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Abstract: A common approach in designing relational databases is to start with a
universal relation schema, which is then decomposed into multiple subschemas. A good
choice of subschemas can be determined using integrity constraints defined on the
schema, such as functional, multivalued or join dependencies.

In this paper we propose and analyze a new normal form based on the idea of min-
imizing overall storage space and update costs, and as a consequence redundancy as
well. This is in contrast to existing normal forms such as BCNF, 4NF or KCNF, which
only characterize the absence of redundancy (and thus space and update time min-
imality) for a single schema. We show that our new normal form naturally extends
existing normal forms to multiple schemas, and provide an algorithm for computing
decompositions.
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1 Introduction

When designing a database schema, the first question one should ask is “What
do I want to achieve?”, or in other words: “What characterizes a good design?”
This is typically answered by normal forms, which aim at characterizing schemas
with desirable properties. For operational databases (as opposed to e.g. data
warehouses, where the focus is mainly on query optimization) a typical desir-
able property is the absence of redundancy. If a piece of information is stored
multiple times, then this causes problems: The size of our database increases, it
is possible to store inconsistent data (although this can often be prevented by
enforcing integrity constraints), and updates to this piece of information must
be performed multiple times in different places.

However, the problem with trying to prevent redundancy altogether is that
it simply isn’t always possible.

Example 1. Consider the schema R = {Course, Lecturer, Student} with con-
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straints Σ = {Course → Lecturer} and instance:

Course Lecturer Student

Algebra Koehler 123456
Algebra Koehler 234567
Programming Link 345678
Programming Link 456789

Here the lecturer for a course is stored twice, but this redundancy can be removed
by decomposing R into {Course, Lecturer} and {Course, Student}:

Course Lecturer

Algebra Koehler

Programming Link

Course Student

Algebra 123456
Algebra 234567
Programming 345678
Programming 456789

While now the lecturer is stored only once for each course, the set of courses of-
fered is stored twice: once in {Course, Lecturer} and again in {Course, Student}.

The problem of unavoidable redundancy becomes especially obvious if we
want to achieve other design goals as well, such as preservation of integrity
constraints. We therefore will not aim at eliminating redundancy altogether,
but at minimizing the overall amount of redundancy.

This leads to another issue, namely that quantifying the amount of redun-
dancy inherent to a schema is not straight forward. While some attempts at
measuring redundancy have been made [Arenas and Libkin, 2003], they turn
out to be quite complex, and tailored to specific types of constraints. Instead,
we will use the size of instances and time for updates as indirect measures for
redundancy, following the intuition that more redundancy leads to a larger size
and longer update times. We will argue later that our size model is very useful
for (indirectly) measuring redundancy, and show that it is strongly related to
update costs, even though it does not truly reflect storage space used in real
DBMSs.

Our approach to database normalization is now the following: Among all
“suitable” decompositions, select one for which the size of instances (and/or
update time) is minimal, to the effect that we also minimize redundancy. Here
“suitable” is a generic term, which can be used to capture necessary or desirable
design goals, such as e.g. losslessness and preservation of integrity constraints.
Different choices for “suitable” lead to different normal forms, but our method
for comparing decompositions is independent of that choice (the definition of
“suitable” only affects which decompositions we need to compare, but not how
to compare them).
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Before we go into more detail, and compare our approach to existing normal
forms, we introduce some basic terms from relational database theory.

1.1 Terminology

A relational database schema consists of a set of relation schemas. A relation
schema R = {A1, A2, . . . , An} is a finite set of attributes. Each attribute Ai has
a domain dom(Ai) associated with it. Domains are arbitrary sets, but unless
explicitly stated otherwise, we will assume that domains are countably infinite.

A relation r over a relation schema R is a finite or infinite set of tuples, and
each element ei ∈ dom(Ai) of the tuple corresponds to one attribute Ai ∈ R.
Relations over a schema are also commonly referred to as schema instances or
tables. Sets of schema instances, one for each relation schema in a database
schema, are called database instances.

A vital tool for managing data are integrity constraints. They describe, usu-
ally in a syntactic manner, what instances of a database schema are acceptable
or valid. Formally, an integrity constraint on R is a function mapping relations
r on R to {true, false}. We say that a constraint holds on r if it maps r to true.

With each relation schema we associate a set Σ of integrity constraints, in
particular functional dependencies (FD), multivalued dependencies (MVD) and
join dependencies (JD). These restrict which relations over R we may store. We
say that a set Σ of constraints over R implies a constraint (or set of constraints)
c, written Σ � c, if c holds on every relation r over R for which all constraints
in Σ hold. If two sets of constraints Σ and Σ′ imply each other, we call Σ a
cover of Σ′ (and vice versa). We say that a FD X → Y ∈ Σ is redundant in Σ,
if Σ \ {X → Y } implies X → Y (and thus is still a cover of Σ).

At this point we need to consider two options: If we allow relations to be in-
finite, we get a different notion of implication than we get when considering only
finite relations. In the latter case, implication is commonly referred to as finite
implication, and these notions of implications can be different [Casanova et al.,
1982]. In this work we shall consider only finite relations. However, implication
and finite implication are actually the same for functional and join dependencies
[Maier, 1983], so most of our results also hold for infinite relations.

A functional dependency on R is an expression of the form X → Y (read
“X determines Y ”) where X and Y are subsets of R. For attribute sets X,Y

and attribute A we will write XY short for X ∪ Y and A short for {A}. We say
that a FD X → Y holds on a relation r over R if every pair of tuples in r that
coincides on all attributes in X also coincides on all attributes in Y . We call a
FD X → Y trivial if Y ⊆ X. Trivial FDs are the only FDs which hold on every
relation. A set X ⊆ R is a key of R w.r.t. a set Σ of integrity constraints on R, if
Σ implies X → R. Note that some authors use the term ’key’ only for minimal
keys, and call keys which may not be minimal ’superkeys’.
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To testing whether a FD X → Y is implied by a set Σ of other FDs, we
compute the closure X∗ of the left hand side X, which is the set of all attributes
determined by X:

X∗ := {A ∈ R | X → A ∈ Σ∗}
In the rare case where the set Σ is not clear from the context, we write X∗Σ .

Once computed, we only need to check whether the right hand side Y is a
subset of X∗. Computing X∗ can be done quickly using the well-known closure
algorithm, which can be implemented to run in linear time [Beeri and Bernstein,
1979].

Comment.

Algorithm “closure”

INPUT: set of FDs Σ, attribute set X

OUTPUT: X∗, the closure of X w.r.t. Σ

X∗ := X

while ∃X ′ → Y ∈ Σ with X ′ ⊆ X∗, Y � X∗ do
X∗ := X∗Y

end

For a set X ⊆ R we denote the projection of r onto the attributes in X by
r[X]. The join of two relations r[X] and r[Y ] is a relation on X ∪ Y :

r[X] �� r[Y ] :=
{

t

∣∣∣∣∃t1 ∈ r[X], t2 ∈ r[Y ].
t[X] = t1 ∧ t[Y ] = t2

}

A join dependency on R is an expression of the form �� [R1, . . . , Rn] where
the Ri are subsets of R with

⋃
Ri = R. We say that the JD �� [R1, . . . , Rn] holds

on r if the decomposition {R1, . . . , Rn} is lossless for r, i.e., if

r[R1] �� . . . �� r[Rn] = r

A multivalued dependency on R is a join dependency �� [R1, R2] with only
two subschemas. It is usually written as X � Y where X = R1 ∩ R2 and
Y = R1 \ R2 or Y = R2 \ R1.

1.2 Normal Forms

A common approach in designing relational databases is to start with a universal
relation schema, which is then decomposed into multiple subschemas. A good
choice of subschemas can often be determined using integrity constraints defined
on the original schema. Note that we only consider relations which are globally
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consistent, i.e., relations for subschemas are obtained as projections of a universal
relation.

To ensure that the schemas of a decomposition D = {R1, . . . , Rn} with
Ri ⊆ R can hold the same data as the original schema R, we must ask for
a decomposition that has the lossless join property, i.e., the join dependency
�� [R1, . . . , Rn] must be implied by Σ.

Another common requirement is that the decomposition should be depen-
dency preserving or faithful, i.e., the dependencies on the schemas Ri which are
implied by Σ should form a cover of Σ. This allows a database management sys-
tem to check constraints for individual relations only, without having to compute
their join. The projection of a set Σ of FDs onto Ri ⊆ R is

Σ[Ri] := {X → Y ∈ Σ | XY ⊆ Ri}

Thus a decomposition D = {R1, . . . , Rn} is dependency preserving if(⋃
Σ∗[Ri]

)∗
=

(⋃
Σi

)∗
= Σ∗

where Σi is a cover for Σ∗[Ri] (when describing the decomposition, we usually
want to represent Σ∗[Ri] by a smaller cover for it). Note that it is not sufficient
to only project Σ onto the Ri, rather than Σ∗.

Example 2. Let R = ABC with constraints Σ = {A → B,B → C}. Then
Σ[AC] = ∅, although A → C is a FD on AC which is implied by Σ.

While it is possible to define dependency preservation for other types of
constraints as well (e.g. join dependencies), we do not require this here.

Normal forms are syntactic descriptions of good relation or database schemas.
A number of normal forms have been proposed, depending on the types of in-
tegrity constraints used. We shall introduce one of them briefly here.

A relation schema R is in Boyce-Codd Normal Form w.r.t. a set Σ of FDs on
R if and only if for every non-trivial FD X → Y ∈ Σ the left hand side (LHS)
X is a key for R, i.e., X → R ∈ Σ∗, where

Σ∗ := {X → Y | X,Y ⊆ R,Σ � X → Y }

For a more thorough introduction see e.g. [Levene and Loizou, 1999; Maier,
1983; Mannila and Räihä, 1987].

1.3 Problems with Existing Normal Forms

Many normal forms proposed so far, such as BCNF, 4NF or KCNF, characterize
the absence of redundancy [Arenas and Libkin, 2003; Vincent, 1998]. This is de-
sirable for several reasons, foremost the avoidance of update anomalies [Maier,
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1983] and minimization of storage space [Biskup, 1995]. However, these nor-
mal forms have significant drawbacks. First, they only consider a single relation
schema, instead of considering all schemas in a decomposition together. While
this is not strictly true for the normal form proposed by Topor and Wang in
[Wang and Topor, 2005], their approach only considers pairs of schemas at a
time, and thus cannot capture redundancy across larger schema sets.

The common generalization to multiple schemas is that the whole schema
collection is in that normal form, if every schema taken individually is. But this
means that those normal forms cannot capture redundancy which exists across
multiple relations. As a trivial example, we can duplicate a schema. Clearly
the extra schema is then superfluous in the whole schema collection, but each
schema taken individually may still be redundancy free. But even if no schemas
or attributes in a schema collection are superfluous, the design may not be
desirable.

Example 3. Let R = ABCD and Σ = {AB → CD,CD → B}. Then R is
not in BCNF, but has a dependency preserving BCNF decomposition into the
subschemas ABC,ABD,BCD.

However, for any instance r of R, the projections of r onto the schemas ABC

and ABD together already take up more space than the original relation r: no
tuples are lost in the projection since AB is a key, and the attributes A and B

are stored twice:

A B C D

1 1 1 1
2 1 1 1
1 2 1 2

⇒
A B C

1 1 1
2 1 1
1 2 1

A B D

1 1 1
2 1 1
1 2 2

B C D

1 1 1
2 1 2

While we have not defined what redundancy means for multiple schemas, it seems
intuitively clear that this decomposition should not be called “redundancy free”.
From a storage space point-of-view, it is clearly less desirable than the original
schema R. Also updates may take longer in decomposed form: If we want to e.g.
update the value for B which is determined by C = 1,D = 1, we need to change
only 2 tuples in r, but a total of 5 tuples in the decomposed representation.

The second big problem is that dependency preserving decompositions into
these normal forms do not always exist [Beeri and Bernstein, 1979]. Thus, when
faced with such a case, a designer must either accept the loss of some depen-
dencies, or cannot achieve the normal form in question. We believe that what a
normal form should do, is the following:

Characterize “good” representations (i.e., decompositions) of a schema, in
such a way that a “good” representation does always exist. Furthermore,
the definition of “good” should have a clear semantic motivation.
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In the following we will propose a normal form which meets this criterion. In
section 2 we define our Domination Normal Form (DNF) based on different
ordering pairs for comparing decompositions. These ordering pairs will then be
shown to be equivalent in section 3, leading to a syntactical characterization for
DNF. This is then used in section 4 to compare DNF to existing normal forms.
Finally, an algorithm for computing decompositions is given in section 5.

A short version of this paper appeared in [Köhler, 2007].

2 Minimization as Normal Form

The approach we suggest is the following: among a set of suitable decompositions
(e.g. the set of all lossless, or lossless and dependency preserving decompositions),
we characterize the “best” ones. We do so by defining an order on the decompo-
sitions, such that the “best” decompositions are the minimal ones with respect
to that order.

This leaves the question of when to call one decomposition better than an-
other one. The motivation for many normal forms proposed so far has been
the elimination of redundancy (and with it, the absence of update-anomalies).
This may suggest to define a quantitative measure of redundancy over multiple
schemas, similar to the work of Arenas and Libkin in [Arenas and Libkin, 2003].

We take a different approach here: instead of trying to minimize redundancy,
we try to minimize the size of instances and time for updates. Intuitively this
should lead to similar results, an assumption which is supported by the findings
of Biskup in [Biskup, 1995], but measures for size and update time appear easier
to construct than measures for redundancy (cf. [Arenas and Libkin, 2003]). In
the following we will define and motivate different orders on decompositions. By
proving them to be equivalent, we will establish a syntactic characterization for
a semantically motivated definition.

2.1 Ordering by Size of Instances

Our first approach measures the space required to store an instance. For that
we need to know for each element of a domain how much storage space it re-
quires. We represent this knowledge by associating with each domain Dom a
size function

size : Dom → N

Comment. Consider e.g. the following domains:

– STRING containing strings of arbitrary length

– STRING[40] containing strings of length up to 40
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– INT containing arbitrarily large integers

– INT (64) containing all 64-bit integers

– BOOLEAN containing the values TRUE and FALSE

A realistic measure for the size of a string might be its length, the size of an
integer i might be defined as log(i), and the size of TRUE and FALSE might
be one.

In this work we shall assume that all domains are infinite, and that the
size functions on them are positive and unbounded, i.e., can grow arbitrarily
large. This can be justified as follows: While not all domains are truly infinite,
they often contain far more elements than the number of subschemas in a typ-
ical decomposition (e.g. 25640 for STRING[40] or 264 for INT (64)). Treating
these domains as infinite will allow us to draw a sharp boundary between small
(bounded) increases in size from duplicated attributes on one hand, and po-
tentially large (unbounded) increases in size from instances with large numbers
of tuples on the other. We note that this argument fails for domains such as
BOOLEAN , but in this work we will not concern ourselves with such cases.

However, for most domains occurring in practice, a constant size function
would be more realistic, e.g. 40 for STRING[40] or 8 for INT (64). The problem
with constant size functions is that the total size of instances under different
decompositions hardly ever varies by more than a small constant factor, which
makes it hard to distinguish “good” decompositions from “bad” ones (at least
our approach will not work).

On the other hand, by allowing arbitrarily large attribute values, we can
capture the fact that an attribute value may be stored arbitrarily many times,
which may cause update problems. When assuming unbounded domains, the
problems of minimizing storage space and update time become equivalent.

As it will turn out, the assumptions about infinite domains and unbounded
size functions are all we need to characterize our new normal form, i.e., we do
not require detailed knowledge about the actual size functions.

Definition 1. For a relation r over R and a decomposition D = {R1, . . . , Rn}
of R =

⋃
Rj we denote the decomposition of r by D as

r[D] := {r[R1], . . . , r[Rn]}

where r[Rj ] is the projection of r onto the attributes in Rj . When talking about
the tuples in r[D] containing an attribute A, we will mean the tuples from
relations Rj ∈ D with A ∈ Rj .

Definition 2 (Size). Let R = {A1, . . . , Ak} be a schema. For a finite relation
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r over R we define the size of r as

size(r) :=
∑
t∈r

k∑
i=1

size(πAi(t))

where πAi(t) denotes the projection of tuple t onto the attribute Ai. We then
define the size of the decomposition of r by D = {R1, . . . , Rn} of R as

size(r[D]) :=
n∑

j=1

size(r[Rj ])

While this gives us a suitable definition of size for any instance, we wish to
compare decompositions w.r.t. the size of all valid instances. If for every valid
instance r on R a decomposition D1 requires no more storage space than a
decomposition D2, then D1 ≤ D2 should certainly hold, indicating that D1 is
“at most as big” and thus “at least as good” as D2. Recall that we only consider
suitable decompositions, e.g. lossless or lossless and dependency preserving ones.

This alone, however, is not sufficient to characterize good decompositions:
for an instance r containing only a single element, the trivial decomposition
{R} requires less storage space than any other lossless decomposition, as those
typically need to duplicate some attributes. It would be hard to argue though
that decomposition is never necessary. So how can we distinguish decompositions
finer, based on the size of instances?

Example 4. Let R = ABC and Σ = {B → C}. R can be faithfully decomposed
into D = {AB,BC}. Clearly every relation r decomposed by D (which is a set
of relations) is at most twice as large as r. On the other hand, for every natural
number k we can construct a relation

r =

A B C

1 1 ”a very long string”
2 1 ”a very long string”
...

...
...

k + 1 1 ”a very long string”

which is more than k times larger than in decomposed form:

r[AB] =

A B

1 1
2 1
...

...
k + 1 1

r[BC] =
B C

1 ”a very long string”
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This observation motivates the following definitions, which compare decom-
positions similarly to the “big-O” comparison (e.g. 3x2 + x ∈ O(x2)) from com-
plexity theory.

Definition 3 (Size (c-)domination). Let R be a schema with constraints Σ

and D1,D2 be decompositions of R. We say that D1 c-dominates D2 (where ”c”
stands for complexity) if there exists a constant k such that for all finite relations
r over R that satisfy Σ we have

size(r[D1]) ≤ k · size(r[D2])

We further say that D1 dominates D2 if the above relationship holds for k =
1. We abbreviate c-domination and domination as D1 ≤c D2 and D1 ≤ D2,
respectively. We say that D1 strictly (c-)dominates D2, written D1 <(c) D2, if
D1 (c-)dominates D2 but not vice-versa.

It is easy to see that both domination and c-domination are reflexive and
transitive, and thus are pre-orders. Clearly domination implies c-domination.

Proposition 4. Let D1,D2 be decompositions of R. If D1 dominates D2 then
D1 c-dominates D2.

Note however that strict domination does not imply strict c-domination.
In example 3 the original schema ABCD strictly dominates the decomposition
{ABC,ABD,BCD}, but both decompositions are equivalent w.r.t. c-domina-
tion. Sometimes both criteria, domination and c-domination, are used to char-
acterize the best decomposition for a schema, as the following example shows.

Example 5. Let R = ABCDE and Σ = {AB → CD,B → E}. Then the de-
composition D1 = {ABC,ABD,BE} is minimal w.r.t. c-domination but strictly
dominated by D2 = {ABCD,BE}. The trivial decomposition {R} is minimal
w.r.t. domination but strictly c-dominated by both D1 and D2.

It is however not trivial to verify that all these statements hold. In section 2.4
we will introduce a syntactical characterization of domination and c-domination,
which makes this task easier. For now, consider the following sample relation:

r =

A B C D E

1 1 1 1 “very long string”
2 1 1 2 “very long string”
3 1 2 1 “very long string”
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Here we get the projected relations:

r[D1] =

A B C

1 1 1
2 1 1
3 1 2

+

A B D

1 1 1
2 1 2
3 1 1

+
B E

1 “very long string”

r[D2] =

A B C D

1 1 1 1
2 1 1 2
3 1 2 1

+
B E

1 “very long string”

Values for attributes C,D and E occur equally often in D1 and D2, since ABC,
ABD and ABCD are all key schemas, and thus no tuples are lost in the pro-
jection. Values for attributes A and B are stored twice in D1 though, and only
once in D2. Thus D1 and D2 are equivalent w.r.t. c-domination (differing by a
factor of at most two), but D2 strictly dominates D1. Furthermore, {R} is not
dominated by either D1 nor D2, since the latter decompositions duplicate the
attribute B. It is strictly c-dominated by both of them though, since values for
attribute E can appear arbitrarily more often in R than in BE.

We are now ready to define our normal form based on the idea of minimizing
storage space.

Definition 5 (Domination Normal Form). Let R be a schema with con-
straints Σ and D be a decomposition of R. We say that D is in domination
normal form (DNF) if D is minimal w.r.t. both domination and c-domination,
with minimal meaning that no strictly smaller decomposition exists among a
given set of ‘suitable’ decompositions.

Note that this definition depends on the choice of which decompositions we
consider ‘suitable’. We will investigate two different cases (though other choices
might be of interest as well): the set of all lossless, and the set of all lossless
and dependency preserving decompositions. In each case, we effectively obtain
a different DNF.

As the number of suitable decompositions of a given schema is finite, there
must exist a decomposition among them which is minimal w.r.t. domination, as
well as a (possibly different) schema which is minimal w.r.t. c-domination. It is
however not clear yet whether a decomposition into DNF always exists, i.e., one
which is minimal w.r.t. both criteria at once. We will show this next.

Theorem6. Every schema has a decomposition into DNF.
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Proof. We use the fact that domination implies c-domination. The c-domination
pre-order induces a partition of all the (suitable) decompositions of R into equiv-
alence classes and defines a partial order on these equivalence classes. Let EQ

be a minimal equivalence class w.r.t. that order. Choose D to be minimal w.r.t.
domination among the decompositions in EQ. We claim that D is minimal w.r.t.
domination among all decompositions of R, and thus in DNF. Let D′ be any
decomposition with D′ ≤ D. Then D′ ≤c D, and since D is minimal w.r.t. c-
domination, D′ ∈ EQ. But D is also minimal w.r.t. domination in EQ, and thus
D ≤ D′. Thus no decomposition D′ strictly dominates D.

2.2 Ordering by Update Time

While storage space (size) is rather straight-forward to measure (the only real
issue arising is that of unbounded domains), update time can be measured in
more than one reasonable way. Also it is not so clear what exactly constitutes an
update. In the following we will introduce a very simple notion of updates (single
value updates) and update time, and based on this another pair of domination
and c-domination orders. This will prove equivalent to the orders by size, which
in particular illustrates why the assumption of unbounded domains is useful,
albeit not realistic.

Definition 7 (Update Location). Let R be a schema, A an attribute in R and
ϕ a boolean condition which can be interpreted for any tuple over R. Furthermore
let r be an instance of R.

We call the pair (ϕ,A) an update location for R. It updates A for the tuples

r|ϕ := {t ∈ r | ϕ(t)}

For a value a ∈ dom(A), the updated relation is then

r[A �→ a | ϕ] := {t′ | t′[A] = a ∧ ∃t ∈ r|ϕ.t′[R \ A] = t[R \ A]} ∪ r|¬ϕ

We do not want to allow arbitrary kinds of updates though. We restrict
ourselves to updating a single value (a single value aold is replaces by a new
value a in multiple tuples), and the updated relation should still be valid, at
least for most new values a. By valid we mean satisfying all constraints specified
on R.

Definition 8 (Valid Update Location). Let r be a valid instance of R. We
say that the update location (ϕ,A) is valid for r, if

(i) t[A] = t′[A] for all t, t′ ∈ r|ϕ
(ii) for every value a ∈ dom(A) which does not appear in r, the updated relation

r[A �→ a | ϕ] is a valid instance of R
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We can now measure the time it takes to update a relation under different
decompositions. Since this is independent from the new value a assigned to A,
we only require the update location. Basically, we measure the number of “cells”
in the relation tables which need to be updated.

Definition 9 (Count). For a finite relation r over schema R and an attribute
A we define the count of A on r as

countA(r) :=

{
|r| if A ∈ R

0 if A /∈ R

where |r| denotes the number of tuples in r. We then define the count of A on r

decomposed by a decomposition D = {R1, . . . , Rn} of R as

countA(r[D]) :=
n∑

j=1

countA(r[Rj ])

Definition 10 (Update Time). Let r be a valid instance of R, and (ϕ,A) a
valid update location for r. Furthermore let D be a decomposition of r. Then
the update time for relation r at location (ϕ,A) while decomposed under D is

time(r, ϕ,A,D) := countA(r|ϕ[D])

Example 6. Consider again R = ABCD and Σ = {AB → CD,CD → B} from
Example 3, with decomposition D = {ABC,ABD,BCD} and instance r:

A B C D

1 1 1 1
2 1 1 1
1 2 1 2

The update location (ϕ,B) with ϕ(a, b, c, d) := “c = 1 ∧ d = 1” is valid for r.
When decomposed, r|ϕ[D] takes the form

A B C

1 1 1
2 1 1

A B D

1 1 1
2 1 1

B C D

1 1 1

which gives us an update time of time(r, ϕ,B,D) = 2 + 2 + 1 = 5.

While this notion of update time is rather simplistic, is suffices for our pur-
poses. We can now describe domination and c-domination w.r.t. update time.

Definition 11 (Update Time (c-)domination). Let R be a schema with de-
compositions D1,D2. We say that D1 c-dominates D2 w.r.t. update time, if there
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exists a constant k such that for all valid relations r over R and update locations
(ϕ,A) which are valid for r, we have

time(r, ϕ,A,D1) ≤ k · time(r, ϕ,A,D2)

Again, we say that D1 dominates D2 w.r.t. update time, if the above relationship
holds for k = 1, and use the same notation for this as before.

2.3 Ordering by Attribute Count of Instances

We now introduce an order pair which is similar to both order pairs introduced
so far. Instead of measuring the total size of instances, we count the number
of tuples an attribute appears in. This gives us domination and c-domination
pre-orders for each attribute, and we can then combine these to get another pair
of orderings for decompositions.

While this ordering lacks the intuitive motivation of the previous orderings,
it will be a useful tool for connecting them with the syntactic ordering presented
in the next section.

Definition 12 (Single Attribute (c-)domination). Let R be a schema with
FDs Σ, A an attribute and D1,D2 decompositions of R. We say that D1 c-
dominates D2 w.r.t. A if there exists a constant k such that for all finite relations
r over R that satisfy Σ we have

countA(r[D1]) ≤ k · countA(r[D2])

We further say that D1 dominates D2 w.r.t. A if the above holds for k = 1.

Thus, for each attribute A, we get a c-domination and domination pre-orders.
We combine those pre-orders by intersection.

Definition 13 (Attribute Count (c-)domination). Let R be a schema and
D1,D2 decompositions of R. We say that

D1

{
dominates
c-dominates

}
D2 w.r.t. attribute count

if for every attribute A ∈ R we have D1

{
dominates
c-dominates

}
D2 w.r.t. A.

2.4 Ordering by Containing Schema Closures

The previous order pairs introduced are defined by considering all valid instances.
This is not very practical if we wish to actually decide for two given decomposi-
tions whether one (c-)dominates the other. We therefore present a further pair
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of orders, which is defined by considering only the decompositions, rather than
instances on them.

The approach we use is similar to attribute counting. The count of an at-
tribute depends on the set of schemas it lies in. While it also depends on the
instance r, it is easy to show that the number of tuples in r[Rj ] is determined
by the closure R∗

j of Rj (and by r). Recall that the closure R∗
j of Rj under Σ is

R∗
j := {A ∈ R | Σ � Rj → A}

where Σ is a given set of constraints on R. In this work, we shall mainly be
interested in functional, multi-valued and join dependencies.

Lemma14. Let R be a schema with arbitrary constraints Σ, and X ⊆ R. Then
for all relations r on R we have |r[X]| = |r[X∗]|.
Proof. We can obtain r[X] by projecting from r[X∗]. The only way for the
number of tuples to decrease, is for r[X∗] to contain different tuples which are
identical on X. But this cannot happen since X functionally determines X∗.

This motivates the following definitions.

Definition 15 (Containing Schema Closures). Let R be a schema with con-
straints Σ, and D a decomposition of R. Then for any attribute A ∈ R we define
the containing schema closures (CSC) of A in D as the multiset

CSCA(D) = {R∗
j | A ∈ Rj ∈ D}

The idea behind this definition is that the containing schema closure of an
attribute A represents the attribute count for A in a way which does not rely on
particular instances, but still allows comparison of different decompositions. It
is necessary to use multisets rather than sets to represent the correct attribute
count.

Example 7. Consider again the schema R = ABCDE with constraints Σ =
{AB → CD,B → E} from example 5, and the decompositions

D1 = {ABC,ABD,BE}
D2 = {ABCD,BE}

They produce the multisets

CSCA(D1) = {ABCDE,ABCDE}
CSCA(D2) = {ABCDE}

which indicate that, for any relation r on R, the attribute A appears in twice as
many tuples in r[D1] as in r[D2]. Using sets would hide this difference.
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We will now compare decompositions using the respective CSCs of all at-
tributes. For that we need mappings between multi-sets. We allow different in-
stances of the same value in the source domain to map to different values, and
call a mapping injective if a value in the target domain is mapped to at most as
often as it occurs in the target domain.

Example 8. Given the multisets M1 = {1, 1, 2} and M2 = {a, a, b}, consider the
following multiset “mappings” from M1 to M2:

f1 = {1 �→ a, 1 �→ a, 2 �→ b}
f2 = {1 �→ a, 1 �→ b, 2 �→ a}
f3 = {1 �→ b, 1 �→ b, 2 �→ a}
f4 = {1 �→ a, 2 �→ a, 2 �→ b}

Mappings f1, f2 are injective, while mapping f3 is not. The multiset f4 does not
constitute a mapping from M1 to M2, since it maps the value 2 twice.

Definition 16 (Inclusion Domination). Let M1,M2 be two multisets (or sets
for part (i)) of attribute sets. We say that

(i) M1 weakly inclusion-dominates M2 if there exists a mapping f : M1 → M2

with e ⊆ f(e) for all e ∈ M1.

(ii) M1 strongly inclusion-dominates M2 if there exists an injective mapping
f : M1 → M2 with e ⊆ f(e) for all e ∈ M1.

Definition 17 (CSC-Domination). Let D1,D2 be two decompositions of R.
We say that D1 weakly/ strongly csc-dominates D2 if for all attributes A ∈ R

we have that CSCA(D1) weakly/strongly inclusion-dominates CSCA(D2).

Example 9. Consider again R = ABCDE with Σ = {AB → CD,B → E}, and

D1 = {ABC,ABD,BE}
D2 = {ABCD,BE}

They produce the containing schema closures

CSCA(D1) = {ABCDE,ABCDE}
CSCA(D2) = {ABCDE}
CSCB(D1) = {ABCDE,ABCDE,BE}
CSCB(D2) = {ABCDE,BE}
CSCC(D1) = CSCC(D2) = {ABCDE}
CSCD(D1) = CSCD(D2) = {ABCDE}
CSCE(D1) = CSCE(D2) = {BE}
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Looking at attribute A, we can see that CSCA(D1) weakly inclusion dominates
CSCA(D2), while CSCA(D2) strongly inclusion dominates CSCA(D1). Similarly
for attribute B, and for attributes C,D,E we get strong inclusion domination
in both directions. Thus D1 weakly csc-dominates D2, while D2 strongly (and
also weakly) csc-dominates D1.

We will prove in the next section that weak csc-domination implies c-domina-
tion, and that strong csc-domination implies domination. While the opposite
does not hold for arbitrary types of constraints, we will be able to show that it
holds for sets of functional dependencies, and in the case of weak csc-domination/
c-domination also for multi-valued and join dependencies. Thus we obtain a
syntactic characterization for c-domination and, at least in the case of functional
dependencies, for domination. For multi-valued dependencies, domination does
not imply strong csc-domination, as will become evident in example 16. Finding
a syntactic characterization for domination in this case is an open problem.

3 Equivalence of Orderings

We will show that, if the only integrity constraints on R are functional depen-
dencies, then all order pairs defined in section 2 are identical. If multi-valued
and join dependencies are also allowed, then domination w.r.t. size, update time
or attribute count need not imply weak csc-domination, but we will show that
the other equivalences between the orders in question still hold.

As multi-valued dependencies are just a special case of join dependencies,
it suffices to consider only functional and join dependencies. Unless indicated
otherwise, we will assume throughout this section that functional and join de-
pendencies are the only types of integrity constraints occurring.

Note that equivalence of (c-)domination w.r.t. size, update time and attribute
count can be established for a larger classes of integrity constraints (those which
permit permutations of domain elements for individual attributes, as well as
constant selection) just as easily. However, when constructing sample relations
to show equivalence of (c-)domination and (weak/strong) csc-domination, we
have to consider individual types of integrity constraints. Here we only have
results for functional and join dependencies.

The remainder of section 3 is devoted to proving the following theorems:

Theorem18. Let R be a schema with functional and join dependencies Σ, and
D1,D2 be decompositions of R. Then D1 (c-)dominates D2 w.r.t. size iff D1

(c-)dominates D2 w.r.t. attribute count.

Theorem19. Let R be a schema with functional and join dependencies Σ, and
D1,D2 be decompositions of R. Then D1 (c-)dominates D2 w.r.t. update time iff
D1 (c-)dominates D2 w.r.t. attribute count.
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Theorem20. Let R be a schema with constraints Σ (arbitrary, not just FDs

and JDs), and D1,D2 be decompositions of R. If D1

{
weakly
strongly

}
csc-dominates

D2 then D1

{
c-dominates
dominates

}
D2.

Theorem21. Let R be a schema with functional and join dependencies Σ,
and D1,D2 be decompositions of R. If D1 c-dominates D2, then D1 weakly csc-
dominates D2.

Theorem22. Let R be a schema with functional dependencies Σ, and D1,D2

be decompositions of R. If D1 dominates D2, then D1 strongly csc-dominates D2.

Note that these equivalence results are independent of which decompositions
we consider “suitable”: even if a decomposition is deemed unsuitable, e.g. because
it is not lossless or not dependency preserving, we can still compare it with any
other decomposition. The empty decomposition is the smallest decomposition
w.r.t. any of the orders, but clearly it should never be considered suitable.

3.1 Size vs. Attribute Count

We start by showing that the orders defined by size and attribute count are
identical. Recall that we assume that all domains are infinite, and that the size
functions associated with them are positive and unbounded.

Lemma23. Let R be a schema with functional and join dependencies Σ, and
D1,D2 be decompositions of R. If D1 (c-)dominates D2 w.r.t. size, then D1

(c-)dominates D2 w.r.t. attribute count.

Proof. If D1 does not c-dominate D2 w.r.t. attribute count, then for every integer
k there exists a relation r and an attribute A with

countA(r[D1]) > k · countA(r[D2])

For each k and associated r and A, we will construct a relation r′ for which

size(r′[D1]) > k · size(r′[D2])

holds. This shows that D1 does not c-dominate D2 w.r.t. size. For domination
we only need to consider the case k = 1.

The construction works as follows. Since the relations in r[D1] with attribute
A contain more than k times as many tuples as those in r[D2], there must be
an attribute value vA for A which appears more than k times as often in r[D1]
as in r[D2]. We construct r′ from r by substituting every occurrence of vA by
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a new value v′A which does not appear in r. As Σ contains only functional and
join dependencies, these constraints still hold for r′. Let o1, o2 be the number of
occurrences of vA in r[D1], r[D2]. We choose v′A sufficiently large, i.e., such that

size(v′A) >
k · size(r[D2]) − size(r[D1])

o1 − k · o2
+ size(vA)

This gives us (note that o1 − k · o2 > 0):

(o1 − k · o2) · (size(v′A) − size(vA)) > k · size(r[D2]) − size(r[D1])

size(r[D1]) + o1 · (size(v′A) − size(vA)) > k · size(r[D2]) +

k · o2 · (size(v′A) − size(vA))

size(r′[D1]) > k · size(r′[D2])

This concludes the proof.

Lemma24. Let R be a schema with functional and join dependencies Σ, and
D1,D2 be decompositions of R. If D1 (c-)dominates D2 w.r.t. attribute count,
then D1 (c-)dominates D2 w.r.t. size.

Proof. For every k, r (k = 1 for domination) with

size(r[D1]) > k · size(r[D2])

we need to construct a relation r′ such that for some attribute A we get

countA(r′[D1]) > k · countA(r′[D2])

Here we use that the attribute values occurring in r[D1] and r[D2] are the same.
Since size(r[D1]) > k · size(r[D2]), there must exist some attribute value vA

of an attribute A which occurs more than k times as often in r[D1] than in
r[D2]. We construct r′ from r by selecting exactly those tuples which have the
value vA on attribute A. As Σ contains only functional and join dependencies,
these constraints still hold for r′. And clearly we now have countA(r′[D1]) >

k · countA(r′[D2]).

We can combine the last two lemmas.

Theorem25 (18). Let R be a schema with functional and join dependencies
Σ, and D1,D2 be decompositions of R. Then D1 (c-)dominates D2 w.r.t. size iff
D1 (c-)dominates D2 w.r.t. attribute count.
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3.2 Update Time vs. Attribute Count

We next compare (c-)domination w.r.t. update time and attribute count.

Lemma26. Let R be a schema with functional and join dependencies Σ, and
D1,D2 be decompositions of R. If D1 (c-)dominates D2 w.r.t. update time, then
D1 (c-)dominates D2 w.r.t. attribute count.

Proof. If D1 does not (c-)dominate D2 w.r.t. attribute count, then for every
integer k (or just for k = 1) there exists an attribute A and a relation rk with

countA(rk[D1]) > k · countA(rk[D2])

Thus there must exist a value aold ∈ rk[A] which also appears that much more
often in rk[D1] than in rk[D2]. Denoting the set of tuples t in rk with t[A] = aold

as rk|ϕ with ϕ = “A = aold”, we get

countA(rk|ϕ[D1]) > k · countA(rk|ϕ[D2]) (1)

Since Σ contains only functional and join dependencies, both of which allow
permutations of domain elements for individual attributes, the updated relation
rk[A �→ a|ϕ] is valid for all values a ∈ dom(A) not occurring in rk. Thus (ϕ,A)
is a valid update location for rk, and equation (1) shows that D1 does not (c-
)dominate D2 w.r.t. update time.

Lemma27. Let R be a schema with functional and join dependencies Σ, and
D1,D2 be decompositions of R. If D1 (c-)dominates D2 w.r.t. attribute count,
then D1 (c-)dominates D2 w.r.t. update time.

Proof. If D1 does not (c-)dominate D2 w.r.t. update time, then for every integer
k (or just for k = 1) there exists a relation rk and an update location (ϕ,A)
valid for rk such that

countA(rk|ϕ[D1]) > k · countA(rk|ϕ[D2]) (2)

holds. Since R contains only a finite number of attributes, we may assume A to
be fixed for all k (although ϕ may differ).

Now let a ∈ dom(A) be a new value for A not occurring in rk. As (ϕ,A) is
valid for rk, the updated relation rk[A �→ a|ϕ] is valid. Given that Σ contains
only functional and join dependencies, both of which permit constant selection,
the subrelation r′k := rk|ϕ[A �→ a] is also valid. Since all tuples in rk|ϕ have the
same value on A (by definition of valid update location), no tuples are lost due
to duplication when updating. Thus equation (2) gives us

countA(r′k[D1]) > k · countA(r′k[D2])

which shows that D1 does not (c-)dominate D2 w.r.t. A and thus not w.r.t.
attribute count, as witnessed by the relations r′k.
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Again we combine those lemmas into one theorem.

Theorem28 (19). Let R be a schema with functional and join dependencies
Σ, and D1,D2 be decompositions of R. Then D1 (c-)dominates D2 w.r.t. update
time iff D1 (c-)dominates D2 w.r.t. attribute count.

3.3 Attribute Count vs. Containing Schema Closures - Part I

We will now show that the orders defined by attribute count and containing
schema closures are actually the same. One direction of implication is easy.

Theorem29 (20). Let R be a schema with constraints Σ (arbitrary, not just

FDs and JDs), and D1,D2 be decompositions of R. If D1

{
weakly
strongly

}
csc-

dominates D2 then D1

{
c-dominates
dominates

}
D2.

Proof. Let r be any relation on R and A some attribute in R.
If D1 weakly csc-dominates D2, then for every schema R1 ∈ D1 with A ∈ R1

there exists a schema R2 ∈ D2 with A ∈ R2 and R∗
1 ⊆ R∗

2. By Lemma 14 we
have |R1| ≤ |R2|, and each such schema R2 is mapped to at most |D1| times.
Therefore the number of tuples containing attribute A in r[D1] is at most |D1|
times larger than the number of tuples with A in r[D2]. Thus D1 c-dominates
D2 with k = |D1|.

If D1 strongly csc-dominates D2, then by Lemma 14 and due to the injectivity
of the mapping f in Definition 16, the number of tuples with attribute A in r[D1]
is no larger than the number of those in r[D2]. Thus D1 dominates D2.

To show implication in the other direction, we will assume that D1 does not
weakly or strongly csc-dominate D2, and construct example relations which show
that D1 does not c-dominate or dominate D2. These constructions will require
some work, and we devote the next subsection to them.

3.4 Subset Construction

Our goal is to construct relations over a schema D with functional and join
dependencies Σ, for which the number of tuples in their projection onto non-key
subschemas varies by an arbitrarily large factor.

Definition 30 (k-Reducing). Let R be a schema with constraints Σ and D =
{R1, . . . , Rn} a decomposition of R. We say that a non-empty relation r over R

is k-reducing w.r.t. D for an integer k if

(i) all constraints in Σ hold on r, and
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(ii) for every subschema Rj ∈ D which is not a key of R, the projection of r onto
Rj contains at most 1

k times as many tuples as r.

Example 10. Consider the schema R = ABCD with constraint set

Σ = {AB → C,C → AB,A → D,B → D}
and the (faithful and lossless) decomposition D = {ABC,AD,BD}. We can
construct a 2-reducing instance of R w.r.t. D as follows:

r =

A B C D

1 1 (1, 1) 1
1 2 (1, 2) 1
2 1 (2, 1) 1
2 2 (2, 2) 1

The FDs in Σ clearly hold, and the projections of r onto AD and BD contain
only 2 tuples, compared to 4 tuples in r.

We constructed the example relation above by creating two variables vA, vB

with domain {1, 2}, and for each value pair (vA = a, vB = b) creating a tuple
in r, making the value of A dependent on a, the value of B dependent on b,
the value of C dependent on both and the value of D dependent on neither. We
formalize this idea as follows.

Definition 31 (Lifting). Let Ω be a finite set and R be a set of attributes,
where each Ai ∈ R has a subset Si of Ω associated with it. For a positive integer
k we define the k-mappings of Ω as the total functions from Ω into {1, . . . , k}.
For each k-mapping f we define its lifting onto R as the tuple tf on R, in which
the attribute Ai has as value the partial function

f |Si : Ω → {1, . . . , k} := {x �→ y ∈ f | x ∈ Si}
We get the k-lifting of R by taking all k-mappings of Ω and lifting them all onto
R. Note that the k-lifting is a set of tuples on R, and thus a relation on R.

While the attribute values constructed by lifting k-mappings are partial func-
tions rather than elements of the attribute’s domain, it is easy to see that one
could always substitute those values with values from the proper domains (re-
call that we assumed domains to be infinite) to get an isomorphic relation on
R. Note that while this substitution may affect the size of relations, it has no
affect on attribute count. As we are only trying to relate the containing schema
closure measures to attribute count, rather than size measures directly, we will
not worry about size or domains any further.

When giving examples, we use attributes A,B, . . . rather than A1, A2, . . .,
and denote their associated subsets by SA, SB, . . . instead of S1, S2, . . ..
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Example 11. The given definitions can be related to example 10 as follows. We
have

Ω = {vA, vB}, SA = {vA}, SB = {vB}, SC = {vA, vB}, SD = ∅
Writing the total function {vA �→ a, vB �→ b} short as (a, b), we obtain the set
of all 2-mappings as

{1, 2}Ω =

⎧⎪⎪⎨
⎪⎪⎩

(1, 1),
(1, 2),
(2, 1),
(2, 2)

⎫⎪⎪⎬
⎪⎪⎭ .

These 2-mappings get lifted onto R as follows:

A B C D

(1, 1) � (1,−) (−, 1) (1, 1) (−,−)
(1, 2) � (1,−) (−, 2) (1, 2) (−,−)
(2, 1) � (2,−) (−, 1) (2, 1) (−,−)
(2, 2) � (2,−) (−, 2) (2, 2) (−,−)

This is isomorphic to relation r from Example 10.

The lifting of a k-mapping depends on the sets Si associated with the at-
tributes Ai, and these sets Si are the only free choices we have in our construc-
tion. Note that elements of Ω which do not appear in any Si do not affect the
construction, thus we may as well assume that Ω =

⋃
Si. Given a schema R

with constraints Σ and a decomposition D of R, we want to choose the sets Si

in such a way that the constructed relation is k-reducing. We will first consider
the case where Σ contains only FDs.

Definition 32 (Associated Set/Depending Attributes). For a subschema
X ⊆ R we call the set SX :=

⋃
Ai∈X

Si the subset associated with X. For v ∈ Ω

we call Rv := {Ai ∈ R | v ∈ Si} the set of attributes depending on v.

Lemma33. Let Ω and R be as in Definition 31, X a subschema of R and SX

its associated subset of cardinality s. Let rk be the k-lifting of R and xk the
k-lifting of X. Then

xk = rk[X]

and xk contains exactly ks tuples.

Proof. Let f be a k-mapping of Ω, and tf,R and tf,X its liftings onto R and X,
respectively. By definition tf,X = tf,R[X], and since this holds for all f we get
xk = rk[X].

Clearly there are ks k-mappings of SX . We show that xk contains ks tuples
by giving a one-to-one mapping between tuples of xk and k-mappings of SX .
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The components of a tuple tf,X ∈ xk are the partial functions f |Si . By
taking their union we obtain f |SX , which is a k-mapping of SX . Conversely, we
can obtain tf,X from f |SX by restricting f |SX to the associated sets Si ⊆ SX

with Ai ∈ X. This gives us the one-to-one mapping we wanted. Comment.

By taking the union of the components (i.e., attribute values) of tf,X , which
are all partial functions Ω → {1, . . . , k}, we obtain f |SX . On the other hand,
all the components of tf,X are restrictions of f |SX , which gives us a one-to-
one correspondence between tuples of xk and k-mappings of SX . There are ks

k-mappings of SX .

Lemma34. Let Ω and R be as in Definition 31, k ≥ 2 and rk the k-lifting of
R. Let further X,Y ⊆ R, and SX , SY be their associated subsets. Then the FD
X → Y holds on rk iff SX ⊇ SY .

Proof. (1) Let SX ⊇ SY , and let t1, t2 ∈ rk be tuples in rk. If t1[X] = t2[X] then
the k-mappings f1, f2 which were lifted onto R to obtain t1 = tf1 and t2 = tf2

have the same restriction to SX , that is f1|SX = f2|SX . Since SX ⊇ SY this
implies f1|SY = f2|SY , and therefore t1[Y ] = t2[Y ]. Thus X → Y holds on rk.

(2) Let SX � SY , i.e., there exists some v ∈ SY \SX . Let f1, f2 be k-mappings
of Ω which differ only on v. Then for their liftings tf1 , tf2 ∈ rk onto R we have
tf1 [X] = tf2 [X] but tf1 [Y ] �= tf2 [Y ]. Thus X → Y does not hold on rk.

Definition 35 (Open/Closed). Let R be a schema with constraints Σ. We
say that a subschema X ⊆ R is open if its complement R \X is closed under Σ,
that is,

(R \ X)∗ = R \ X

Lemma36. Let Ω, R, Σ and Si be as in Definition 31, k ≥ 2 and rk the k-
lifting of R. Let Σ contain only FDs. Then Σ holds on rk iff for every v ∈ Ω

the subschema Rv of attributes depending on v (Definition 32) is open.

Proof. (1) Let all Rv be open. Assume that some FD X → Y ∈ Σ does not
hold on rk. Then by Lemma 34 there exists some v ∈ SY \ SX . This means
that X contains no attributes which depend on v, i.e., no attributes in Rv, so
X ⊆ R \ Rv. Since R \ Rv is closed under Σ this implies Y ⊆ R \ Rv, and thus
v /∈ SY . This contradicts v ∈ SY \ SX and disproves our assumption.

(2) Let Rv not be open for some v ∈ Ω. Then there exists an attribute A ∈ Rv

with Σ � R \ Rv → A. Due to A ∈ Rv we have v ∈ SA, and clearly v /∈ SR\Rv

by Definition 32. Thus the FD R \ Rv → A does not hold on rk by Lemma 34.

Lemmas 33 and 36 indicate how we should construct the Si to obtain a rela-
tion on R which is k-reducing w.r.t. some decomposition D. For every subschema
Rj ∈ D which is not a key of R, there should be an element v ∈ Ω which does
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not lie in the subset SRj associated with Rj . At the same time, the set Rv should
be open. This leads to the following construction.

Subset Construction for FDs: Let R be a schema with FDs Σ, and D a
decomposition of R. For every subschema Rj ∈ D we form its closure R∗

j ,
and add a unique element vj to every set Si for which Ai /∈ R∗

j . The set Ω

from Definition 31 is then

Ω :=
⋃

Si = {vj | Rj ∈ D and R∗
j �= R}

Note that if D contains multiple subschemas with the same closure, it would
suffice to consider only one of them when constructing the sets Si.

Example 12. Consider again the schema R and decomposition D from examples
10 and 11. Applying the subset construction we get

ABC∗ = ABCD � do nothing
BD∗ = BD � add vBD to SA, SC

AD∗ = AD � add vAD to SB, SC

This gives us the associated subsets

SA = {vBD}, SB = {vAD}, SC = {vBD, vAD}, SD = {}
which (except for element names) are the same as in example 11.

Theorem37. Let R be a schema with FDs Σ, and D a decomposition of R. Let
the Si be constructed using the subset construction for FDs. Then for every k

the k-lifting rk of R is k-reducing w.r.t. D.

Proof. (i) Let v = vj be added to Ω when considering Rj during the subset
construction. Rv = R \ R∗

j is open, so Σ holds on rk by Lemma 36.
(ii) For every subschema Rj ∈ D which is not a key of R, SR = Ω contains

at least one more element than SRj , namely the element vj which was associated
with all attributes in R \ R∗

j . Thus by Lemma 33, the projection of rk onto Rj

contains at most 1
k times as many tuples as rk.

We will now generalize the subset construction to work with functional and
join dependencies. We first need to establish when a join dependency holds on
a k-lifting. For that, we need some basic terminology from hypergraph theory.

Definition 38 (Hypergraph). A hypergraph H on a vertex set V is a set of
subsets of V , i.e., H ⊆ P(V ). The elements of H are called edges.

Definition 39 (Connected). A hypergraph H is disconnected if V can be par-
titioned into two disjoint non-empty sets V = V1∪V2 such that every edge e ∈ H

lies completely in V1 or V2, i.e., e ⊆ V1 or e ⊆ V2. Otherwise we call H connected.
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Definition 40 (Synchronization Hypergraph). Let Ω and R be as in De-
finition 31 and �� [R1, . . . , Rn] a join-dependency on R. For every v ∈ Ω the
synchronization hypergraph of v w.r.t. �� [R1, . . . , Rn] is the projection of the
hypergraph {R1, . . . , Rn} onto Rv (the set of attributes depending on v), i.e.,

sync(v) = {R1 ∩ Rv, . . . , Rn ∩ Rv}
Lemma41. Let Ω and R be as in Definition 31, k ≥ 2 and rk the k-lifting of
R. Let further �� [R1, . . . Rn] be a join-dependency on R. Then �� [R1, . . . , Rn]
holds on rk iff for all v ∈ Ω the synchronization hypergraph Hv of v w.r.t.
�� [R1, . . . , Rn] is connected.

Proof. Let SR be the subset of Ω associated with R. Comment. Since elements

in Ω \SR do not influence rk, and their synchronization hypergraphs are empty
and thus connected, we may as well assume that Ω = SR. By definition, the
join dependency �� [R1, . . . Rn] holds on rk iff

rk[R1] �� . . . �� rk[Rn] =: jk ⊆ rk

(1) Consider a single tuple t ∈ jk, and recall that all its attribute values
are partial functions Ω → {1, . . . , k}. Let us denote the union of these partial
functions by

⊔
t, which is a relation ft ⊆ Ω×{1, . . . , k}. If ft is a function, then

t is the lifting of ft onto R, and thus t ∈ rk. On the other hand, every t′ ∈ rk

is the lifting of some function f : Ω → {1, . . . , k}, and thus
⊔

t′ = f . Together
this gives us that a tuple t ∈ jk lies in rk iff

⊔
t is a function.

(2) Let t ∈ jk, v ∈ Ω. For every subschema Rj from �� [R1, . . . , Rn] we have
that t[Rj ] = t′[Rj ] for some t′ ∈ rk, and therefore that

⊔
t[Rj ] is a partial

function. Furthermore we have⊔
t[Ri ∪ Rj ] =

⊔
t[Ri] ∪

⊔
t[Rj ]

If there exists an attribute A ∈ Ri ∩Rj , then every v associated with A has the
same image (one could say that the mapping of v is “synchronized”, hence the
name “synchronization hypergraph”) under

⊔
t[Ri] as it has under

⊔
t[Rj ], so⊔

t[Ri ∪ Rj ] is a function for v, i.e., it maps v to only a single value. For a given
v ∈ Ω let Rv be the set of attributes depending on v. Then such an attribute
A exists for v iff Ri ∩ Rv and Rj ∩ Rv are not disjoint, i.e., iff the partial
synchronization hypergraph with edges Ri ∩ Rv and Rj ∩ Rv is connected.

(3) If Hv is connected, we can use the argument of (2) multiple times to
show that for any t ∈ jk

⊔
t is a function for v. If all Hv are connected,

⊔
t is

a function, which by (1) shows t ∈ rk, and thus jk ⊆ rk. This proves the “if”
direction of the lemma.

(4) If Hv is disconnected for some v (which implies v ∈ SR), then we can
partition {R1, . . . , Rn} into two sets P1, P2 such that the attribute sets

⋃
P1∩Rv
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and
⋃

P2∩Rv are disjoint and non-empty. Since k ≥ 2 we can find two functions
f1, f2 : Ω → {1, . . . , k} which differ exactly for v. Let t1, t2 ∈ rk be their liftings
onto R. Then by definition of jk there exists a tuple t ∈ jk with

t[P1] = t1[P1] and t[P2] = t2[P2]

But this gives us ⊔
t =

⊔
t1[P1] ∪

⊔
t2[P2]

which is not a function since
⊔

t1[P1] and
⊔

t2[P2] map v to different values. As⊔
t is not a function we get t /∈ rk by (1), and thus jk � rk. This shows the

“only if” direction and completes the proof.

Definition 42 (Dependency Basis). Let X ⊆ R be an attribute set and Σ a
set of functional and join dependencies on R. The dependency basis of X w.r.t.
Σ (and R) is the finest partition DBΣ(X) of R \ X∗ into non-empty sets, such
that for every Y ∈ DBΣ(X) the multivalued dependency X � Y is implied by
Σ. Where Σ is clear from the context we will just write DB(X) for DBΣ(X).

It is well known that such a unique finest partition always exists [Mannila
and Räihä, 1987]. Note that some texts define the dependency basis of X as the
finest partition of R rather than R\X∗. As Σ implies X � A for all A ∈ X∗, this
partitions X∗ into sets each consisting of only a single attribute. Thus knowing
the partition of R\X∗ immediately gives us the partition of R as well. We chose
the given definition as it makes some formulations easier.

Comment. The following inference rules for functional and multivalued depen-
dencies are well-known to be correct [Maier, 1983; Mannila and Räihä, 1987],
and will be useful in what follows:

X � Y

X � XY
(Augmentation)

X � Y Y � Z

X � Z \ Y
(Pseudo-Transitivity)

X � Y Y → Z

X → Z \ Y
(Mixed Pseudo-Transitivity)

Lemma43. Let Σ be a set of functional and join dependencies on R. Then for
every X ⊆ R, every Y ∈ DB(X) is open, i.e., R \ Y is closed under Σ.
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Proof. Assume that R \ Y were not closed under Σ. Then for some attribute
A ∈ Y we have Σ � R \ Y → A. Since Y ∈ DB(X) we have Σ � X � R \ Y .
Using these two facts together we can derive

X � R \ Y R \ Y → A

X → A
(Mixed Pseudo-Transitivity)

Thus A ∈ X∗ ∩ Y , which is a contradiction to Y ∈ DB(X), since DB(X)
partitions R \ X∗.

Our intermediate goal is to construct (for given R,Σ and D) the sets Si, such
that for every k the resulting k-lifting rk is k-reducing. We have found such a
construction for the case where Σ contains only functional dependencies. When
Σ contains join dependencies as well, we need to adapt our construction, since
otherwise the join dependencies in Σ need not hold on rk.

Example 13. Consider the schema R = ABCD with constraints

Σ = {�� [AB,AC,AD]}
≡ {A � B|C|D}

and decomposition D = {AB,AC,AD}. Using the subset construction for func-
tional dependencies, we would get the sets

SA = {}, SB = {vAC , vAD}, SC = {vAB, vAD}, SD = {vAB, vAC}

which in turn lead to the 2-lifting (again writing partial functions as tuples):

r2 =

A B C D

(−,−,−) (−, 1, 1) (1,−, 1) (1, 1,−)
(−,−,−) (−, 1, 2) (1,−, 2) (1, 1,−)
(−,−,−) (−, 2, 1) (1,−, 1) (1, 2,−)
(−,−,−) (−, 2, 2) (1,−, 2) (1, 2,−)
(−,−,−) (−, 1, 1) (2,−, 1) (2, 1,−)
(−,−,−) (−, 1, 2) (2,−, 2) (2, 1,−)
(−,−,−) (−, 2, 1) (2,−, 1) (2, 2,−)
(−,−,−) (−, 2, 2) (2,−, 2) (2, 2,−)

It is easy to check that �� [AB,AC,AD] does not hold on r2.

We observe that the join dependency �� [AB,AC,AD] in the example above
does not hold because the sets SB, SC , SD share common elements, i.e., they
are not pairwise disjoint. This establishes a connection between the values of
B,C and D for every tuple in rk. To avoid such connections, we could associate
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vAB, vAC and vAD only with the attributes of one set Y in DB(AB),DB(AC)
and DB(AD), respectively.

While in general it is critical that for every v ∈ Ω the set Rv of attributes
associated with v is open, in order to ensure that the FDs in Σ hold on rk

(Lemma 36), Lemma 43 ensures us that every Y ∈ DB(X) is open, for any
X ⊆ R. This motivates the following construction:

Generalized Subset Construction: Let R be a schema with functional and
join dependencies Σ, and D a decomposition of R. For every subschema
Rj ∈ D with R∗

j �= R we form its dependency basis DB(Rj). Then for some
(arbitrary) set Y ∈ DB(Rj), we add a unique element vj to every set Si for
which Ai ∈ Y .

Note that when Σ contains only functional dependencies, we have

DB(Rj) = {R \ R∗
j}

Thus the generalized subset construction is identical to the subset construction
for FDs in such cases, which justifies its name.

Example 14. Consider again the schema R = ABCD with constraints

Σ = {�� [AB,AC,AD]}

and decomposition D = {AB,AC,AD}. Using the generalized subset construc-
tion we might get the sets (depending on the choices for Y )

SA = {}, SB = {vAC}, SC = {vAD}, SD = {vAB}

which lead to the 2-lifting:

r2 =

A B C D

(−,−,−) (−, 1,−) (−,−, 1) (1,−,−)
(−,−,−) (−, 1,−) (−,−, 2) (1,−,−)
(−,−,−) (−, 2,−) (−,−, 1) (1,−,−)
(−,−,−) (−, 2,−) (−,−, 2) (1,−,−)
(−,−,−) (−, 1,−) (−,−, 1) (2,−,−)
(−,−,−) (−, 1,−) (−,−, 2) (2,−,−)
(−,−,−) (−, 2,−) (−,−, 1) (2,−,−)
(−,−,−) (−, 2,−) (−,−, 2) (2,−,−)

It is easy to verify that �� [AB,AC,AD] now holds on r2.

Comment.
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Example 15. Let R = ABCDE with the dependencies

Σ = {A → B,A � C}
and the decomposition D = {AB,ACDE}. Applying the generalized subset
construction we get

DB(AB) = {C,DE} � add v1 to SC and v2 to SD, SE

DB(ACDE) = ∅ � do nothing

which gives us the associated subsets

SA = ∅, SB = ∅, SC = {v1}, SD = {v2}, SE = {v2}
Using them to construct the 2-lifting of R we obtain the relation

r =

A B C D E

1 1 1 1 1
1 1 1 2 2
1 1 2 1 1
1 1 2 2 2

Proposition 44. For every join dependency �� [R1, R2, . . .] we have:

�� [R1, R2, . . .] � �� [R1 ∪ R2, . . .]

i.e., if we replace any two (or more) subschemas in a join dependency by their
union, we obtain an implied join dependency.

Proof. Clear by definition of join dependency.

Theorem45. Let R be a schema with functional and join dependencies Σ, and
D a decomposition of R. Let the Si be constructed using the generalized subset
construction. Then the k-lifting rk of R is k-reducing, for every k ∈ N.

Proof. Part (ii) of the k-reducing property can be shown as in Theorem 37. The
difficulty lies in showing part (i), namely that all constraints in Σ hold. This is
clear for functional dependencies by lemmas 43 and 36.

Assume that some join dependency �� [R1, . . . , Rn] ∈ Σ does not hold for rk,
k ≥ 2 (k = 1 is trivial). Then by Lemma 41 there must be some v ∈ Ω for which
the synchronization hypergraph

Hv = {R1 ∩ Rv, . . . , Rn ∩ Rv}
of v w.r.t. �� [R1, . . . , Rn] is disconnected. Then we can partition Rv, the set of
attributes depending on v, into non-empty sets

Rv = H1 ∪ H2
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such that every Rj from �� [R1, . . . , Rn] is disjoint to H1 or H2. Let U1 be the
union of Rj disjoint to H2, and U2 of those disjoint to H1. Then by Proposition
44 we have:

Σ � �� [R1, . . . , Rn] � �� [U1, U2]

Now let X be the closure of the subschema in D for which v was added. By
construction we have Rv ∈ DB(X), so that we can partition R into X,Rv and
the remaining attributes Z := R \ (X ∪ Rv), so that

R = X ∪ Z ∪ Rv

= X ∪ Z ∪ H1 ∪ H2

Then U1 ⊆ X ∪ Z ∪ H1 and U2 ⊆ X ∪ Z ∪ H2, and thus

Σ � �� [U1, U2]

� �� [X ∪ Z ∪ H1,X ∪ Z ∪ H2]

≡ XZ � H1

Since Z is the union of elements of the dependency basis of X, we have X � Z,
and thus

X � Z XZ � H1

X � H1
(Pseudo-Transitivity)

This is a contradiction, since ∅ �= H1 � Rv, and Rv ∈ DB(X).

3.5 Attribute Count vs Containing Schema Closures - Part II

We are now ready to complete the equivalence proof for attribute count and
csc-domination orders.

Lemma46. Let Σ be a set of functional and join dependencies on R, and
X,Y ⊆ R. Then Σ ∪ {Y → R} � X → Y iff Σ � X → Y .

Proof. If Σ implies X → Y then clearly Σ ∪ {Y → R} implies X → Y as
well. Now let Σ � X → Y , so that there exists a relation r on R for which all
dependencies in Σ hold, but not X → Y . Then there exist at least two tuples
t1, t2 ∈ r with

t1[X] = t2[X], t1[Y ] �= t2[Y ]

Among all such pairs of tuples, let (t1, t2) be one for which the set of attributes
D ⊆ R on which t1 and t2 differ is minimal. We claim that r′ := {t1, t2} is a
relation for which the dependencies in Σ ∪ {Y → R} hold but not X → Y , thus
showing Σ ∪ {Y → R} � X → Y .

Clearly Y → R holds for r′, but not X → Y . Furthermore all FDs in Σ hold
for r′ since r′ ⊆ r. Now for any join dependency �� [R1, . . . , Rn] ∈ Σ let

r′′ := r′[R1] �� . . . �� r′[Rn]
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be the result of the corresponding project-join mapping of r′. By definition ��

[R1, . . . , Rn] holds for r′ iff r′′ ⊆ r′.
Let t3 ∈ r′′ be arbitrary. Since t1[Y ] �= t2[Y ] at least one of the inequalities

t3[Y ] �= t1[Y ] and t3[Y ] �= t2[Y ] holds, say t3[Y ] �= t1[Y ]. For every attribute
A ∈ R we have t3[A] ∈ {t1[A], t2[A]} by construction of r′′. Since t1[R \ D] =
t2[R\D], t3 differs from t1 at most on the attributes in D. But t1, t2 were chosen
to make D minimal, and due to

r′′ ⊆ r[R1] �� . . . �� r[Rn] = r

we have t3 ∈ r. Thus t3 differs from t1 (and therefore equals t2) on all attributes
in D. Consequently t3 = t2 ∈ r′, which shows r′′ ⊆ r′ and completes the proof.

Theorem47 (21). Let R be a schema with functional and join dependencies
Σ, and D1,D2 be decompositions of R. If D1 c-dominates D2, then D1 weakly
csc-dominates D2.

Proof. Recall that by definitions 16 and ?? D1 weakly csc-dominates D2 iff for
every attribute A and every schema R1 with A ∈ R1 ∈ D1 there exists a schema
R2 ∈ D2 with A ∈ R2 and R∗

1 ⊆ R∗
2. As D1 does not weakly csc-dominate D2,

there must exist A,R1 with A ∈ R1 ∈ D1, such that for every schema R2 ∈ D2

with A ∈ R2 we have R∗
1 � R∗

2, i.e., Σ � R2 → R1. To show that D1 does not
c-dominate D2, we construct a counterexample for any value k.

We construct the counterexample r on R by using the generalized subset
construction for CSCA(D2), but for an extended set of constraints

Σ′ := Σ ∪ {R1 → R}

This makes R1 a key of R w.r.t. Σ′, and by Lemma 46 we still have Σ′ � R2 → R1

for all R2 in question. Then by Lemma 14 the number of tuples in r[R1] equals
the number of tuples in r, which by Theorem 45 is at least k times larger than
the number of tuples in r[R2], for any R2 ∈ D2 with A ∈ R2. Thus D1 does not
c-dominate D2.

The following theorem is well-known [Harary, 1995].

Theorem48 (Hall’s Theorem). Let M1,M2 be finite sets and π : M1 →
P(M2) associate a set of permitted values with each element in M1. Then there
exists an injective mapping f : M1 → M2 with f(e) ∈ π(e) for all e ∈ M1 iff for
all m1 ⊆ M1 we have |m1| ≤ |π(m1)|, where

π(m1) :=
⋃

{π(e) | e ∈ m1}
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Comment. We will use Hall’s Theorem for multisets rather then sets. Recall
that for mappings between multisets we allow different instances of the same
value in the source domain to map to different values. This means that for an
element e of the source domain, f(e) is a sub-multiset of the target domain, with
cardinality equal to the frequency of e in the source domain. Furthermore, we
call such a mapping injective if a value in the target domain is mapped to at
most as often as it occurs in the target domain.

We can rephrase Hall’s theorem for multisets as follows:

Corollary 49. Let M1,M2 be finite multisets and π : M1 → P(M2) associate a
set of permitted values with each element in M1. Then there exists an injective
mapping f : M1 → M2 with f(e) ⊆ π(e) for all e ∈ M1 iff for all m1 ⊆ M1 we
have |m1| ≤ |π(m1)|, where π(m1) is the multiset

π(m1) :=
⋃

{π(e) | e ∈ m1} ∩ M2

Lemma50. Let Σ be a set of functional dependencies on R, and X,Y1, . . . , Yn ⊆
R. Then Σ ∪ {Y1 → R, . . . , Yn → R} � X → R holds iff Σ � X → Yi for some
i ∈ {1, . . . , n}.

Proof. (1) If Σ � X → Yi then Σ ∪ {Yi → R} � X → R by transitivity. (2)
Otherwise let X∗ denote the closure of X under Σ, and let r = {t1, t2} be a
relation on R containing two tuples with t1[X∗] = t2[X∗] and t1[A] �= t2[A] for
all A /∈ X∗. Then Σ holds on r, and since for all Yi we have Yi � X∗, the
functional dependencies Yi → R hold as well. It is clear though that X → R

does not hold on r, and thus is not implied by Σ ∪ {Y1 → R, . . . , Yn → R}.

Theorem51 (22). Let R be a schema with functional dependencies Σ, and
D1,D2 be decompositions of R. If D1 dominates D2, then D1 strongly csc-
dominates D2.

Proof. Let D1 not strongly csc-dominate D2. This means that for some A ∈ R

there exists no injective mapping

f : M1 := CSCA(D1) → M2 := CSCA(D2)

with e ⊆ f(e) for all e ∈ M1. The permitted values for e ∈ M1 in such a mapping
would be

π(e) := {e′ ∈ M2 | e ⊆ e′}
Note that M1,M2 are multisets, rather than sets. However, to make the

formulation of the following arguments easier, we shall regard them as sets by
treating multiple occurrences of elements in M1,M2 as different. This does not
change whether an injective mapping f exists.
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By Theorem 48 there exists a set m1 ⊆ CSCA(D1) with |m1| > |m2|, where
m2 := π(m1). We now construct a counterexample r on R by using the subset
construction for M2 \ m2, but again using an extended set of constraints

Σ′ := Σ ∪ {Y → R | Y ∈ m1}
This makes all elements in m1 keys of R w.r.t. Σ′, and by Lemma 50 we still have
Σ′ � X → R for all X ∈ M2 \m2. Then by Lemma 14 we have |r[m1]| = |m1| · |r|
and |r[m2]| = |m2| · |r|. By Theorem 37 the number |r| of tuples in r is at least
k times larger than the number of tuples in r[X], for any X ∈ M2 \ m2. By
choosing k large enough we get

|r[M2 \ m2]| < |r|
This gives us

|r[M2]| = |r[m2]| + |r[M2 \ m2]|
< |m2| · |r| + |r|
≤ |m1| · |r|
= |r[m1]|
≤ |r[M1]|

which shows that D1 does not dominate D2.

In the last theorem we restricted ourselves to functional dependencies. This
is because it does not hold in the presence of multi-valued or join dependencies,
as the following example shows.

Example 16. Let R,Σ,D1,D2 be as follows:

R = ABC,Σ = {A � B},
D1 = {AB,AC},D2 = {ABC,A}

It is easy to see that D1 does not strongly csc-dominate D2 w.r.t. A:

CSCA(D1) = {AB,AC}
CSCA(D2) = {ABC,A}

It is clear that D1 dominates D2 w.r.t. B and C. To show domination w.r.t.
attribute count, it thus suffices to prove that for every relation r on R we have

countA(r[D1]) ≤ countA(r[D2])

To do so, we partition r into disjoint relations ri with |ri[A]| = 1 and ri[A] �=
rj [A] for i �= j. Then for each subschema R′ of R containing A (i.e., all schemas
in D1,D2), r[R′] is the disjoint union of the ri[R′], and thus

countA(r[D1/2]) =
∑

countA(ri[D1/2])
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Therefore we only need to show

countA(ri[D1]) ≤ countA(ri[D2])

for all relations ri. Note that A � B still holds for all ri, and thus

ri[BC] = ri[B] �� ri[C]

Abbreviating the cardinalities of ri[B], ri[C] with CB, CC we obtain

|ri[ABC]| = CB · CC , |ri[A]| = 1

This gives us

countA(ri[D2]) − countA(ri[D1]) = CB · CC − (CB + CC) + 1

= (CB − 1) · (CC − 1)

≥ 0

which shows that D1 dominates D2 w.r.t. attribute count, even though D1 does
not strongly csc-dominate D2.

It is an open question how domination w.r.t. size, update time and attribute
count can be characterized syntactically in the presence of functional and join
dependencies.

4 Relationship to other Normal Forms

A number of normal forms for characterizing well designed relational databases
have been proposed, depending on the types of integrity constraints given. For
functional dependencies, BCNF and 3NF are the most popular ones. 4NF [Fagin,
1977] is an extension of BCNF for functional and multivalued dependencies. For
functional and join dependencies 4NF has been extended to PJ/NF [Fagin, 1979],
5NF [Maier, 1983; Vincent, 1997] and KCNF [Vincent, 1998]. In the following
we will compare DNF to existing normal forms for a single schema.

4.1 Lossless DNF and BCNF/4NF/KCNF

Definition 52 (Key-Complete Normal Form). [Vincent, 1998] Let R be a
schema with functional and join dependencies Σ. Then R is in Key-Complete
Normal Form (KCNF), if for every join dependency �� [R1, . . . , Rn] implied by
Σ, the keys among R1, . . . , Rn contain all attributes in R. That is, we have

R =
⋃

{Ri ∈ �� [R1, . . . , Rn] | R∗
i = R}

with Ri ∈ �� [R1, . . . , Rn] meaning Ri ∈ {R1, . . . , Rn}.
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Note that in the case where Σ contains only functional and multivalued
dependencies, KCNF is equivalent to 4NF, and when Σ contains only functional
dependencies KCNF is equivalent to BCNF [Vincent, 1998].

Given a single schema with constraints Σ, the absence of redundancy, as
defined in [Arenas and Libkin, 2003; Vincent, 1998], is precisely characterized
by BCNF, 4NF and KCNF. That is, a schema R is free of redundancy iff it is in
BCNF, 4NF or KCNF [Arenas and Libkin, 2003; Vincent, 1998].

While our normal form has been designed to minimize size rather than re-
dundancy, the intuition is that minimizing one minimizes the other as well. We
will show that this intuition holds in so far, as that a single schema is in KCNF
(and thus free of redundancy) iff it is in DNF among all lossless decompositions.
Thus lossless DNF can be seen as an extension of BCNF, 4NF and KCNF.

Recall that a decomposition is in DNF if it is minimal among a given set of
“suitable” decompositions, and that for each such set we may obtain a different
DNF. Thus, when we talk about “DNF w.r.t. all lossless decompositions”, or
“lossless DNF”, we mean the version of DNF we obtain when considering a
decomposition to be suitable iff it is lossless. By “dependency preserving and
lossless DNF”, or “dependency preserving DNF” for short, we mean the version
of DNF obtained by considering those decompositions as suitable which are both
lossless and dependency preserving.

Theorem53. Let R be a schema with functional and join dependencies Σ. Then
R is in KCNF iff {R} is in DNF w.r.t. all lossless decompositions of R.

Proof. (1) Let R be in KCNF. Let D = {R1, . . . , Rn} be any lossless decom-
position of R. Then Σ implies the join dependency �� [R1, . . . , Rn], and since
R is in KCNF, every attribute A ∈ R lies in some Ri which forms a key of R.
Thus R ∈ CSCA(D) for all A, so {R} strongly csc-dominates D. Therefore {R}
dominates D by Theorem 20. As this holds for all lossless decompositions D,
{R} is in DNF.

(2) Let R not be in KCNF. Then Σ implies a join dependency �� [R1, . . . , Rn]
such that ⋃

{Ri | Σ � Ri → R} �= R

The decomposition D = {R1, . . . , Rn} is lossless, and there exists an attribute
A ∈ R which does not lie in any Ri which forms a key of R. Clearly D weakly csc-
dominates {R}, and since R /∈ CSCA(D) we have that {R} does not weakly csc-
dominate D. Thus D strictly c-dominates {R} by theorems 20 and 21, showing
that {R} is not in DNF.

Note that, while lossless DNF and KCNF are the same for a single schema,
they differ significantly when applied to multiple schemas.
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4.2 Dependency Preserving DNF and 3NF/EKNF

When considering only dependency preserving decompositions, we can only hope
to compare DNF with normal forms which always allow dependency preserving
decompositions (i.e., not BCNF). The most well-known normal form with this
property is 3NF. However, as was pointed out in [Zaniolo, 1982], 3NF does not
always enforce beneficial decomposition, even though they may not cause any loss
of dependencies. The following example, taken from [Zaniolo, 1982], illustrates
this.

Example 17. Let R = ABC and Σ = {A → B,B → A}. Then AC and BC

are minimal keys of R, and thus all attributes are prime. Therefore R is al-
ready in 3NF, even though dependency preserving decompositions exist, such as
{AB,BC} or {AB,AC}.

As an improvement, the authors of [Zaniolo, 1982] suggest a new normal
form which is stronger than 3NF but still allows dependency preserving decom-
positions. They strengthen 3NF by allowing as RHS of a non-key FD only those
prime attributes, which appear in the LHS of an atomic key dependency. Note
that atomic FDs are called elementary in [Zaniolo, 1982].

Definition 54 (Elementary). [Zaniolo, 1982] Let R be a schema with FDs Σ.
A FD X → A is called elementary if Σ∗ contains no FD X ′ → A with X ′ � X.
A key is elementary if it forms the LHS of an elementary FD. An attribute is an
elementary key attribute if it lies in an elementary key of R.

Definition 55 (Elemental Key Normal Form). [Zaniolo, 1982] Let R be a
schema with FDs Σ. Then R is in elemental key normal form (EKNF) if for
every non-trivial FD X → A on R

(a) X is a key of R, or

(b) A is an elementary key attribute for R.

Note that the schema R from example 17 is not in EKNF, since neither A nor
B are elementary key attributes. Thus EKNF may enforce useful decomposition
which 3NF does not.

Lemma56. Let R be a single schema with FDs Σ. If R is in dependency pre-
serving DNF, then it is also in EKNF.

Proof. Assume that R is not in EKNF. Then there exists a FD X → A ∈ Σ∗a

such that X is not a key of R, and A does not lie in the LHS of any key FD in
Σ∗a. Furthermore, R is strictly c-dominated by the decomposition

D := {R \ A} ∪ {S � R | S is not a key of R}
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since A does not lie in R \ A, which is the only key schema in D.
It remains to show that D is dependency preserving. Clearly the only FDs in

Σ∗a which do not lie in Σ∗[D] are key FDs containing A. They must be of the
form Y → A, since A does not lie in the LHS of any key FD. However, the FDs
Y → X and X → A both lie in Σ∗[D], and together they imply Y → A.

As EKNF implies 3NF [Zaniolo, 1982], this provides us with a comparison of
dependency preserving DNF and 3NF as well.

5 Computing Domination Normal Form

Having defined when schemas are in DNF, we are now looking for an algorithm
which, given a schema R with constraints Σ, computes a decomposition of R

which is in DNF. For this we will restrict ourselves to the case where the only
constraints given are functional dependencies.

Lemma57. Let R be a schema with constraints Σ, and D be a decomposition
of R. If D contains two different R1, R2 ∈ D with R∗

1 = R∗
2, then

D′ := D \ {R1, R2} ∪ {R1 ∪ R2}

dominates D. If R1 ∩ R2 �= ∅, then D′ strictly dominates D.

Proof. For every relation r on R the projections r[R1], r[R2] can be obtained by
projecting from r[R1 ∪ R2]. As R1 and R2 are keys of

R1 ∪ R2 ⊆ R∗
1 = R∗

2

no tuples are lost in this projection. Thus the size of D and D′ varies by the size
for the values of attributes in R1 ∩ R2, as those are stored twice in D.

We shall define equivalence classes for functional dependencies, as well as for
schemas.

Definition 58 (Equivalence/Higher Order). Let R be a schema with con-
straints Σ and X,Y ⊆ R. We call X and Y equivalent if X∗ = Y ∗. We say that
X is of higher order than Y if X∗ ⊇ Y ∗.

We call two functional dependencies X1 → Y1,X2 → Y2 implied by Σ equiv-
alent if their left hand sides X1 and X2 are equivalent (and similarly for higher
order). When partitioning a set Σ of FDs into equivalence classes, we denote
them by

EQX := {Y → Z ∈ Σ | Y ∗ = X∗}
and call X∗ the closure of EQX .

232 Koehler H.: Global Database Design ...



This groups schemas and functional dependencies into equivalence classes.
As there is an obvious correspondence between equivalence classes of schemas
and those of functional dependencies, we will not always distinguish between
them, and will compare equivalence classes w.r.t. higher order as well.

When searching for a DNF decomposition, Lemma 57 tells us that it suffices
to only consider decompositions which contain at most one schema for each
equivalence class of schemas.

Definition 59 (Higher Order Schema/Attribute). Let D be a decomposi-
tion of R and X ⊆ R. We define the higher order schemas and higher order
attributes of X in D as

HOSX(D) := {Rj ∈ D | X∗ ⊆ R∗
j}

HOAX(D) :=
⋃

HOSX(D)

Similarly, the strictly higher order schemas and strictly higher order attributes
of X in D are

SHOSX(D) := {Rj ∈ D | X∗ � R∗
j}

SHOAX(D) :=
⋃

SHOSX(D)

Lemma60. Let D1,D2 be two decompositions of R. Then D1 weakly csc-domi-
nates D2 iff for every schema X ∈ D1 we have

X ⊆ HOAX(D2)

Proof. (1) By definitionD1 weakly csc-dominatesD2 iff for every attribute A ∈ R

and every R∗
1 ∈ CSCA(D1) there exists R∗

2 ∈ CSCA(D2) with R∗
1 ⊆ R∗

2. In other
words, for every pair (A,R1) with A ∈ R1 ∈ D1 there exists R2 with A ∈ R2 ∈ D2

and R∗
1 ⊆ R∗

2.
(2) Furthermore we have X ⊆ HOAX(D2) for all X ∈ D1 iff for every pair

(A,X) with A ∈ X ∈ D1 there exists Y ∈ HOSX(D2) with A ∈ Y , that is Y

with A ∈ Y ∈ D2 and X∗ ⊆ Y ∗.
Using (1) and (2) together (with X = R1 and Y = R2) we obtain the claim.

Definition 61. Let R be a schema with FDs Σ, and D a set of subschemas of
R. We denote the set of all FDs in Σ which lie in schemas in D by

Σ[D] :=
⋃

Rj∈D
Σ[Rj ]

5.1 Dependency Preserving DNF

We are now able to construct an algorithm to compute a DNF decomposition for
the case where Σ contains only functional dependencies, and where we consider
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only lossless and dependency preserving decompositions. For this, we need some
definition and properties of partial covers from [Köhler, 2008], rephrased slightly
to suit our needs.

Definition 62 (Partial Cover). Let Σ be a set of FDs, and EX ⊆ Σ be an
equivalence class of Σ. A set C ⊆ Σ∗ is a partial cover of EX (w.r.t. Σ) if

C[X∗] ∪ (Σ \ EX)

is a cover of Σ.

Lemma63. [Köhler, 2008] Let Σ be a set of FDs, and let EQ be the partition
of Σ into equivalence classes. Then a set C of FDs is a cover of Σ iff C is a
partial cover (w.r.t. Σ) for all equivalence classes EQj ∈ EQ.

Lemma64. Let R be a schema with FDs Σ, and D a dependency preserving
decomposition of R. Let further EQX be an equivalence class of Σ. Then

Σ∗a[HOSX(D)] ⊆ Σ∗a[HOAX(D)]

and each of the two dependency sets forms a partial cover of EQX .

Proof. Since D is dependency preserving, Σ∗a[D] must form a cover of Σ, and
thus a partial cover of EQX . By Definition 62 the only FDs of interest for forming
a partial cover of EQX are those LHS-equivalent to the FDs in EQX . All of them
lie in schemas Rj with X∗ ⊆ R∗

j , so

Σ∗a[{Rj ∈ D | X∗ ⊆ R∗
j}]

already forms a partial cover of EQX .

We use this to synthesize a dependency preserving decomposition as follows.

Algorithm “dependency preserving DNF decomposition”

INPUT: schema R, canonical cover Σ

OUTPUT: decomposition D in DNF

D := ∅
if Σ contains no key dependencies then

add minimal key Rkey of R to D
partition Σ into equivalence classes EQ

while EQ �= ∅ do
pick maximal EQj ∈ EQ and remove it from EQ

Rj := closure of FDs in EQj

AD := SHOARj (D)
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first for all A ∈ Rj \ AD and then for all A ∈ Rj ∩ AD do
if Σ∗a[D ∪ {Rj \ A}] is a partial cover of EQj then

Rj := Rj \ A

end
if Rj �= ∅ then
D := D ∪ {Rj}

end

Theorem65. Algorithm “dependency preserving DNF decomposition” returns
a lossless, dependency preserving DNF decomposition of R.

Proof. (1) We first show that D is dependency preserving and lossless. This is
the case iff Σ∗a[D] is a cover of Σ, and D contains a key of R. If Σ contains
no key dependency, then a minimal key Rkey of R is added to D. Otherwise it
suffices to show that Σ∗[D] is a cover of Σ, since this implies that D contains a
key of R. In each iteration of the while loop, it is ensured that for the decompo-
sition D computed so far, Σ∗[D] forms a partial cover for the equivalence classes
removed from EQ. After processing all equivalence classes, we therefore obtain
a decomposition for which Σ∗[D] covers Σ.

It remains to show that D is not strictly dominated or c-dominated by any
other lossless and dependency preserving decomposition D′ of R.

(2) We start by proving that D′ does not strictly dominate D. Consider the
schemas R1, . . . , Rn ∈ D (including Rkey if it was added) in the order as they
were added to D (with indices describing this order). Let Rk be the first such
schema which is not contained in D′ (if all Rj are contained in D′ then clearly D
dominates D′), and C := R∗

k its closure. By Lemma 64 the set Σ∗[HOSC(D′)]
forms a partial cover of EQk. Let further

H ′
k :=

⋃
(HOSC(D′) \ {R1, . . . , Rk−1})

so that Σ∗[{R1, . . . , Rk−1} ∪ H ′
k] forms a partial cover of EQk. Since Rk was

constructed as minimal such that Σ∗[R1, . . . , Rk] forms a partial cover of EQk,
H ′

k � Rk cannot hold. If Hk = Rk then all schemas in HOSC(D′) \ D must
be of order EQk. By Lemma 57 we may assume that this does not happen, so
Hk � Rk. Thus there exists at least one attribute A which lies in some schema

R′
A ∈ HOSC(D′) \ {R1, . . . , Rk−1}

but not in Rk.
Consider containing schema closures CSCA(D) and CSCA(D′). If D′ were

to dominate D, then CSCA(D′) would strongly inclusion dominate CSCA(D).
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Equivalently, CSCA(D′ \{R1, . . . , Rk−1}) would have to strongly inclusion dom-
inate CSCA(D \ {R1, . . . , Rk−1}). However, we have

R′∗
A ∈ CSCA(D′ \ {R1, . . . , Rk−1})

but no schema in CSCA(D \ {R1, . . . , Rk−1}) includes R′∗
A . This is a contradic-

tion, which shows that D′ does not dominate D.
(3) Finally, we need to show that D′ does not strictly c-dominate D. Assume

the contrary, so that by Lemma 60 we have for all R′ ∈ D′ that

R′ ⊆ HOAR′(D),

and there exist a schema Rw ∈ D for which

Rw � HOARw(D′)

Let Rw be the first such schema in the sequence of schemas R1, . . . , Rn ∈ D,
and let C := R∗

w be its closure. Then for every Rj ∈ SHOSC(D) we get

Rj ⊆ HOARj (D′) ⊆ SHOAC(D′)

and thus
SHOAC(D) ⊆ SHOAC(D′)

Inclusion in the opposite direction holds by similar argument, showing

SHOAC(D) = SHOAC(D′)

This attribute set is computed as the set AD during the construction of Rw:

AD = SHOAC({R1, . . . , Rw−1}) = SHOAC(D) = SHOAC(D′)

Since Rw � HOARw(D′) ⊇ AD we have Rw � AD. As we tried removing
attributes outside AD first when constructing Rw, the set

Σ∗[AD] = Σ∗[SHOAC(D′)]

cannot form a partial cover of EQw. By Lemma 64 the set Σ∗[HOAC(D′)] does
form a partial cover of EQk, so D′ must contain at least one schema R′

w with
R′∗

w = C. By Lemma 57 we may assume that R′
w is the only such schema in D′.

We have by assumption that

R′
w ⊆ HOAC(D) = SHOAC(D) ∪ Rw = AD ∪ Rw

and thus
R′

w \ AD ⊆ Rw \ AD
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Furthermore, we can split HOSC(D′) into SHOSC(D′) and R′
w, and get (using

Lemma 64 once more) that

Σ∗[AD ∪ R′
w] ⊇ Σ∗[SHOSC(D′) ∪ {R′

w}] = Σ∗[HOSC(D′)]

must be a partial cover of EQw. However, by trying to remove attributes not in
AD first, we constructed Rw such that Rw \ AD is minimal with Σ∗[AD ∪ Rw]
being a partial cover for EQw (note that Σ∗[{R1, . . . , Rw−1}] ⊆ Σ∗[AD]) . Thus
R′

w \ AD cannot be a proper subset of Rw \ AD, which gives us

R′
w \ AD = Rw \ AD

But this means that

Rw ⊆ R′
w ∪ AD = R′

w ∪ SHOAC(D′) = HOAC(D′)

which contradicts our initial assumption for Rw.

5.2 Local DNF

One potential complaint about the global optimization approach taken by DNF,
is that it does not enforce local optimization. That is to say, even if a decom-
position is in DNF, each of its schemas taken individually does not have to be.
Despite this, our algorithm always produces DNF decompositions which are also
“locally optimal”.

Theorem66. Let D be a decomposition produced by algorithm “dependency pre-
serving DNF decomposition”. Then every schema RX ∈ D is in dependency
preserving DNF w.r.t. Σ∗[RX ].

Proof. Let DX be any dependency preserving decomposition of RX . Then DX

is dominated by the single schema

R′
X :=

⋃
{Rj ∈ DX | Rj is a key of RX}

Clearly R′
X preserves all key FDs in Σ∗[D]. Thus EQX [DX ] ⊆ EQX [R′

X ], so
EQX [R′

X ] implies EQX [RX ]. However, RX has been constructed minimal such
that EQX [RX ] has some partial cover property. Thus R′

X = RX , which shows
that RX dominates every dependency preserving decomposition DX . It follows
that RX is in dependency preserving DNF.

Corollary 67. Algorithm “dependency preserving DNF decomposition” produces
a decomposition into EKNF.

We note that this result is only due to our construction method, i.e., depen-
dency preserving DNF does not imply EKNF in general.
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Example 18. Let R = ABCD and Σ = {A → B,B → C,CD → A}. Then the
decomposition D = {ABC,ACD} is in dependency preserving DNF (note that
it is not strictly c-dominated by {AB,BC,ACD} since C already appears in the
key schema ACD). However, D is not in EKNF, since ABC contains B → C.

6 Conclusion

We have introduced a new normal form called DNF for relational databases,
based on the requirements for a decomposition. Here, a decomposition is in DNF
if and only if there is no “better” decomposition among the decompositions con-
sidered. The partial orders describing this “better” property have been defined
in semantic terms, and for functional and in part for join dependencies, they
have been characterized syntactically. Using this syntactical characterization we
then showed that, when considering all lossless decompositions, our normal form
is an extension to the existing normal forms BCNF, 4NF and KCNF, which have
already proven to be useful over the past 30 years.

For multiple schemas DNF appears more suitable than just considering sche-
mas individually, as has been done traditionally. At the same time it is always
applicable, in that a decomposition into DNF always exists, even when we restrict
ourselves to certain types of decompositions, e.g. dependency preserving ones.

Finally, we provided an algorithm which always finds lossless and dependency
preserving decompositions into DNF, and showed that these decompositions are
even locally optimal. We conclude by mentioning a number of open problems.

– Theorem 22 is restricted to functional dependencies, and does not hold in
the presence of multivalued or join dependencies. It would be interesting to
know what the correct syntactic characterization of DNF would be here.

– Our definition of DNF focuses on minimizing size or update time, with the
intuition that this could minimize redundancy as well. Alternatively one
could attempt to minimize redundancy directly, and it would be interesting
to see whether the results are the same.

– One could try to achieve other desirable properties for a decomposition,
such as e.g. acyclicity [Beeri et al., 1983]. This has no impact on the orders
for comparing decompositions, but could lead to different decomposition
algorithms.

– While we have an algorithm for computing a decomposition into dependency
preserving DNF, we currently lack such an algorithm for lossless DNF.

– Our assumption that all domains are infinite and unbounded is not always
realistic. It is not clear yet how DNF w.r.t. size could be defined suitably for
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finite or bounded domains. The current definition fails, since (almost) every
decomposition c-dominates every other.

– Finally, it is unclear how to test whether a given decomposition is in DNF,
and how difficult such a test is. We suspect that it is at least co-NP hard.
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