
Dynamic Query Optimization

under Access Limitations and Dependencies

Andrea Cal̀ı
(University of Oxford1, United Kingdom

ac@andreacali.com)

Diego Calvanese
(Free University of Bozen-Bolzano, Italy

calvanese@inf.unibz.it)

Davide Martinenghi
(Politecnico di Milano, Italy

martinen@elet.polimi.it)

Abstract: Unlike relational tables in a database, data sources on the Web typically
can only be accessed in limited ways. In particular, some of the source fields may be
required as input and thus need to be mandatorily filled in order to access the source.
Answering queries over sources with access limitations is a complex task that requires
a possibly recursive evaluation even when the query is non-recursive. After reviewing
the main techniques for query answering in this context, in this article we consider the
impact of functional and inclusion dependencies on dynamic query optimization under
access limitations. In particular, we address the implication problem for functional
dependencies and simple full-width inclusion dependencies, and prove that it can be
decided in polynomial time. Then we provide necessary and sufficient conditions, based
on the dependencies together with the data retrieved at a certain step of the query
answering process, that allow avoiding unnecessary accesses to the sources.

Key Words: Access Limitations, Functional Dependencies, Inclusion Dependencies,
Query Optimization

Category: H.2

1 Introduction

In the context of query answering over the Web, queries can be conceived as in
the traditional relational setting, but with the extra requirement that certain
fields be mandatorily filled in by the user in order to obtain a result. This is the
case of data sources that are accessible through web forms, and, more generally,
of web services, which typically distinguish between input and output parame-
ters. Consider for example the DBLP site2, where, in order to obtain a list of
publications extracted from an underlying database, either an author or a title
1 Computing Laboratory and Oxford-Man Institute of Quantitative Finance
2 http://dblp.uni-trier.de/

Journal of Universal Computer Science, vol. 15, no. 1 (2009), 33-62
submitted: 23/1/08, accepted: 15/8/08, appeared: 1/1/09 © J.UCS

has to be specified, while it is not possible to ask directly, e.g., for all publications
of a certain conference3.

Query processing under such access limitations on the sources is significantly
more complex than in the traditional case. In fact, for some queries it may
happen that the access limitations make it impossible to obtain all the tuples
answering the query, because there is at least one source whose mandatory input
fields cannot be populated in any way by using join paths with the other sources
used in the query. However, even in such a case, it may still be possible to obtain
a subset of the answers to the query by using sources that are not necessarily
mentioned in the query, but that are part of the schema; in particular, such off-
query sources may be used to provide useful bindings for the mandatory fields
of the sources in the query.

Example 1. Suppose we have two sources, say A and B. Source A stores informa-
tion about cars: given a person (required field), A provides model, plate number,
and color of the cars owned by the person. Source B provides a list of persons
with their address (no field is required in B). Suppose we are searching for all
the plate numbers of Ferrari’s. Accessing only source A, where the information
of interest is stored, is impossible, because we do not know any name of a car
owner. But we can retrieve owner names from B, use them to query A, and
select from the obtained tuples those in which the car model is Ferrari.

Several works [Rajaraman et al., 1995; Li and Chang, 2000; Li and Chang, 2001b;
Florescu et al., 1999; Duschka and Levy, 1997; Cal̀ı and Martinenghi, 2008b] have
studied the problem of finding the maximal set of answers obtainable in this way,
called the maximally contained answer. As discussed in the mentioned works,
this possibly lengthier process in general requires the evaluation of a recursive
query plan, which can be suitably expressed in Datalog.

Accesses to Web data sources are inherently more costly than in a central-
ized setting, e.g., due to possible delays caused by network links. It is therefore
crucial to avoid all unnecessary accesses to the sources while still being able to
retrieve the maximally contained answer. Static optimizations techniques for the
generation of a query plan are discussed in [Li and Chang, 2000; Li and Chang,
2001b; Cal̀ı and Martinenghi, 2008b].

In this article we deal with an important optimization phase that has not been
addressed before, namely whether one can optimize query-plans at run-time,
possibly exploiting additional information available about the sources. Indeed,
by exploiting knowledge about integrity constraints present on the sources, one
may detect during query evaluation that a certain access to a source is useless,
in the sense that it may provide only answers that are already known from
previous accesses. Relevant classes of integrity constraints that turn out to be
3 We do not consider here advanced search, which is also supported at DBLP.

34 Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

of importance for this setting are functional dependencies and simple full-width
inclusion dependencies (see, e.g., [Abiteboul et al., 1995], Chapters 8 and 9).

We revisit the solutions proposed for the context of data integration systems
in [Cal̀ı and Calvanese, 2002], and focuses on conjunctive queries over relational
sources with access limitations. In particular, the following results are obtained.

1. We show that the implication problem for functional dependencies and sim-
ple full-width inclusion dependencies is decidable in polynomial time.

2. We present a necessary and sufficient condition to determine, given the de-
pendencies, whether during query evaluation a given source has to be ac-
cessed or not in order to obtain the maximally contained answer to a query.

As soon as a query plan is available, by result (1) we can derive all possible simple
full-width inclusion dependencies and functional dependencies that hold for a set
of sources, and by result (2) we can exploit such dependencies for optimizing the
query plan at run time.

The rest of the article is organized as follows. In Section 2, we present the
technical preliminaries. In Section 3, we quickly survey existing techniques for
generating efficient query plans for queries over sources with access limitations.
In Section 4, we discuss implication of functional and simple full-width inclusion
dependencies. In Section 5, we present the condition for minimizing run-time
source accesses and prove its correctness and completeness. In Section 6, we
discuss related work, and finally, in Section 7, we conclude the article.

2 Accessing sources with access limitations

We present the formal framework in which we address query optimization. We
consider conjunctive queries over sources with access limitations. Let S be a
source schema, i.e., a set of relational symbols, each with an associated arity. A
conjunctive query (CQ) q of arity n over S is written in the form

q(X1, . . . ,Xn) ← conj (X1, . . . ,Xn, Y1, . . . , Ym)

where conj (X1, . . . ,Xn, Y1, . . . , Ym) is a conjunction of atoms involving the vari-
ables X1, . . . ,Xn, Y1, . . . , Ym and constants, and the predicate symbols of the
atoms are in S. We assume that the query is safe, i.e., that each variable Xj

appears in at least one atom in conj .
Given a database DB for S, consisting of one relation of appropriate arity for

each symbol in S, the answer q(DB) to q over DB is the set of tuples (c1, . . . , cn)
of constants in DB such that there are constants d1, . . . , dm in DB , such that
each atom in conj (c1, . . . , cn, d1, . . . , dm) holds in DB .

To each attribute in a source we associate a domain, which specifies the legal
values for that attribute. Instead of using concrete domains, such as Integer

35Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

or String, we deal with abstract domains, which have an underlying concrete
domain, but represent information at a higher level of abstraction. This makes
it possible to distinguish, e.g., strings representing person names from strings
representing plate numbers.

Formally, we have:

– a source schema S, which is a set of relational symbols, each with an as-
sociated arity, a tuple of abstract domains, and a binding pattern. In the
following, we will call the symbols in S simply sources. However, when pro-
viding intuitions, we will use the term “source” also to refer to the actual
data sources with access limitations corresponding to the binding pattern
of the associated source symbol. The meaning will be clear from the con-
text. We call bound the attributes that must mandatorily be provided with
a constant in order to query the source, and free the remaining ones. The
binding pattern specifies which subset of the attributes of the source are
bound and which ones are free. In the examples, we specify sources with
their abstract domains, and underline the abstract domains in the positions
of bound attributes.

– a user query, which is a CQ over S.

In order to answer a user query, one has to compute a query plan specifying
how to access the sources. In the presence of access limitations on the sources,
traditional query answering is in general not sufficient to extract all obtainable
answers from the sources, as shown by the following example.

Example 2. Consider the following sources with access limitations:
s1(Title,Year ,Artist), which stores data about songs, and s2(Artist ,Nation),
which stores artists with their nationality. Consider the following user query

q(A) ← s2(A, italian)

asking for names of Italian artists. In this case, q cannot be immediately eval-
uated over the sources, since s2 requires the first attribute to be bound to a
constant. Therefore, with traditional query answering techniques we cannot ex-
tract any answer to q, no matter what the extension of the source relations.
However, if we knew some constants for the abstract domain “year”, we could
access s1, extract artist names from it, and access s2 with these, potentially
extracting tuples that answer the query.

The example shows how an apparently useless, off-query source may provide
constants with which useful information can be retrieved.

In order to formally characterize the notion of maximally contained answer,
we need to introduce the notion of access to a source with access limitations.

36 Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

Intuitively, an access is the smallest legal operation that can be performed on
sources with access limitations.

Definition 1 (Access). An access to a source s is a CQ of the form

q(X1, . . . ,Xm) ← s(Z1, . . . , Zn)

(i.e., whose body is a single atom) such that each of the variables X1, . . . ,Xm

occurs exactly once in q’s body, and such that, for 1 ≤ i ≤ n,

– if the i-th position in s is bound, then Zi is a constant of the corresponding
abstract domain;

– if the i-th position in s is free, then Zi is one of X1, . . . ,Xm.

The constants used in the body are called input values. A tuple consisting of
the input values of an access is called a binding. The answer to an access in a
database DB is called the extraction made by the access in DB .

A source can be accessed if all its bound arguments have been instantiated
with constants. Then, as soon as new constants are extracted with an access,
these can be used to make more accesses. Note that, consistently with what is
commonly done in the literature, it is assumed that the strategy of enumerating
all possible elements of a given domain to access a source is not feasible and that,
rather, the values for the bound positions of a source are obtained either from
constants in the query or from tuples retrieved from other sources. For instance,
in the evaluation of the query of Example 2, one cannot expect to enumerate all
possible artist names without retrieving this information from the sources. The
sequences of accesses that are needed to retrieve data in order to answer a query
are captured by the notion of access plan.

Definition 2 (Access plan). An access plan, given a set I of constants, is a
sequence of source accesses such that the input values used in an access consist of
constants either in I or coming from tuples in the extraction of previous accesses
in the sequence.

For each database instance, each query should then be associated with an access
plan that extracts the query answer. This is precisely what a query plan does.

Definition 3 (Query plan). A query plan Π for an n-ary query q over a
sources schema S, given a set I of constants including the constants in q, is
a function that maps a database instance DB into a pair Π(DB) = (A,T),
where

– A is an access plan given I, and

37Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

– T is a set of n-ary tuples, called the obtained answer, consisting of constants
in the extractions of A or in I.

Π is sound whenever, for each database DB , if Π(DB) = (A,T) then T ⊆
q(DB).

Π is non-prescient if, for every pair of databases DB1 and DB2 such that
Π(DB1) = (A1, T1) and Π(DB2) = (A2, T2) hold, for every i ≥ 0, if A1 and A2

coincide on the first i accesses and the corresponding extractions (cf. Definition 1)
in T1 and T2, then A1 and A2 also coincide on the (i + 1)-st access.

Note that a non-prescient query plan essentially is a query plan that is deter-
ministic at the level of the single accesses to the sources. This follows immedi-
ately from observing that A1 and A2 necessarily coincide before any access (i.e.,
when i = 0); then each subsequent access and the corresponding extraction are
uniquely determined.

Definition 4 (Maximally contained answer). Given a source schema S, a
query q, a set I of constants including the constants in q, and a database DB ,
a tuple in q(DB) is (I,S)-obtainable if it is a tuple in the answer obtained for
DB by some sound and non-prescient query plan for q over S given I. The set
of (I,S)-obtainable answer tuples in q(DB) is denoted ans(q,S,DB , I) and is
called maximally contained answer.

A similar definition of maximally contained answer is given in [Millstein et al.,
2000; Millstein et al., 2003], where the authors call it reachable certain answer
in their particular setting; there, the authors restrict query plans to be Datalog
programs, and therefore do not need to impose non-prescience, which is implicit
in the semantics of Datalog, once an evaluation strategy for the Datalog program
has been fixed (e.g., by considering the rules in the order in which they are writ-
ten, the atoms in the rules from left to right, and by assuming an order on the
database facts according to which they are accessed). The definition proposed
here is different from theirs, in that it allows query plans to be implemented
in any programming language, including Turing-complete ones, which are more
expressive than Datalog. However, non-prescience is required to correctly char-
acterize the notion of query plan, since a prescient query plan could, in principle,
employ ad hoc access plans for each database, thus retrieving an answer tuple
without actually checking that it is in the answer, but only guessing it. This is
clarified in the next example.

Example 3. Consider a CQ q(X) ← r1(X), r2(X,Y) over the source schema
S = {r1(A), r2(A,B)}, given an empty set of initial constants. Suppose the
database is DB = {r1(a), r2(a, b)}. Clearly, a prescient plan could access r1,

38 Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

thus extracting constant a, and then, in principle, claim that 〈a〉 ∈ q(DB), even
without accessing r2. Conversely, after making the same access to a database
DB ′ = {r1(a)}, it could guess that 〈a〉 	∈ q(DB ′). However, DB and DB ′ are
indistinguishable as for the accesses made by the plan, because r2 is inaccessi-
ble according to the limitations. Indeed, any non-prescient plan reporting that
〈a〉 ∈ q(DB) would necessarily be unsound, since it should then also conclude
that 〈a〉 ∈ q(DB ′), which does not hold. Therefore, 〈a〉 is not obtainable with
respect to the access limitations according to Definition 4.

In general, ans(q,S,DB , I) ⊆ q(DB), and therefore, in the presence of access
limitations on the sources, queries cannot be evaluated as in the traditional case.
The next section will present techniques, all based on Datalog, to extract the
maximally contained answer to a conjunctive query.

3 Existing techniques for static optimization of query plans

In the previous section, we have presented the notion of query plan, which is
intended to retrieve exactly all the tuples in the maximally contained answer to
a conjunctive query expressed on a relational schema with access limitations.

An algorithm to construct a naive, recursive query plan that is able to com-
pute the maximally contained answers ans(q,S,DB , I) for given q, S, DB , and
I, is presented in [Li and Chang, 2000]. The program is expressed in Datalog,
and the key idea in it is that some of the clauses suitably encode the access lim-
itations that are to be considered during the evaluation; this ensures that every
answer returned by the plan is indeed obtainable through the extraction pro-
cess that we have presented in Section 2. Notice that the fact that one considers
Datalog plans does not imply that in general one has to restrict the attention
to plans expressed in Datalog; indeed, in the results presented in the rest of the
paper, we shall make no assumption on the language that is used to express the
plan; in general, the plan can be encoded as a Turing machine.

We describe now the construction of a recursive plan according to [Li and
Chang, 2000].

Given a set I of constants and a CQ of the form q(X) ← s1(Z1), . . . , sk(Zk)
over a source schema S, a new predicate domA, called domain predicate, is
introduced for every abstract domain A used in S (X is a sequence of variables
and each Zi is a sequence of constants and variables). Such a predicate will be
used to represent constants belonging to A. Its extension, at every step of the
execution of the plan, will consist of all constants of A that have been extracted
so far (plus those already in I, if any).

The program consists of the following rules:

– A fact domA(a) for every constant a ∈ I with abstract domain A.

39Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

– A rule, called cache rule, of the form

ŝ(X) ← s(X), domi1(Xi1), . . . , domin(Xin)

for every source s ∈ S, where ŝ is a fresh predicate, called s’s cache, X is
a sequence of distinct variables, i1, . . . , in are all the bound positions in s,
domi1 , . . . , domin are the domain predicates of the corresponding abstract
domains, and Xi1 , . . . ,Xin are the variables occurring in those positions
in X. Cache rules are crucial in the construction, since they ensure that
sources with limitations are accessed only by having a selection on the bound
positions that uses constants already extracted (or present in I).

– A rule, called domain rule, of the form

domA(Xi) ← ŝ(X1, . . . ,Xi−1,Xi,Xi+1, . . . ,Xn)

for every output argument with abstract domain A in every source s ∈ S,
where i is its position in s, and X1, . . . ,Xn are distinct variables. Domain
rules serve to populate the domain predicates with all the extracted con-
stants.

– A rule of the form q(X) ← ŝ1(Z1), . . . , ŝk(Zk), which is the rewrite of the
query over the cache predicates.

The evaluation of q over this program will start from the set of initial values,
stored in the facts, to populate the domain predicates; the program will then
access all the sources it can, according to their access limitations, via the cache
rules, to populate the caches. With the new facts obtained (if any), new values
will be added to the domain predicates via the domain rules. With these, it will
repeat the process and access the sources again, until there is no way of making
new accesses, i.e., a fixpoint has been reached. The returned answer consists of
all facts obtainable while respecting the access limitations, and is therefore the
same as ans(q,S,DB , I).

The construction of the Datalog program for the query of Example 2 is shown
in the next example.

Example 4. Consider again Example 2, with sources s1 and s2. Assuming that
the constant 1998 is known for the abstract domain “year”, the Datalog program
generated by the algorithm of [Li and Chang, 2000] for the query q(A) ←
s2(A, italian) is shown in Figure 1.

The query is rewritten over the caches (rule ρ1), which are defined in the
cache rules ρ2 and ρ3; these also ensure that the facts that are stored in the
caches are retrieved from the sources according to the access limitations. Rules
ρ4 − ρ6 are the domain rules. Finally, ρ7 and ρ8 are facts assigning the right
abstract domain to the initial constants.

40 Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

ρ1 : q(A) ← ŝ2(A, italian)
ρ2 : ŝ1(T, Y,A) ← s1(T, Y,A), domY (Y)
ρ3 : ŝ2(A,N) ← s2(A,N), domA(A)
ρ4 : domT (T) ← ŝ1(T, Y,A)
ρ5 : domA(A) ← ŝ1(T, Y,A)
ρ6 : domN (N) ← ŝ2(A,N)
ρ7 : domN (italian) ←
ρ8 : domY (1998) ←

Figure 1: Datalog program for Example 4

The problem of such recursive query plans is that their evaluation usually
requires a large number of accesses to data sources; moreover, such sources may
be on the web, so that accessing them can be slow. It is therefore important
to optimize the query plans so as to reduce as much as possible the number of
accesses. A first kind of optimization is the static optimization, which is done at
the intensional level, by modifying the query plan so that it will avoid certain
accesses. An example of static optimization is presented in [Li and Chang, 2000;
Li and Chang, 2001b; Li and Chang, 2001a]. All of these works consider a class
of queries called connection queries, which are a strict subclass of union of con-
junctive queries and incomparable with conjunctive queries. Roughly speaking,
connection queries capture selection, projection and a limited form of equi-join,
but not Cartesian products: the attributes with the same name must be all in an
equi-join4. This makes it impossible for connection queries to express some sim-
ple and common conjunctive queries, e.g., asking for the grandparent-grandchild
pairs that can be extracted from a binary relation, parent(Par ,Child), because
in the conjunctive query q(X,Y) ← parent(X,Z), parent(Z, Y) the first argu-
ments of the two occurrences of parent are not equi-joined, and neither are the
second ones. The optimization for connection queries is based on a hypergraph
encoding of the query and of the correspondence between the abstract domains
of the different sources: with a technique based on a notion similar to reacha-
bility (called backward-closure), the sources that are relevant with respect to a
query are determined, and the others discarded.

A technique to determine relevant sources for the class of conjunctive queries
is described in [Cal̀ı and Martinenghi, 2008b], a work describing its application
in a system capable of providing integrated access to a set of sources with limi-
tations. The technique is based on a graph representation of the query and the
sources that are not in the query, together with the correspondence among the
abstract domains of the attributes of the various sources. Two mutually-recursive
4 There, the notion of abstract domain is implicit: abstract domains are represented

by attribute names, so the same attribute name means the same abstract domain.

41Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

functions are able to suitably prune the graph, discarding non-relevant sources.
Also, [Cal̀ı and Martinenghi, 2008b] describes a technique for constructing, start-
ing from a pruned graph, a query plan that minimizes the number of accesses,
discarding “at compile time” (we remind that this optimization is static) all
accesses that are useless for every instance of the sources.

The above static optimizations are based on the same theoretical framework,
which is the same that we described in Section 2. However, this framework is unfit
to model the case where the same source is accessible with different input/output
patterns; this is a common case in data accessible through web forms, where usu-
ally at least one of the fields is to be filled in, but there is no fixed input pattern.
Indeed, it is possible to represent this real-world case by introducing a separate
source symbol, for every input/output pattern admitted for a certain data source
(notice that in general the number of such source symbols can be exponential
in the number of attributes of the original data source). For example, if a data
source r(A,B,C) requires at least one attribute to be selected, we represent
it by means of the following source symbols with binding patterns: r(A, B,C),
r(A,B , C), r(A,B,C), r(A,B , C), r(A,B ,C), r(A, B,C), r(A,B ,C). However,
while this correctly represents the initial source, there is some additional infor-
mation that we know, and that is due to the fact that all these source symbols
are actually mapped to the same data source: all obtained sources with access
limitations have the same extension, in every database instance. Therefore, since
the above techniques assume arbitrary extensions of the sources, they cease to
be optimal because they do not make use of this additional information.

In the following, we shall introduce relational constraints that are able to
represent this additional knowledge (and more); we will then devise techniques
to employ such information during the execution of the plan (from which the
denomination as dynamic optimization) in order to avoid unnecessary accesses.

4 Implication of Functional and Simple Full-Width Inclusion
Dependencies

In the previous section we have surveyed techniques for optimization of the query
plan that allow one to retrieve all obtainable tuples from a set of sources, given
a query over the source schema. Notice that such an optimization is performed
at compile time, and it is obviously relevant for every source database.

However, further optimization techniques, to be applied during the query
evaluation process, can be conceived. Such techniques take into account tuples
already extracted from the sources at a certain step of the evaluation of the
Datalog program associated to a query. They exploit simple full-width inclusion
dependencies and functional dependencies on the source relations so as to de-
termine in advance, at a certain step of the evaluation of the Datalog program,

42 Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

whether an access is potentially useful for the answer, i.e., whether it could
return tuples with new values.

In order to fully characterize our dynamic optimization, which will be de-
scribed in the next section, we now formally introduce the kind of integrity
constraints that we use for source access optimization, namely simple full-width
inclusion dependencies and functional dependencies. In the following, we denote
sets of attributes (i.e., positions) with boldface letters, and we use A(s) to de-
note the set of attributes of a source s. Given a database DB , we denote the
extension of s in DB with sDB . Given a set of attributes A ⊆ A(s), and a tuple
t ∈ sDB , we denote with t[A] the projection of t over A.

Definition 5. Let s1 and s2 be two sources having the same arity and whose
attributes have pairwise the same abstract domains. A simple full-width inclusion
dependency (SFWID) between s1 and s2 has the form

s1 ⊆ s2

Such an inclusion dependency is satisfied in a database DB if sDB
1 ⊆ sDB

2 .

Simple full-width inclusion dependencies are a limited form of inclusion de-
pendencies (IDs), which allow one to state that an entire relation is included in
another one having the same arity and the same abstract domains. SFWIDs turn
out to be essential for modeling the common case of real data sources that can
be accessed through different binding patterns, e.g., a database relation that can
be accessed from a Web site using different forms. Consider, e.g., bibliographic
data at DBLP accessible either by author or by title: such a data source can be
modeled by means of two source symbols with different binding patterns, which
are declared equivalent by means of two SFWIDs. In general, we can represent in
our model a real data source with several binding patterns as a set s1, . . . , sn of
distinct source symbols, one for each different way of accessing the data source,
with a binding pattern that reflects the access modality. The fact that the source
symbols s1, . . . , sn represent the same data source is expressed by means of the
two SFWIDs si ⊆ sj and sj ⊆ si between each pair of sources si and sj , with
1 ≤ i < j ≤ n. Observe that this is a very common and thus particularly rele-
vant case which arises each time the same underlying data is accessible, e.g., on
the web, via two different forms. Moreover, by means of a SFWID we can also
capture the case of a Web site in which a form gives access to a subset of the
data contained in the site.

For the sake of completeness, we include the definition of inclusion depen-
dencies (IDs).

Definition 6. Let s1 and s2 be two sources. An inclusion dependency (ID) be-
tween s1 and s2 has the form

r1[A] ⊆ r2[B]

43Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

where the sequences A and B have the same number of elements and their at-
tributes have pairwise the same abstract domains. Such a dependency is satisfied
in a database DB if for every tuple t1 ∈ sDB

1 there exists a tuple t2 ∈ sDB
2 such

that t1[A] = t2[B].

Definition 7. A functional dependency (FD) over a source s has the form

s : A → B

with A,B ⊆ A(s). Such a dependency is satisfied in a database DB if for every
pair of tuples t1, t2 ∈ sDB we have that t1[A] = t2[A] implies t1[B] = t2[B].

Functional dependencies allow one to state that a certain set A of attributes in
a source functionally determines another set B of attributes, in the sense that
two tuples in the extension of the source that coincide on A also have to coincide
on B. They are an important type of integrity constraint, which generalize key
constraints and thus are actually present in most relational data sources.

We write DB |= γ to indicate that a dependency γ is satisfied in a database
DB ; similarly, we write DB |= Γ to indicate that all the dependencies in the set
of dependencies Γ are satisfied in DB . A dependency γ is implied by a set of
dependencies Γ , written Γ |= γ, if, for every database DB such that DB |= Γ ,
we also have DB |= γ.

The described implication is also called unrestricted implication, since it does
not exclude databases that have infinite size. Differently, the notion of finite
implication deals with finite databases only. In particular, we say that Σ finitely
implies σ, written Σ |=f σ, if, for every finite database DB , DB |= Σ implies
DB |= σ.

We discuss now the implication problem for FDs and SFWIDs, which is an
important tool for our dynamic optimization technique.

An inference rule ρ for IDs and FDs is an expression of the form

if α, then γ

where α (the premise) is a conjunction of satisfaction conditions for a set of IDs
and FDs, and γ (the conclusion) is an ID or a FD. Given a set Γ of IDs and
FDs, γ is said to be directly deduced from Γ via ρ if α holds for Γ . An ID or
FD γ is said to be deduced from Γ via a set of rules R if there is finite sequence
γ1, . . . , γn of dependencies such that γn = γ and, for all 1 ≤ i ≤ n, either γi ∈ Γ

or γi is directly deduced from Γ ∪ {γ1, . . . , γi−1} via some inference rule in R.
We say that a set R of inference rules for IDs and FDs is sound if, for every

set Γ of IDs and FDs, all dependencies that are deduced from Γ via R are also
implied by Γ ; R is complete if all dependencies that are implied by Γ are also
deduced from Γ via R.

44 Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

1. For every source s and all sets of attributes A,B ⊆ A(s),

if A ⊆ B, then s : B → A.

2. For every source s and all sets of attributes A,B,C ⊆ A(s),

if s : A → B, then s : AC → BC.

3. For every source s and all sets of attributes A,B,C ⊆ A(s),

if s : A → B and s : B → C, then s : A → C.

4. For every source s,

s ⊆ s.

5. For all sources s1, s2, s3,

if s1 ⊆ s2 and s2 ⊆ s3, then s1 ⊆ s3.

6. For all sources s1, s2 with A(s1) = A(s2) and sets of attributes A,B ⊆ A(s1),

if s1 ⊆ s2 and s2 : A → B, then s1 : A → B.

Figure 2: Inference rules for SFWIDs and FDs

The inference rules shown in Figure 2 are a specialization of the more general
sound (but not complete) inference rules for arbitrary inclusion dependencies and
functional dependencies [Cosmadakis and Kanellakis, 1986] to the case where
all inclusion dependencies are SFWIDs. We will show that for such a case these
inference rules are not only sound but also complete.

We note that the only rule that makes SFWIDs and FDs interact is Rule 6.
The following theorem shows that FDs do not influence the implication of a
SFWID. Hence, a SFWID can be derived only from the set of available SFWIDs.

Lemma8. Given a source schema S, two sources s1, s2 ∈ S, a set Γi of SFWIDs,
and a set Γf of FDs, we have that Γi |= s1 ⊆ s2 if and only if (Γi∪Γf) |= s1 ⊆ s2.

Proof.

“⇒” Trivial.
“⇐” We prove the claim by showing its contrapositive. In particular, we

show that (a) implies (b), where

(a) Γi 	|= s1 ⊆ s2, i.e., there exists a database DB such that DB |= Γi, but
DB 	|= s1 ⊆ s2.

(b) (Γi ∪ Γf) 	|= s1 ⊆ s2, i.e., there exists a database DB ′ such that DB ′ |= Γi

and DB ′ |= Γf , but DB ′ 	|= s1 ⊆ s2.

45Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

Assuming (a) to be true, we construct a database DB ′ that makes (b) true as
follows. Let S ′ be the subset of S consisting of all sources s′ ∈ S such that there
exists a sequence

s1 = s′1 ⊆ · · · ⊆ s′k = s′

of SFWIDs in Γi, where {s′1, . . . , s′k} ⊆ S, for some k ≥ 0. Since (a) holds, there
is a tuple t in DB such that t ∈ sDB

1 and t /∈ sDB
2 . We set sDB′

= {t} for each
source s ∈ S ′, and sDB′

= ∅ for each source s /∈ S ′. It is immediate to see that
DB ′ |= Γi by construction. Also, DB ′ |= Γf because each source contains at most
one tuple. Moreover, s1 ∈ S ′ and hence sDB′

1 = {t}. To show that (b) holds, it
remains to show that sDB′

2 = ∅, i.e., that s2 /∈ S ′. Assume by contradiction that
s2 ∈ S ′. Then, we would have in Γi a chain of inclusion dependencies

s1 = s′′1 ⊆ · · · ⊆ s′′h = s2

By t ∈ sDB
1 and DB |= Γi, we would have that t ∈ sDB

2 , contradicting the fact
that t /∈ sDB

2 . Thus (b) holds.

Next, we show that FDs and SFWIDs interact only in a limited form. In
particular, Lemma 9 below states that implication of a FD on a source s can be
decided by disregarding all sources si for which s ⊆ si is not derived.

Lemma9. Let S be a source schema, where all sources in S have the same arity
and the same abstract domains, let Γ be a set of FDs on sources in S and of
SFWIDs of the form s1 ⊆ s2 with s1, s2 ∈ S, and let s ∈ S. Consider the set
of sources S ′ = {s′ | Γ |= s ⊆ s′} and the set Γ ′ containing all and only the
dependencies in Γ that are on sources in S ′. Then Γ |= s : A → B if and only
if Γ ′ |= s : A → B.

Proof.

“⇐” Trivial.
“⇒” Assume by contradiction that Γ |= s : A → B but Γ ′ 	|= s : A → B.

The latter means that there is a database DB such that DB |= Γ ′ and DB 	|=
s : A → B. Let now DB ′ be the same as DB , but with all sources in S \ S ′

having an empty extension. We first show that DB ′ |= Γ : (i) For the sources in
S \ S ′, the extensions in DB ′ are empty, and hence all the FDs and SFWIDs
involving such sources are satisfied in DB ′. (ii) For the sources in S ′, DB and
DB ′ coincide, and since DB |= Γ ′, all the FDs and SFWIDs involving such
sources are satisfied in DB ′. (iii) For two sources s1 ∈ S ′ and s2 ∈ S \ S ′, the
SFWID s2 ⊆ s1 holds, since sDB′

2 = ∅. The only remaining case would be that of
a SFWID s1 ⊆ s2, with s1 ∈ S ′ and s2 ∈ S \S ′. However, such a SFWID cannot
occur in Γ . Indeed, if s1 ∈ S ′, by construction of S ′ we have that Γ |= s ⊆ s1;
if in Γ we had also s1 ⊆ s2, by inference rule 5 in Figure 2 it would follow that
Γ |= s ⊆ s2, and hence we would also have s2 ∈ S ′. Therefore DB ′ |= Γ and,

46 Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

since Γ |= s : A → B, then DB ′ |= s : A → B too. However, since DB and DB ′

necessarily coincide on s (since s ∈ S ′, being s ⊆ s), then it must also hold that
DB |= s : A → B, against the assumptions. Contradiction.

Once all uninteresting sources are disregarded, Lemma 10 below states that,
to decide the implication of a FD on s, we can assert on s all FDs holding on the
other sources and decide the implication using only the FDs on s and disregard
all the rest.

Lemma10. Let S be a source schema all of whose sources have the same arity
and abstract domains. Let s be a source in S and Γ = Γf ∪ Γi, where Γi =
{s ⊆ s′ | s′ ∈ S}5, and Γf is a set of FDs on sources in S. Consider the set

Γ ′ = {s : A′ → B′ | there is s′ ∈ S such that s′ : A′ → B′ ∈ Γf}.

Then Γ |= s : A → B if and only if Γ ′ |= s : A → B.

Proof.

“⇐” It suffices to show that, for every dependency of the form s′ : A′ → B′

in Γf where s′ ∈ S, we have Γ |= s : A′ → B′. This follows directly from
inference rule 6 in Figure 2.

“⇒” Suppose by contradiction that Γ |= s : A → B and Γ ′ 	|= s : A → B.
Then there exists a database DB that is a witness of the latter non-implication,
i.e., such that DB |= Γ ′ and DB 	|= s : A → B. Consequently there are two
tuples t1, t2 in sDB such that

t1[A] = t2[A] and t1[B] 	= t2[B]. (1)

Let DB ′ be a database in which the extension of all sources in S consists exactly
of the tuples t1 and t2. By (1), DB ′ 	|= s : A → B, and, trivially, DB ′ |= Γ ′, since
all FDs in Γ ′ are on s and were already satisfied in DB , and we have sDB′ ⊆ sDB .
Now, since all sources have the same extension in DB ′, then DB ′ |= Γi. Moreover,
every FD in Γf on some s′ ∈ S involves the same attributes as the corresponding
FD on s in Γ ′; therefore, we have DB ′ |= Γf . By compositionality of |=, it
follows that DB ′ |= Γ ; however DB ′ 	|= s : A → B, which is a contradiction to
Γ |= s : A → B.

Finally, to deal with functional dependencies within one relation we can apply
the following theorem.

Theorem11 [Armstrong, 1974]. The inference rules 1, 2, and 3 in Figure 2
are sound and complete for implication of functional dependencies within one
relation.
5 Note that Γi consists of one SFWID between s and each source in S.

47Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

Before we proceed, we prove the following result.

Lemma12. The reflexivity and transitivity rules from Figure 2 (numbers 4
and 5) for SFWIDs are sound and complete.

Proof (sketch). Soundness is trivial. Completeness descends from [Casanova
et al., 1984], where the following rules are proved to be correct and complete for
inclusion dependencies:

1. (Reflexivity) For all r and for all X ⊆ A(r),

r[X] ⊆ r[X]

2. (Projection and permutation) If r1[A1, . . . , Am] ⊆ r2[B1, . . . , Bm], then for
every sequence i1, . . . , ik of distinct integers with {i1, . . . , ik} ⊆ {1, . . . ,m}
it holds

r1[Ai1 , . . . , Aik
] ⊆ r2[Bi1 , . . . , Bik

]

3. (Transitivity) If r1[A] ⊆ r2[B] and r2[B] ⊆ r3[C], then

r1[A] ⊆ r3[C]

It is easy to see that we can transform every set of SFWIDs Σ, expressed over
a relational schema R, into a set of unary IDs Σu expressed over a relational
schema Ru having only unary relational predicates, such that taken a SFWID
and its corresponding unary ID σu, obtained by means of the above transfor-
mation, we have Σ |= σ iff Σu |= σu. The transformation is done as follows:
for every n-ary relation symbol r ∈ R, the corresponding symbol in Ru has a
single attribute whose abstract (resp. concrete) domain is the cartesian product
of the abstract (resp. concrete) domains of r, in their order; the single attribute
of ru serves to represent the values of all attributes of r. Now, for unary IDs over
unary relational predicates in Ru, it is easy to see that the above rules taken
from [Casanova et al., 1984] become as follows.

1. (Reflexivity) For all r,

r[1] ⊆ r[1]

2. (Transitivity) If r1[1] ⊆ r2[1] and r2[1] ⊆ r3[1], then

r1[1] ⊆ r3[1]

Notice that Rule 2 among those from [Casanova et al., 1984] has disappeared,
since there is no way of doing projections and permutations on unary IDs. The
set of unary IDs we have obtained are also SFWIDs, and they are the same as the
reflexivity and transitivity rules from Figure 2 (number 4 and 5) for SFWIDs, as
we can see by rewriting them into the SFWID notation. This proves the lemma.

This last result allows us to prove the following theorem.

48 Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

Theorem13. The inference rules of Figure 2 are sound and complete for impli-
cation of functional dependencies and simple full-width inclusion dependencies.

Proof (sketch). By Lemma 8, we conclude that implication of SFWIDs is not af-
fected by FDs and therefore can be reduced to implication of SFWIDs alone. For
this problem, the reflexivity and transitivity rules of Figure 2 (number 4 and 5)
are sound and complete by Lemma 12. From Lemmas 9 and 10, it follows that
implication of a FD on a source s can be decided by (i) disregarding all sources
that do not contain s by means of SFWIDs, (ii) asserting on s all FDs holding
on the remaining sources (via inference rule 6 in Figure 2), and (iii) deciding
the implication using only the FDs on s. For this latter point, by Theorem 11,
inference rules 1, 2, and 3 in Figure 2 are sound and complete.

From the previous results we can prove the following theorem, which, to the
best of our knowledge, is not covered by the known results about implication of
dependencies [Cosmadakis and Kanellakis, 1986; Cosmadakis et al., 1990].

Theorem14. Implication of simple full-width inclusion dependencies and func-
tional dependencies can be decided in polynomial time.

Proof. By Lemma 8, implication of a SFWID amounts to reachability on the
inclusion dependency graph (having the n sources as nodes and an arc (s1, s2)
if s1 ⊆ s2 is in the set of SFWIDs), which can be decided in NLogSpace by
a nondeterministic algorithm that guesses a path of at most n nodes in the
graph, and storing in space O(log n) only the (label of the) current node plus
a counter from 0 to n. The reachability problem is known to be NLogSpace-
complete [Jones et al., 1976]. Computing all the dependencies in the reflexive and
transitive closure of a set of n SFWIDs can be done in time O(n3) by computing
the transitive closure of the corresponding inclusion dependency graph [Floyd,
1962].

To decide implication of functional dependencies we proceed as suggested
by the proof of Theorem 13: (i) compute the transitive closure of SFWIDs us-
ing inference rule 5, (ii) propagate all FDs across SFWIDs using rule 6, and
(iii) compute implication of FDs within a single source. Step (i) requires cubic
time, step (ii) is clearly polynomial, and by [Beeri and Bernstein, 1979; Maier,
1980], step (iii) can be carried out in polynomial time.

Finally, we state the equivalence of finite and unrestricted implication for
SFWIDs and FDs.

Theorem15. Finite and unrestricted implication are equivalent for SFWIDs
and FDs.

Proof (sketch). Given a set Σ of SFWIDs and FDs and a FD of SFWID σ,
we prove Σ |= σ iff Σ |=f σ.

49Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

“⇒” Trivial.
“⇐” We prove that Σ 	|= σ implies Σ 	|=f σ; in particular, we show that if

there exists a database C such that C |= Σ and C 	|= σ, then there exists a finite
database Cf such that C |= Σ and C 	|= σ. The case where C is finite is trivial
(we take Cf = C); assume C is infinite. We have two cases.

(a) σ is a SFWID, say of the form s1 ⊆ s2. By hypothesis C 	|= σ, therefore there
exists a tuple t0 such that t0 ∈ sC1 \ sC

2 . We construct a database as follows;
we start from t0 in s1, and whenever, in this new database, there is a tuple
t such that t is in sa but not in sb for some sa and sb, and Σ contains the
SFWID sa ⊆ sb, we add t to sb. The obtained database, denoted C0, is such
that C0 |= Σ: the SFWIDs in Σ are satisfied by construction, and it is easy
to see the FDs are satisfied because otherwise they would also be violated in
C. At the same time, it is immedately seen that C 	|= σ, because we add t0
to s2 by construction only if Σ |= σ. Therefore, being finite by construction,
C0 is the desired counterexample to the implication.

(b) σ is a FD, say of the form s : A → B. By hypothesis C 	|= σ, therefore
there exist two tuples t1, t2 ∈ sC such that t1[A] = t2[A] and t1[B] 	= t2[B].
Similarly to the previous case, we construct a database as follows; we start
from t1 and t2 in s, and whenever, in this new database, there is a tuple
t such that t is in sa but not in sb for some sa and sb, and Σ contains
the SFWID sa ⊆ sb, we add t to sb. The obtained database, denoted C0,
is such that C0 |= Σ: the SFWIDs in Σ are satisfied by construction, and
the FDs are satisfied because otherwise they would also be violated in C.
Moreover, C0 	|= σ because of the presence of t1 and t2. Since C0 is finite by
construction, it is the desired counterexample to the implication.

5 Dynamic Optimization

In Section 3, we have surveyed techniques for generating query plans for re-
trieving the maximally contained answer to a query over sources with access
limitations. Some of these techniques also try to minimize source accesses by
identifying, at query plan generation time, those sources that are not relevant
for the query, i.e., such that they can never provide useful bindings for retriev-
ing tuples in the maximally contained answer. Accesses to sources that are not
relevant can thus be completely avoided.

Instead, here we introduce further optimization techniques, which can be
applied during the query evaluation process. Such techniques take into account
tuples already extracted from the sources at a certain step of the evaluation of

50 Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

the query plan associated to a query. They exploit simple full-width inclusion
dependencies and functional dependencies on the source relations to know in
advance whether an access to be made by the query plan is potentially useful for
the answer, i.e., whether it could return tuples with new values that have not
been already extracted by previous accesses.

Example 5. Consider a source s(A1,A2,A3) (supposing for simplicity to have a
distinct abstract domain for each attribute) with the functional dependency

s : A1 → A2, A3

Let DB be a database and t be a tuple previously extracted from sDB , with
t[A1] = a1. Suppose that we have some value a2 with which to bind attribute
A2. If we try to access sDB using the binding (a1, a2), the access cannot provide
any new tuple: because of the functional dependency that has to be satisfied
by DB , it can either provide t alone (in case a2 = t[A2]), or no tuple (in case
a2 	= t[A2]).

We remark that the functional dependency of Example 5 is actually a key
constraint, and the key is a subset of the bound attributes of the source. We now
introduce the notion of dynamic relevance, which characterizes those accesses
that may extract new tuples.

In the following, we denote the bound attributes of a source s with B(s).
Furthermore, we say that a database DB for a source schema S = {s1, . . . , sn}
captures the sets of tuples Ts1 , . . . ,Tsn for s1, . . . , sn if there exists a set of
accesses such that the tuples extracted by it from sDB

i is exactly Tsi , for 1 ≤
i ≤ n. In other words, the sets Ts1 , . . . ,Tsn may be interpreted as the sets of
tuples that have been already extracted at a certain point of the query answering
process.

Definition 16. Let S = {s1, . . . , sn} be a source schema, Γ a set of dependencies
for S, and Ts1 , . . . ,Tsn sets of tuples associated to s1, . . . , sn, respectively. An
access to a source sk ∈ S using binding b is dynamically relevant with respect to
Γ and Ts1 , . . . ,Tsn if, for at least one database DB that captures Ts1 , . . . ,Tsn

for s1, . . . , sn and such that DB |= Γ , the extraction made by the access in DB
contains at least one tuple that is not in

⋃
1≤i≤n Tsi .

Notice that, a necessary condition for an access to be dynamically relevant
with respect to Γ and Ts1 , . . . ,Tsn , is that for each i, the set of tuples Tsi ,
when considered as (part of) the extension of a source si, does not violate any
FD on si in Γ . With the notion of dynamic relevance at hand, we can generalize
the observation made in Example 5, with the following result.

51Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

Proposition 17. Given a source s, let γ be the FD

s : K → A(s)

with K ⊆ B(s). Let b be a binding for s and Ts a set of tuples that satisfies γ,
when considered as the extension of s. Then accessing s using b is dynamically
relevant with respect to γ and Ts if and only if there exists no tuple t ∈ Ts such
that b[K] = t[K].

Proof. Let B = B(s).
“⇐” Consider a database DB such that sDB = {t0} ∪Ts, for some tuple t0

with b[B] = t0[B]. Since (i) Ts, when considered as the extension of s, satisfies
γ, (ii) Ts does not contain a tuple t such that b[K] = t[K], and (iii) K ⊆ B,
we have that DB |= γ and also that t0 /∈ Ts. Therefore, accessing sDB using b

returns a tuple not in Ts, namely t0.
“⇒” Suppose accessing s using b as binding is dynamically relevant with

respect to γ and Ts. This means that there is at least one database DB capturing
Ts for s and satisfying γ in which the access extracts at least one tuple t0 that
was not in Ts. All tuples that may be extracted from sDB using b have the same
values over K, due to the fact that K ⊆ B. Suppose, by contradiction, that
there is a tuple t ∈ Ts such that t[K] = b[K]. Then, because of the functional
dependency γ, every tuple extracted from sDB using b, including t0, has the
same values as t over A(s), i.e., it coincides with t and is therefore already in
Ts. Contradiction to t0 /∈ Ts.

Clearly, no binding that, together with the set of already extracted tuples,
violates a FD can be used to extract new tuples. This circumstance is expressed
in the following proposition.

Proposition 18. Given a source s, let γ be the FD

s : A → B

with A ⊆ B(s). Let b be a binding for s and Ts a set of tuples. Then accessing
s using b is dynamically relevant with respect to γ and Ts if and only if

1. there exists no tuple t ∈ Ts such that t[B(s)] = b[B(s)], and

2. there exists no tuple t ∈ Ts such that t[A] = b[A] and t[B ∩ B(s)] 	= b[B ∩
B(s)].

Proof. Clearly, if Condition 1 holds, then the access made by b has already been
done to obtain t, and thus it is not dynamically relevant. If Condition 2 holds,
then every tuple extracted with binding b would necessarily violate γ; therefore,
since we only consider databases capturing Ts and satisfying γ, no tuple can

52 Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

be extracted with binding b. If neither Condition 1 nor Condition 2 holds, it
suffices to consider a database DB and a tuple t′ such that sDB = {t′}∪Ts and
t′[B(s)] = b[B(s)]: the access is new, it extracts t′, and γ is satisfied, therefore it
is dynamically relevant.

Now we illustrate another optimization technique, which also exploits simple
full-width inclusion dependencies.

Example 6. Suppose we have the following sources:

s1(Code,Surname,City)
s2(Code,Surname,City)

where s1 stores data about employees and s2 stores data about persons, and the
SFWID s1 ⊆ s2. The attribute with abstract domain City represents the city
where the corresponding person (or employee) lives. We also have the following
FD on s1:

s1 : Code → Surname,City

Consider a database DB in which both sDB
1 and sDB

2 are as follows:

Code Surname City

2 brown sidney
5 williams london
7 yamakawa kyoto
1 wakita kyoto
9 marietti rome

If our set of initial values is rome and kyoto, we may use them as bindings to
access sDB

2 and get the following tuples:

Code Surname City

7 yamakawa kyoto
1 wakita kyoto
9 marietti rome

Now we have six new values: the three codes 1, 7, and 9 and the three surnames
yamakawa, wakita, and marietti. With these values we could access sDB

1 to try
and get other values (we may get only cities, as the other attributes are bound).
But we can easily observe that, because of the functional dependency on s1, if
we bind the attribute with domain Code with one of the known values, we get a
tuple we had already obtained from sDB

2 . Therefore the access to sDB
1 is useless,

once we have accessed sDB
2 . Instead, if we obtained a code, say 2, and a surname,

say brown, from some other source, we could then access sDB
1 using binding 2

and brown, and get new tuples.

53Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

The following proposition provides a necessary and sufficient condition for
dynamic relevance for sources characterized by FDs and SFWIDs as in Exam-
ple 6.

Proposition 19. Let s1 and s2 be two sources, and Γ the following set of de-
pendencies:

s1 ⊆ s2

s1 : C → D

with C ⊆ B(s1) and D ⊇ B(s2). Let b be a binding for s1 and Ts2 a set of tuples.
Then, accessing s1 with b is dynamically relevant with respect to Γ and ∅,Ts2 if
and only if there exists no tuple t ∈ Ts2 such that t[C] = b[C].

Proof. Let B1 = B(s1) and B2 = B(s2)
“⇐” By hypothesis, there is no tuple in Ts2 agreeing with b on C. Suppose,

by contradiction, that accessing s1 with b is not dynamically relevant. Then, for
every database DB capturing ∅,Ts2 for s1, s2 and satisfying Γ , the extraction
made by such an access contains only tuples that are in Ts2 . There is clearly
at least one such database DB for which the access to sDB

1 using b has a non-
empty extraction. For every tuple t in such an extraction, since C ⊆ B1, we
have t[C] = b[C]. Then, by dynamic irrelevance of the access, t must necessarily
be in Ts2 , against the hypothesis.

“⇒” By hypothesis, there is a database DB capturing ∅,Ts2 for s1, s2 and
satisfying Γ in which the extraction made by an access to sDB

1 with b contains
at least one tuple that is not in Ts2 . Suppose by contradiction that there exists
a tuple t in Ts2 such that t[C] = b[C]; then, since C ⊆ B1 and because of the
dependency s1 : C → D, we have that every tuple t′ extracted from s1 using b

is such that t′[D] = t[D]. Now, since B2 ⊆ D, we obviously have that t′[B2] =
t[B2]. Observe that, as t was extracted from sDB

2 , all tuples of sDB
2 coinciding

with t on B2 have been extracted as well. Due to the inclusion dependency
s1 ⊆ s2, we can conclude that every tuple t′ that we may get from sDB

1 using b

as binding was already extracted from sDB
2 . Contradiction.

Using the previous results, we can show that verifying dynamic relevance of
accesses can be done in polynomial time.

Theorem20. Let S be a source schema for which the maximum arity of all
sources is fixed, and let Γ be a set of FDs and SFWIDs on sources in S. Then
one can check in polynomial time in the number of dependencies in Γ , the number
of attributes in S, and the number of tuples already extracted from sources in S,
whether accessing a source in S with a certain binding is dynamically relevant
with respect to Γ .

54 Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

Proof (sketch). By Theorem 14, implication of FDs and SFWIDs can be checked
in polynomial time, which allows us to test whether the dependencies required
for the application of Propositions 17, 18, and 19 hold.

The conditions of applicability of Proposition 17 need to be checked only for
a polynomial number of key dependencies, since the maximum arity is fixed for
each source in the schema.

A similar argument can be used to show that there is only a polynomial
number of dependencies to be tested for the application of Proposition 19.

As for the applicability of Proposition 18, one only needs to consider the set
Γ ′ of implied FDs obtained from Γ by first computing the transitive closure of
SFWIDs using inference rule 5 and then by propagating all FDs across SFWIDs
using rule 6. All other implied FDs obtained through rules 1–3 need not be
considered, because they do not add anything to the FDs in Γ ′ with respect
to the conditions of applicability of Proposition 18. In particular, in rule 1, if b

and an extracted tuple t agree on B, with B ⊇ A, then they necessarily also
agree on A; in rule 2, if b and an extracted tuple t agree on A and on B, then
if they agree on AC, they necessarily also agree on BC; in rule 3, if b and an
extracted tuple t agree on A, B, and C, then they trivially also agree on A and
C. Clearly, the size of Γ ′ is polynomial in the size of Γ .

Finally, for any access to be made with a binding b, in order to apply the
claims of the mentioned propositions, one simply needs to check whether any of
the known tuples agrees with b on some given attributes, which can also be done
in polynomial time in the number of extracted tuples.

The result of Theorem 20 can be complemented with the practically relevant
observation that minimal keys are the only key constraints that need to be
considered when testing dynamic relevance of an access. We recall that, for a set
of dependencies Γ and a source s, a constraint γk of the form s : K → A(s) is
a minimal key implied by Γ if Γ |= γk and there exists no K′ ⊂ K such that
Γ |= s : K′ → A(s).

Proposition 21. Let Γ be a set of FDs for a source s, b a binding for s, and Ts

a set of tuples; let further Γ ′ be the set of constraints of the form s : K → A(s)
implied by Γ . Then b is dynamically relevant with respect to Γ ′ and Ts if and
only if, for each minimal key γk implied by Γ , b is dynamically relevant with
respect to γk and Ts.

Proof (sketch). Let s : K → A(s) be a minimal key implied by Γ and let
s : K′ → A(s) be a FD implied by Γ , with K′ ⊃ K. It follows straightforwardly
by Definition 16 that if b is dynamically relevant with respect to s : K → A(s)
and Ts then it is also dynamically relevant with respect to s : K′ → A(s) and
Ts.

55Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

Similarly, the only relevant FDs for the application of Proposition 19 are of
the form s1 : C → B(s2), with C ⊆ B(s1) and C being a minimal set of attributes
for which an FD of this form is implied, since those of the form s : C′ → D,
with D ⊇ B(s2) and C′ ⊇ C do not add any requirement to dynamic relevance.

We conclude the section by distinguishing between two different kinds of
dynamically (ir)relevant accesses. When an access to a source s is recognized as
dynamically irrelevant, we are guaranteed that the tuples it extracts, if any, do
not contain any constant that is not already known. However, in some cases we
may already know that the access is doomed to extract no tuples at all or to only
extract tuples that are already known to be in s; in such cases, we say that the
access is tuple-irrelevant. The conditions of Propositions 17 and 18 sanction an
access as tuple-(ir)relevant. It is never useful to make tuple-irrelevant accesses,
since no new piece of information can be gained from it, provided that the results
from previous accesses are remembered. In some other cases we simply know that
the access will not extract any new tuple of constants, but we may not already
know whether such tuple is in s or not before making the access (in particular,
we may know the tuple from other sources than s); in such cases, we say that the
access is binding-irrelevant. The conditions of Proposition 19 determine whether
an access is binding-(ir)relevant (if s1 	= s2) or tuple-(ir)relevant (if s1 = s2).
The previous observations suggest that, during query answering under access
limitations, tuple-irrelevant accesses should always be avoided, whereas accesses
that are binding-irrelevant but not tuple-irrelevant should be avoided only when
accessing off-query sources, i.e., those sources that are only accessed in order to
retrieve potentially useful bindings to compute the maximally contained answer,
but that are not themselves part of the query.

6 Related work

Processing queries under access limitations is a problem that, with the advent of
the Web, has gained increased importance in database theory and information
systems. Several works in the literature have investigated different aspects of
this problem, directly or indirectly related to the issue of query optimization.
We briefly list and discuss the most relevant ones in the following.

A seminal work is [Rajaraman et al., 1995], which deals with the problem in
an information integration setting, providing techniques for determining whether
a CQ can be answered in the presence of access limitations, and showing that
the problem can be decided in polynomial time. [Yerneni et al., 1999] deals with
mediators that compute answers to queries, and considers for such mediators a
more refined notion of capability than the one of binding patterns used in the
present paper. It proposes techniques to compute the set of queries that are
supported by specific mediators, given sources with access limitations.

56 Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

[Florescu et al., 1999] considers non-recursive plans and proposes algorithms
to optimize the search space for such plans, while [Duschka and Levy, 1997]
presents algorithms for query answering using views [Halevy, 2001] under access
limitations. This kind of problem is taken up again in [Deutsch et al., 2005]
by considering the extension with various forms of integrity constraints. The
paper shows that access limitations can be encoded into integrity constraints of
a suitable form, which can then be processed together with the other constraints.
Optimization is, however, not dealt with in the paper.

Recursive query plans for query answering under access limitations are in-
troduced in [Li and Chang, 2000]. Instead, [Millstein et al., 2003] studies the
problem of containment of queries relative to a set of views, and considers also
sources with access limitations. For this case, decidability of containment of a
Datalog query in a non-recursive Datalog query is established.

We have already discussed in Section 3 the works addressing the problem of
static optimizations, i.e., those that can be made at the time of the generation
of the query plan [Li and Chang, 2000; Li and Chang, 2001b; Li and Chang,
2001a; Cal̀ı and Martinenghi, 2008b].

Several other problems have been addressed in the context of processing
queries in the presence of access limitation. A basic problem is feasibility, i.e.,
the existence of a query that is equivalent to a given one and that is executable
as is from left to right, while respecting the access limitations. The problem of
checking the feasibility of a query has been addressed in [Nash and Ludäscher,
2004; Ludäscher and Nash, 2004] for various classes of queries up to first-order
queries, showing that it is as hard as query containment. [Yang et al., 2006]
studies, again for various classes of queries, whether there is an ordering of
subgoals in a query plan that enables answering the query, and, if multiple such
orderings are possible, how to pick the best one.

Another issue in this framework is stability, i.e., determining whether the
complete answer to a query (the one that would be obtained with no access limi-
tations) can always be computed despite the access limitations; this is addressed
in [Li, 2003].

[Cal̀ı and Martinenghi, 2008b] introduces a graph model and presents an
algorithm for the generation of minimal query plans for CQs. The paper presents
also a system that implements suitable heuristics to query sources in parallel as
much as possible, thus reducing the overall query answering time.

Access limitations have also been studied in the context of logic programs
with (input or output) modes; in particular, the notion of well-modedness, due
to [Dembinski and Maluszynski, 1985], corresponds to the notion of executability
of a query from left to right of the previously mentioned works.

We remark that, with the exception of [Deutsch et al., 2005], which may
use integrity to enforce multiple access limitations on the same sources, all the

57Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

mentioned works rely on the assumption that for each source a single access
limitation only is specified. While in our setting we also enforce this syntactic
restriction, as remarked in Section 4, we may use SFWIDs to assert that various
sources are equivalent, and thus enforce on them multiple access limitations.
Also, to the best of our knowledge, no previous work addresses the problem
of dynamic optimization of accesses, in particular for the case of sources with
multiple access limitations or exploiting source dependencies.

Finally, we remark that the problem of implication of functional and in-
clusion dependencies has been studied extensively in the 80’s and early 90’s
(see, e.g., [Mitchell, 1983; Beeri and Vardi, 1984; Chandra and Vardi, 1985; Cos-
madakis et al., 1990; Cosmadakis and Kanellakis, 1986]). It is well known that
it is undecidable in the general case [Chandra and Vardi, 1985], but efficiently
solvable for special cases. Among these, we mention the case where the inclu-
sion dependencies are restricted to be unary [Cosmadakis et al., 1990] and the
case where the graph representation of a set of inclusion dependencies can be
captured by a forest [Levene and Loizou, 2001] with the so-called tree-like in-
clusion dependencies. Neither case subsumes the classes of dependencies that
we consider in this paper; in particular, a graph representation of the inclusion
dependencies by a forest requires acyclicity among inclusion dependencies, while
we allow SFWIDs to be cyclic.

7 Conclusions

In this paper, we have studied the problem of query planning for conjunctive
queries over sources with access limitations. We have surveyed existing query
planning techniques that can be applied to this context statically, before query
execution, to restrict the query plan to those accesses that are relevant for at
least one instance of the sources. Once a query plan is at hand, we can exploit
dependencies on the schema in order to determine dynamically, during query
execution, whether an access has the potential to extract data that have not
been retrieved earlier by previous accesses of the query plan. In particular, we
have studied dynamic optimization under functional dependencies and simple
full-width inclusion dependencies, which are typical constraints used to model
data sources accessible through Web forms. For these dependencies, we have
provided an algorithm that decides their implication in polynomial time. Based
on this result, we have further provided a necessary and sufficient condition for
deciding dynamic relevance of accesses that can be tested in polynomial time
in the size of the schema and of the data extracted until the time of the test,
assuming a fixed maximum source arity.

Future directions of research include the integration of the results discussed
in this paper with other optimization opportunities that might stem from the

58 Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

query containment problem for this context. In particular, upper bounds for
testing conjunctive query containment are known in the context of sources with
access limitations, but with no dependencies; algorithms, if they exist, for de-
ciding containment under access limitations and dependencies (such as FDs and
SFWIDs) still need to be studied. In particular, in [Cal̀ı and Martinenghi, 2008a]
it is shown that conjunctive query containment can be decided in coNExpTime

with a technique based on a particular kind of chase, called crayfish chase since
it somehow proceeds backwards. It may be possible that the crayfish chase can
be combined with the traditional chase based on inclusion and functional de-
pendencies in order to test containment under both access limitations and de-
pendencies. It should also be noted that the coNExpTime bound is not known
to be tight, since the best hardness result known for the problem of conjunctive
query containment under access limitations is NP-hardness, as a consequence of
the NP-completeness of the ordinary conjunctive query containment problem.

Another natural direction of research is to study and extend the algorithms
presented in this paper for dynamic optimization to more expressive classes
both of queries, by adding, e.g., union and negation, and of dependencies, by
considering, e.g., more general kinds of inclusion dependencies than simple full-
width inclusion dependencies.

Acknowledgments

Andrea Cal̀ı was partially supported by the EPSRC project “Schema Mappings
and Automated Services for Data Integration and Exchange” (EP/E010865/1).
Diego Calvanese and Davide Martinenghi acknowledge support from Italian
PRIN project “New technologies and tools for the integration of Web search
services”. Diego Calvanese has also been partially supported by FET project
TONES (Thinking ONtologiES), funded within the EU 6th Framework Pro-
gramme under contract FP6-7603.

References

[Abiteboul et al., 1995] Abiteboul, S., Hull, R., and Vianu, V. (1995). Founda-
tions of Databases. Addison Wesley Publ. Co., Reading, Massachussetts.

[Armstrong, 1974] Armstrong, W. W. (1974). Dependency structures of data
base relationships. In IFIP Congress, pages 580–583.

[Beeri and Bernstein, 1979] Beeri, C. and Bernstein, P. A. (1979). Computa-
tional problems related to the design of normal form relational schemas. ACM
Trans. on Database Systems, 4(1):30–59.

59Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

[Beeri and Vardi, 1984] Beeri, C. and Vardi, M. Y. (1984). A proof procedure
for data dependencies. J. of the ACM, 31(4):718–741.

[Cal̀ı and Calvanese, 2002] Cal̀ı, A. and Calvanese, D. (2002). Optimized query-
ing of integrated data over the Web. In Proc. of the IFIP WG8.1 Work-
ing Conference on Engineering Information Systems in the Internet Context
(EISIC 2002), pages 285–301. Kluwer Academic Publishers.

[Cal̀ı and Martinenghi, 2008a] Cal̀ı, A. and Martinenghi, D. (2008a). Conjunc-
tive query containment under access limitations. In Proc. of ER 2008, page to
appear.

[Cal̀ı and Martinenghi, 2008b] Cal̀ı, A. and Martinenghi, D. (2008b). Query-
ing data under access limitations. In Proc. of ICDE 2008, pages 50–59. IEEE
Computer Society.

[Casanova et al., 1984] Casanova, M. A., Fagin, R., and Papadimitriou, C. H.
(1984). Inclusion dependencies and their interaction with functional dependen-
cies. J. of Computer and System Sciences, 28(1):29–59.

[Chandra and Vardi, 1985] Chandra, A. K. and Vardi, M. Y. (1985). The impli-
cation problem for functional and inclusion dependencies is undecidable. SIAM
J. on Computing, 14(3):671–677.

[Cosmadakis and Kanellakis, 1986] Cosmadakis, S. S. and Kanellakis, P. C.
(1986). Functional and inclusion dependencies - A graph theoretical approach.
In Kanellakis, P. C. and Preparata, F. P., editors, Advances in Computing Re-
search, Vol. 3, pages 163–184. JAI Press.

[Cosmadakis et al., 1990] Cosmadakis, S. S., Kanellakis, P. C., and Vardi, M.
(1990). Polynomial-time implication problems for unary inclusion dependencies.
J. of the ACM, 37(1):15–46.

[Dembinski and Maluszynski, 1985] Dembinski, P. and Maluszynski, J. (1985).
AND-parallelism with intelligent backtracking for annotated logic programs. In
Proc. of SLP 1985, pages 29–38.

[Deutsch et al., 2005] Deutsch, A., Ludäscher, B., and Nash, A. (2005). Rewrit-
ing queries using views with access patterns under integrity constraints. In Proc.
of the 10th Int. Conf. on Database Theory (ICDT 2005), pages 352–367.

[Duschka and Levy, 1997] Duschka, O. M. and Levy, A. Y. (1997). Recursive
plans for information gathering. In Proc. of the 15th Int. Joint Conf. on Artificial
Intelligence (IJCAI’97), pages 778–784.

60 Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

[Florescu et al., 1999] Florescu, D., Levy, A. Y., Manolescu, I., and Suciu, D.
(1999). Query optimization in the presence of limited access patterns. In Proc.
of the ACM SIGMOD Int. Conf. on Management of Data, pages 311–322.

[Floyd, 1962] Floyd, R. W. (1962). Algorithm 97: Shortest path. Communica-
tions of the ACM, 5(6):345.

[Halevy, 2001] Halevy, A. Y. (2001). Answering queries using views: A survey.
Very Large Database J., 10(4):270–294.

[Jones et al., 1976] Jones, N., Lien, Y., and Lasser, W. (1976). New problems
complete for nondeterministic log space. Math. Systems Theory, 10:1–17.

[Levene and Loizou, 2001] Levene, M. and Loizou, G. (2001). Guaranteeing no
interaction between functional dependencies and tree-like inclusion dependen-
cies. Theor. Comput. Sci., 254(1-2):683–690.

[Li, 2003] Li, C. (2003). Computing complete answers to queries in the presence
of limited access patterns. Very Large Database J., 12(3):211–227.

[Li and Chang, 2000] Li, C. and Chang, E. (2000). Query planning with limited
source capabilities. In Proc. of the 16th IEEE Int. Conf. on Data Engineering
(ICDE 2000), pages 401–412.

[Li and Chang, 2001a] Li, C. and Chang, E. (2001a). Answering queries with
useful bindings. ACM Trans. on Database Systems, 26(3):313–343.

[Li and Chang, 2001b] Li, C. and Chang, E. (2001b). On answering queries in
the presence of limited access patterns. In Proc. of the 8th Int. Conf. on Database
Theory (ICDT 2001), pages 219–233.

[Ludäscher and Nash, 2004] Ludäscher, B. and Nash, A. (2004). Processing
union of conjunctive queries with negation under limited access patterns. In
Proc. of the 9th Int. Conf. on Extending Database Technology (EDBT 2004),
pages 422–440.

[Maier, 1980] Maier, D. (1980). Minimum covers in the relational database
model. J. of the ACM, 27(4):664–674.

[Millstein et al., 2003] Millstein, T. D., Halevy, A. Y., and Friedman, M. (2003).
Query containment for data integration systems. J. of Computer and System
Sciences, 66(1):20–39.

[Millstein et al., 2000] Millstein, T. D., Levy, A. Y., and Friedman, M. (2000).
Query containment for data integration systems. In Proc. of the 19th
ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS 2000), pages 67–75.

61Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

[Mitchell, 1983] Mitchell, J. C. (1983). The implication problem for functional
and inclusion dependencies. Information and Control, 56:154–173.

[Nash and Ludäscher, 2004] Nash, A. and Ludäscher, B. (2004). Process-
ing first-order queries under limited access patterns. In Proc. of the 23rd
ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS 2004), pages 307–318.

[Rajaraman et al., 1995] Rajaraman, A., Sagiv, Y., and Ullman, J. D. (1995).
Answering queries using templates with binding patterns. In Proc. of the 14th
ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS’95).

[Yang et al., 2006] Yang, G., Kifer, M., and Chaudhri, V. K. (2006). Efficiently
ordering subgoals with access constraints. In Proc. of the 25th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2006),
pages 22–22.

[Yerneni et al., 1999] Yerneni, R., Li, C., Garcia-Molina, H., and Ullman, J. D.
(1999). Computing capabilities of mediators. In Proc. of the ACM SIGMOD
Int. Conf. on Management of Data, pages 443–454.

62 Cali A., Calvanese D., Martinenghi D.: Dynamic Query Optimization ...

