Structures and
Applications. Chapman & Hall/CRC Press.

[Shavit and Zemach, 1999] Shavit, N. and Zemach, A. (1999). Scalable con-
current priority queue algorithms. In In Proceedings of the 18th Annual ACM
Symposium on Principals of Distributed Computing (PODC), Atlanta, pages
113–122. ACM Press.

[Treiber, 1986] Treiber, R. K. (1986). Systems Programming: Coping with Par-
allelism. RJ5118. Technical report, IBM Almaden Research Center.

[Valois, 1995] Valois, J. D. (1995). Lock-free linked lists using compare-and-
swap. In In Proceedings of the Fourteenth Annual ACM Symposium on Princi-
ples of Distributed Computing, pages 214–222.

[Wang and Stoller, 2005] Wang, L. and Stoller, S. D. (2005). Static analysis
of atomicity for programs with non-blocking synchronization. In PPoPP ’05:
Proceedings of the tenth ACM SIGPLAN symposium on Principles and practice
of parallel programming, pages 61–71, New York, NY, USA. ACM Press.

[Wang and Stoller, 2006] Wang, L. and Stoller, S. D. (2006). Runtime analysis
of atomicity for multithreaded programs. IEEE Trans. Softw. Eng., 32(2):93–
110.

111Groves L.: Reasoning about Nonblocking Concurrency ...


