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Abstract: On-line analytical processing (OLAP) systems deal with analytical tasks
that support decision making. As these tasks do not depend on the latest updates
by transactions, it is assumed that the data required by OLAP systems are kept in
a data warehouse, which separates the input from operational databases from the
outputs to OLAP. However, user requirements for OLAP systems change over time.
Data warehouses and OLAP systems thus are rather dynamic and the design process is
continuous. In order to easily incorporate new requirements and at the same time ensure
the quality of the system design, we suggest to apply the Abstract State Machine (ASM)
based development method. This assumes we capture the basic user requirements in a
ground model and then apply stepwise refinements to the ground model for every design
decisions or further new requirements. In this article, we show that a systematical
approach which is tailored for data warehouse design with a set of formal refinement
rules can simplify the work in dynamic data warehouse design and at the same time
improves the quality of the system.
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1 Introduction

On-line analytical processing (OLAP) systems deal with analytical tasks that
support decision making. As these tasks do not depend on the latest updates by
transactions, it is assumed that the data required by OLAP systems is kept in a
data warehouse, which separates the input from operational databases from the
output to OLAP. However, business requirements for OLAP systems change over
time and such changes are frequent. Thus data warehouses and OLAP systems
are dynamic, and the design process is continuous.

The issue of dynamic data warehouse design has attracted lots of attention,
but most of the work focused on the issue of materialised view selection. In
[Theodoratos and Sellis, 1999], the data warehouse is seen as a set of materi-
alised views over the source database. The problem of incorporating new require-
ments becomes looking for additional views to materialise to answer a new set
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of queries. Similarly in [Gupta et al., 1995], they look at how a re-defined user
query can be computed more efficiently using the already materialised result
of the original query. The work by [Kotidis and Roussopoulos, 2001; Lawrence
and Rau-Chaplin, 2006] have assumed a set of materialised view over a data
warehouse. They both worked at how to reselect the set of materialised views to
better serve the changed queries.

We tackle the dynamics more completely, by schema evolution as in [Blaschka
et al., 1999], and by view integration as in [Bouzeghoub and Kedad, 2000].
Blaschka et al.’s [Blaschka et al., 1999] approach is adapted to the design of
multidimensional databases so they focus on the dimension evolutions through
some algebraic operations whereas our approach is meant for the commonly used
relational databases. Bouzeghoub et al.’s [Bouzeghoub and Kedad, 2000] method
finds a set of views for the data warehouse rather than data warehouse schemas
in our case. In addition, we look at the impact on the optimisation issue too.
In that, our approach differs from the work in [Theodoratos and Sellis, 1999] by
considering the case of adding new views, if it is more beneficial even if the new
queries can be rewritten by the existing views.

In short, our design approach aims at simplifying the design work by a
method that guides the application of the refinement rules, and improving the
quality of the design which results from our approach being grounded in the
general method of Abstract State Machines (ASMs, [Börger and Stärk, 2003])
as outlined in [Schewe and Zhao, 2005a]. ASMs have already proven their use-
fulness in many application areas, such as hardware and software architecture,
databases, software engineering, etc. [Börger and Glässer, 1995; Barnett et al.,
2001; Prinz and Thalheim, 2003; Gurevich et al., 1997]. Furthermore, the ASM
method explicitly supports our view of systems development to start with an
initial specification called ground model [Börger, 2003a] that is then subject to
refinements [Börger, 2003b]. So quality criteria such as the satisfaction of con-
straints can first be verified for the ground model, while the refinements are
defined in a way that preserves already proven quality statements. This is simi-
lar to the approach taken in [Schewe, 1997], which contains a refinement-based
approach to the development of data-intensive systems using a variant of the B
method [Abrial, 1996].

The general idea for the ground model is to employ three interrelated ASMs,
one for underlying operational databases, one for the data warehouse, and one
for dialogue types [Lewerenz et al., 1999] that can be used to integrate views
on the data warehouse with OLAP functionality [Thomson, 2002]. For the data
warehouse level the model of multi-dimensional databases [Gyssens and Laksh-
manan, 1996], which are particular relational databases, can be adopted. Then
a large portion of the refinement work has to deal with view integration as pre-
dicted one of the major challenges in this area in [Widom, 1995]. The work in
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[Ma et al., 2005] discusses a rule-based approach for this task without reference
to any formal method.

Our work started from [Zhao and Schewe, 2004] which shows the development
of an ASM ground model for data warehouses and OLAP system based on the
fundamental idea of separating input from operational databases from output to
OLAP systems. According to this idea we obtain a model of three interconnected
ASMs, one for the operational database(s), one for the data warehouse, and one
for the OLAP system.

This idea was extended in [Schewe and Zhao, 2005b] focusing on cost-efficient
distribution of data warehouses. The work in [Schewe and Zhao, 2005b] exploits
fragmentation techniques from [Özsu and Valduriez, 1999] and the recombination
of fragments, but still remains on rather informal grounds. In [Zhao, 2005], we
started to formalize the distribution process and showed how the three-layered
specification was extended to distributed data warehouses.

The ASM modelling language was extended in [Schewe and Zhao, 2007] by
types. Our rationale for introducing typed ASMs is to obtain an application-
specific version of ASMs. Though the quality-assurance aspect is an important
argument for a formal development method, there is still an aversion against
using a rigid formal approach, in particular in areas, in which informal develop-
ment is still quite dominant such as OLAP systems. So providing a version of
ASMs that are easier to use due to the adoption of more familiar terminology
will be a necessary step towards the simplification of systems development and
the desired quality improvement.

In this paper, we extend our work in [Koehler et al., 2007] which deals with
dynamic data warehouse and OLAP design. In specific, we have looked at the
case of incorporating OLAP functionalities, such as the applications in business
statistics. Furthermore, we present our general design approach which is tailored
to the design of dynamic data warehouse and OLAP system design.

The rest of paper is organized as follows: in Section 2 we introduce the general
idea of the ASM method, and ASM with types (TASM). In Section 3, we present
a ground model in TASM using a grocery store as an example. In Section 4 we
discuss our refinement approach tailored for dynamic data warehouse design. In
Section 5, we describe the view integration technique through introducing the
general idea of schema transformation and the formal definition of a subset of
refinement rules. In Section 6, we show how we deal with the issue of dynamic
data warehouse and OLAP system design using some examples. In Section 7, we
demonstrate how we incorporate changes of OLAP functionality using examples
in business statistics. We conclude with a brief summary in Section 8.
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2 Systems Development with Abstract State Machines

Abstract State Machines (ASMs, [Börger and Stärk, 2003]) have been developed
as means for high-level system design and analysis. The general idea is to provide
a through-going uniform formalism with clear mathematical semantics without
dropping into the pitfall of the “formal methods straight-jacket”. That is, at all
stages of system development we use the same formalism, the ASMs, which is
flexible enough to capture requirements at a rather vague level and at the same
time permits almost executable systems specifications. Thus, the ASM formalism
is precise, concise, abstract and complete, yet simple and easy to handle, as only
basic mathematics is used.

The systems development method itself just presumes to start with the def-
inition of a ground model ASM (or several linked ASMs), while all further sys-
tem development is done by refining the ASMs using quite a general notion
of refinement. So basically the systems development process with ASMs is a
refinement-validation-cycle. That is a given ASM is refined and the result is val-
idated against the requirements. Validation may range from critical inspections
to the usage of test cases and evaluation of executable ASMs as prototypes. This
basic development process may be enriched by rigorous manual or mechanized
formal verification techniques. However, the general philosophy is to design first
and to postpone rigorous verification to a stage, when requirements have be al-
most consolidated. In the remainder of this article we will emphasize only the
specification of ground model ASMs and suitable refinements (for details see
[Börger and Stärk, 2003]).

2.1 Simple ASMs

As explained so far, we expect to define for each stage of systems development a
collection M1, . . . , Mn of ASMs. Each ASM Mi consists of a header and a body.
The header of an ASM consists of its name, an import- and export-interface,
and a signature. Thus, a basic ASM can be written in the form

ASM M

IMPORT M1(r11, . . . , r1n1), . . . , Mk(rk1, . . . , rknk
)

EXPORT q1, . . . , q�

SIGNATURE . . .

Here rij are the names of functions and rules imported from the ASM Mi

defined elsewhere. These functions and rules will be defined in the body of Mi

— not in the body of M — and only used in M . This is only possible for those
functions and rules that have explicitly been exported. So only the functions and
rules q1, . . . , q� can be imported and used by ASMs other than M . As in standard
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modular programming languages this mechanism of import- and export-interface
permits ASMs to be developed rather independently from each other leaving the
definition of particular functions and rules to “elsewhere”.

The signature of an ASM is a finite list of function names f1, . . . , fm, each of
which is associated with a non-negative integer ari, the arity of the function fi. In
ASMs each such function is interpreted as a total function fi : Uari → U ∪ {⊥}
with a not further specified set U called super-universe and a special symbol
⊥ /∈ U . As usual, fi can be interpreted as a partial function Uari � U with
domain dom(fi) = {x ∈ Uari | fi(x) �= ⊥}.

The functions defined for an ASM including the static and derived functions,
define the set of states of the ASM.

In addition, functions can be dynamic or not. Only dynamic functions can
be updated, either by and only by the ASM, in which case we get a controlled
function, by the environment, in which case we get a monitored function, or by
neither the ASM nor the environment, in which case we get a derived function. In
particular, a dynamic function of arity 0 is a variable, whereas a static function
of arity 0 is a constant.

2.2 States and Transitions

If fi is a function of arity ari and we have f(x1, . . . , xari) = v, we call the pair
� = (f,x) with x = (x1, . . . , xari) a location and v its value. Thus, each state of
an ASM may be considered as a set of location/value pairs.

If the function is dynamic, the values of its locations may be updated. Thus,
states can be updated, which can be done by an update set, i.e. a set Δ of pairs
(�, v), where � is a location and v is a value. Of course, only consistent update
sets can be taken into account, i.e. we must have

(�, v1) ∈ Δ ∧ (�, v2) ∈ Δ ⇒ v1 = v2.

Each consistent update set Δ defines state transitions in the obvious way. If
we have f(x1, . . . , xari) = v in a given state s and ((f, (x1, . . . , xari)), v

′) ∈ Δ,
then in the successor state s′ we will get f(x1, . . . , xari) = v′.

In ASMs consistent update sets can be obtained from update rules, which
can be defined by the following language:

– the skip rule skip indicates no change;

– the update rule f(t1, . . . , tn) := t with an n-ary function f and terms
t1, . . . , tn, t indicates that the value of the location determined by f and
the terms t1, . . . , tn will be updated to the value of term t;

– the sequence rule r1 seq . . . seq rn indicates that the rules r1, . . . , rn will
be executed sequentially;
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– the block rule r1 par . . . par rn indicates that the rules r1, . . . , rn will be
executed in parallel;

– the conditional rule

if ϕ1 then r1 elsif ϕ2 . . . then rn endif

has the usual meaning that r1 is executed, if ϕ1 evaluates to true, otherwise
r2 is executed, if ϕ2 evaluates to true, etc.;

– the let rule let x = t in r means to assign to the variable x the value
defined by the term t and to use this x in the rule r;

– the forall rule forall x with ϕ do r enddo indicates the parallel execution
of r for all values of x satisfying ϕ;

– the choice rule choose x with ϕ do r enddo indicates the execution of r

for one value of x satisfying ϕ;

– the call rule r(t1, . . . , tn) indicates the execution of rule r with parameters
t1, . . . , tn (call by name).

Instead of seq we simply use ; and instead of par we write ‖. The idea is
that the rules of an ASM are evaluated in parallel. If the resulting update set
is consistent, we obtain a state transition. Then a run of an ASM is a finite or
infinite sequence of states s0 → s1 → s2 → . . . such that each si+1 is the suc-
cessor state of si with respect to the update set Δi that is defined by evaluating
the rules of the ASM in state si.

We omit the formal details of the definition of update sets from these rules.
These can be found in [Börger and Stärk, 2003].

The definition of rules by expressions r(x1, . . . , xn) = r′ makes up the body
of an ASM. In addition, we assume to be given an initial state and that one of
these rules is declared as the main rule. This rule must not have parameters.

2.3 Notion of Refinement

The general notion of refinement relates two ASMs M and M∗. In principle, as
the semantics of ASMs is defined by its runs, we would need a correspondence
between such runs, i.e.

– a correspondence between the states s of M and the states s∗ of M∗, and

– a correspondence between the runs of M and M∗ involving states s and s∗,
respectively.
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However, in contrast to many formal methods the notion of refinement in
ASMs does not require all states to be taken into account. We only request to
have a correspondence between “states of interest”.

Formally, let S and S∗ be the sets of states of ASMs M and M∗, respectively.
A correspondence of states between M and M∗ is a one-one binary relation
≡⊆ S×S∗ such that s0 ≡ s∗0 holds for the initial states s0 and s∗0 of M and M∗,
respectively. In particular, we must have

s ≡ s∗1 ∧ s ≡ s∗2 ⇒ s∗1 = s∗2

and

s1 ≡ s∗ ∧ s2 ≡ s∗ ⇒ s1 = s2.

Then we say that M∗ is a correct refinement of M iff for each run s∗0 → s∗1 →
. . . of M∗ there is a run s0 → s1 → . . . of M and there are index sequences
0 = i0 < i1 < . . . and 0 = j0 < j1 < . . . such that six ≡ s∗jx

holds for all x. We
say M∗ is a complete refinement of M iff M is a correct refinement of M∗.

The focus of ASM refinement method [Börger, 2003b] is to support the usage
of refinements for correctly reflect and explicitly document an intended design
decision, adding more details to a more abstract design description, e.g. for
making an abstract program executable, for improving a program by additional
features or by restricting it through precise boundary conditions which exclude
certain undesired behaviors.

The general scheme of ASM refinement is illustrated by a commutative dia-
gram in Figure 1. The scheme describes a (m, n)-refinement which includes cases,
such as (m, 0)-refinement with m > 0, where some of the abstract operations
have been eliminated for the purpose of, e.g. optimisation, and (0, n)-refinement
with n > 0, where the concrete machine has longer run segments than the
abstract one due to, for example adding new features. The size of m and n is de-
termined dynamically by the states of interest. For refinement correctness proof,
it is shown in [Schellhorn, 2001] that every (m, n)-refinement with n > 1 can be
reduced to (m, 1)-refinement.

There are three types of ASM refinement pattern derived from the refinement
scheme which include the conservative extension, procedural refinement, and
data refinement.

Conservative extension is a purely incremental refinement which is typically
used to introduce new behavior in a modular fashion, like exception handling,
robustness features, etc.

Procedural refinement, also called submachine refinement, consists in replac-
ing in a given machine one machine by another (usually more complex) machine.

Data refinements are given by (1, 1)-refinements where abstract states and
rules are mapped to concrete ones in such a way that the effect of each concrete
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State S S'

State S* S*'

t1 ... tm

u1 ... un

m steps of M

n steps of M*

Figure 1: The ASM refinement scheme

operation on concrete data types is the same as the effect of the corresponding
abstract operation on abstract data types.

2.4 Typed ASM

When designing data intensive systems such as data warehouses, we need to
model the data and the operations accurately. To make this task easier, we have
extended the ASMs with types in [Link et al., 2006]. We started with a type
system

t = b | {t} | a : t | t1 × · · · × tn | t1 ⊕ · · · ⊕ tn | 1l

Here b represents a not further specified collection of base types such as label,
int, date, etc. {·} is a set-type constructor, a : t is a type constructor with a of
type label, which is introduced as attributes used in join operations. The base
type label is used for referencing tuples. We require attribute names (i.e. the a

in ”a : t”) to be of type label so we can store them (e.g. for storing FDs function
dependencies). × and ⊕ are constructors for tuple and union types. 1l is a trivial
type. With each type t we associate a domain dom(t) in the usual way, i.e. we
have

– dom({t}) = {x ⊆ dom(t) | |x| < ∞},
– dom(a : t) = dom(t),

– dom(t1 × · · · × tn) = dom(t1) × · · · × dom(tn),

– dom(t1 ⊕ · · · ⊕ tn) =
∐n

i=1 dom(ti) =
⋃n

i=1{i} × dom(ti)(disjointunion),

– dom(1l) = {1}

For this type systems we obtain the usual notation of subtyping, defined by
the smallest partial order ≤ on types satisfying
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– t ≤ 1l for all types t;

– if t ≤ t′ holds, then also {t} ≤ {t′};
– if t ≤ t′ holds, then also a : t ≤ a : t′;

– if tij ≤ t′ij
hold for j = 1, . . . , k, then t1 × · · · × tn ≤ t′i1 × · · · × t′ik

for
1 ≤ i1 < · · · < ik ≤ n;

– if ti ≤ t′i hold for i = 1, . . . , n, then t1 ⊕ · · · ⊕ tn ≤ t′1 ⊕ · · · ⊕ t′n.

We say that t is a subtype of t′ iff t ≤ t′ holds. Obviously, subtyping t ≤ t′

induces a canonical projection mapping πt
t′ : dom(t) → dom(t′).

The signature of a TASM is defined analogously to the signature of an “or-
dinary” ASM, i.e. by a finite list of function names f1, . . . , fm. However, in a
TASM each function fi now has a kind ti → t′i involving two types ti and t′i. We
interpret each such function by a total function fi : dom(ti) → dom(t′i). Note
that using t′i = t′′i ⊕ 1l we can cover also partial functions.

The functions of a TASM including the dynamic and static functions, define
the set of states of the TASM. More precisely, each pair � = (fi, x) with x ∈
dom(ti) defines a location with v = fi(x) as its value. Thus, each state of a TASM
may be considered as a set of location/value pairs.

We call a function R of kind t → {1l} a relation. This generalises the standard
notion of relation, in which case we would further require that t is a tuple type
a1 : t1×· · ·×an : tn. In particular, as {1l} can be considered as a truth value type,
we may identify R with a subset of dom(t), i.e. R � {x ∈ dom(t) | R(x) �= ∅}.
In this spirit we also write x ∈ R instead of R(x) �= ∅, and x /∈ R instead of
R(x) = ∅.

If we translate a TASM M into an ASM Φ(M), we have the following theorem:

Theorem 1. For each TASM M there is an equivalent ASM Φ(M).

Of course, this theorem also follows immediately from the main results on
the expressiveness of ASMs in [Blass and Gurevich, 2003; Gurevich, 2000]. A
constructive proof was given in [Schewe and Zhao, 2007].

2.5 Data Refinement in TASM

To apply ASM refinement method in the design of data warehouses and OLAP
systems, we first clarify what are the states of interest in the general definition
of refinement. For this assume that names of functions, rules, etc. are completely
different for M and M∗. Then consider formulae A that can be interpreted by
pairs of states (s, s∗) for M and M∗, respectively. Such formulae will be called
abstraction predicates. Furthermore, let the rules of M and M∗, respectively, be

363Zhao J., Schewe K.-D., Koehler H.: Dynamic Data Warehouse Design ...



partitioned into “main” and “auxiliary” rules such that there is a correspondence
� between main rules r of M and main rules r∗ of M∗. Finally, let s0, s

∗
0 be the

initial states of M and M∗, respectively.

Definition 2. A TASM M∗ is called a (data) refinement of a TASM M iff there
is an abstraction predicate A with (s0, s

∗
0) |= A and there exists a correspondence

between main rule r of M and main rule r∗ of M∗ such that for all states s, s of
M, where s is the successor state of s with respect to the update set Δr defined
by the main rule r, there are states s∗, s∗ of M∗ with (s, s∗) |= A, (s, s∗) |= A,
and s∗ is the successor state of s∗m with respect to the update set Δr∗ defined
by the main rule r∗.

While Definition 2 gives a proof obligation for refinements in general, it still
permits too much latitude for data-intensive applications. In this context we
must assume that some of the controlled functions in the signature are meant to
be persistent. For these we adopt the notion of schema, which is a subset of the
signature consisting only of relations. Then the first additional condition should
be that in initial states these relations are empty.

The second additional requirement is that the schema S∗ of the refining
TASM M∗ should dominate the schema S of TASM M. For this we need a
notion of computable query. For a state s of a TASM M let s(S) define its
restriction to the schema. We first define isomorphisms starting from bijections
ιb : dom(b) → dom(b) for all base types b. This can be extended to bijections ιt
for any type t as follows:

ιt1×···×tn(x1, . . . , xn) = (ιt1 (x1), . . . , ιtn(xn))

ιt1⊕···⊕tn(i, xi) = (i, ιti(xi))

ι{t}({x1, . . . , xk}) = {ιt(x1), . . . , ιt(xk)}
Then ι is an isomorphism of S iff for all states s, the permuted state ι(s),

and all R : t → {1l} in S we have R(x) �= ∅ in s iff R(ιt(x)) �= ∅ in ι(s). A query
f : S → S∗ is computable iff f is a computable function that is invariant under
isomorphisms, i.e. we have f ◦ ι = ι ◦ f .

Definition 3. A data refinement M∗ of a TASM M with abstraction predicate
A is called a strong data refinement iff the following holds:

1. M has a schema S = {R1, . . . , Rn} such that in the initial state s0 of M we
have Ri(x) = ∅ for all x ∈ dom(ti) and all i = 1, . . . , n.

2. M∗ has a schema S∗ = {R∗
1, . . . , R

∗
m} such that in the initial state s∗0 of M∗

we have R∗
i (x) = ∅ for all x ∈ dom(t∗i ) and all i = 1, . . . , m.

3. There exist computable queries f : S → S∗ and g : S∗ → S such that for
each pair (s, s∗) of states with (s, s∗) |= A we have g(f(s(S))) = s(S).
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Figure 2: The general architecture of a data warehouse and OLAP

Definition 3 provides a stronger proof obligation for refinements in the ap-
plication area we are interested in. Furthermore, this notion of strong data re-
finement heavily depends on the presence of types.

3 The Ground Model

The basic idea of data warehousing is to separate the source data from the target
data which are used by OLAP systems ([Widom, 1995]). From this viewpoint,
the data source, the data warehouse and the OLAP system can be easily mod-
elled, at rather a high abstraction level, a ground model in ASM method, by a
three-tier model as shown in Figure 2. The bottom tier represents the source data
which are usually the operational databases. At the middle tier, data from the
operational database are extracted, and then cleaned, integrated, transformed,
and stored, which represents the data warehouse. At the top tier, OLAP func-
tions, in particular, a set of OLAP queries/views(we treat them equally) are
defined, functions of opening or closing datamarts, copies of the OLAP views,
roll-up or drill-down on opened datamarts, etc are constructed.

In the following we assume a centralized data warehouse for a grocery store
chain. In the operational database, we have a single operational database with
five relation schemata as illustrated by the HERM diagram in Figure 3, a start
schema for the data warehouse as shown in Figure 4, and the total sales analysis
by shop, month and year as an example for the basic requirement in OLAP.

3.1 The Operational Database ASM

The operational database ASM models the source data and a set of functions
that are needed in supporting the data warehouse. Assuming for simplicity that
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Part Offer Store

Buys Customer

pricedate

cost

kind description sid address

cid name

address

timequantity

pid sizename

DOB

Figure 3: The operational database schema

all data sources are relational, the ASMs signatures would just describe the re-
lation schemata. For example, a n-nary relation R will be modelled as a boolean
function R(n). Hence, we will define a set of boolean functions for modelling
the database relations. Further, we introduce a universe request to model the
data warehouse requests, such as data extraction for S1, for instance. We use an
external function req:request for representing the current request to be served.
We have to assume that there is a mechanism built in the system to handle
the synchronisation problem in the data warehouse, such as opening a mainte-
nance window for data extraction or refresh. Furthermore, we need a function
r-type:request→ { extract, refresh, open-datamart, . . . }, where the type list can
be extended as required. We handle the request of data extraction from data
warehouse module, in a similar way as to handling a database query request
from other application systems, such that the details of data extraction are de-
fined in the DW ASM.

ASM DB-ASM
IMPORT

DW-ASM(Shop, Product, Customer DW, Time,
Purchase, extract purchase, extract customer, extract shop,
extract product, extract time)

EXPORT

Store, Part, Customer DB, Buys, Offer, main,r-type, req
SIGNATURE

Store:sid× name × size× address → {1l },
Part:pid× kind× descriptin → {1l },
Customer DB:cid × name × dob × address → {1l },
Buys:time × cid × sid × pid × quantity → {1l },
Offer:pid× sid × date × price × cost → {1l },
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Figure 4: The data warehouse star schema

r-type:request → {extract, refresh, open-datamart, . . . },
req:request (monitored)

BODY

main = if type(req)=extract then

extract purchase, extract customer, extract shop,
extract product, extract time

endif

3.2 The Data Warehouse ASM

For the data warehouse ASMs we follow the same line of abstraction as for the
operational databases, i.e. using boolean functions to model the data warehouse
relation schemata. We use a simple star schema for the data warehouse as illus-
trated by the HERM diagram in Figure 4, which results in five relation schemata
Shop, Product, Customer DW, Purchase and Time. We define one transition rule
for each data warehouse relation. When the rules are called, the data warehouse
relations get refreshed. The data warehouse ASM is interlinked with the OLAP
ASM by importing the functions defined for each OLAP queries/views in OLAP
ASM, and the creation rules for the views.

ASM DW-ASM

IMPORT

DB-ASM(Store, Part, Customer DB, Buys, Offer, req, r-type)),
OLAP-ASM(View sales, DM-View sales, the-datamart, the-matching-

view, create View sales )

EXPORT

Shop, Product, Customer DW, Time, Purchase
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extract purchase, extract customer,extract shop,
extract product, extract time, main

SIGNATURE

Shop:sid × name × town × region × state × phone → {1l },
Product:pid× category × description → {1l },
Customer DW:cid × name × address → {1l },
Time:date × day × week × month × quarter × year → {1l },
Purchase:cid× sid × pid × date × qty × sale × profit → {1l }

BODY

main =if type(req)=open-datamart then

open datamart(the-datamart(req)) endif

extract purchase = forall i, p, s, d, p′, c with

∃t.(i, p, s, t, p′, c) ∈ πcid,pid,sid,time,price,cost

(Buys �	 Customer DB �	 Part �	 Store �	 Offer) ∧ t.date = d

do let Q = src[0, πq , +]({(t, q) | (i, s, p, t, q) ∈ Buys∧
t.date = d}), S = Q ∗ p′, P = Q ∗ (p′ − c)
in Purchase(i, p, s, d, Q, S, P ) := 1 enddo

extract shop = forall s, n, a with

∃s′.(s, n, s′, a) ∈ Store
do let t = a.town, r = a.region, st = a.state, ph = a.phone

in Shop(s, n, t, r, st, ph) := 1 enddo

extract customer = forall i, n, a with

(i, n, a) ∈ Customer DB
do let i′ = i, n′ = n, a′ = a

in Customer DW(i′, n′, a′) := 1 enddo

extract product = forall p, k, d with

(p, k, d) ∈ Part
do let p′ = p, c = k, d′ = d

in Product(p′, c, d′) := 1 enddo

extract time = forall t with

∃ c, p, s, q.(c, p, s, q, t) ∈ Buys
do if Time(t.date, t.day, t.week, t.quarter, t.month, t.year) = ⊥

then Time(t.date, t.day, t.week, t.quarter, t.month, t.year) := 1
enddo

open datamart(dm) = case the-matching-view(dm) of
V sales : create V sales;

forall s, r, st, m, q, y, S, P with

(s, r, st, m, q, y, S, P ) ∈ V sales do
DM-V sales(dm, s, r, st, m, q, y, S, P ) := 1 enddo

endcase
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3.3 The OLAP ASM

The top-level ASM dealing with OLAP is a bit more complicated, as it re-
alises the idea of using dialogue objects for this purposes. The general idea from
[Schewe and Schewe, 2000] is that each user has a collection of open dialogue
objects, i.e. OLAP queries for our purposes here. At any time we may get new
users by the operation “login”, or the users may create new dialogue objects by
“open”, without closing the opened ones, or they may close some of the dialogue
objects, or quit when they finish their work with the system. Of course, the ma-
jor function of OLAP is to open a view for the corresponding OLAP query, and
allow the user to perform further operations, such as roll-up and drill-down over
the opened datamarts. We will leave out the modelling of the OLAP operations
such as roll-up or drill-down in the follow-up refinements.

In the ground model of OLAP ASM, we define the universe user to model the
user of the system, the universe datamart to model the opened datamarts, the
universe view to model the views for the OLAP queries, and the universe oper-
ation to model the OLAP operations issued. Over the universes, we define the
function o-type:operation → {login, open, close, quit}, the function owner:
datamart → user, the function issuer: operation → user, the function the-
datamart:operation → datamart, which returns the datamart over which a
close operation is performed, the function the-view:operation → view, which
gives the view over which a open operation is performed, and the function the-
matching-view:datamart → view which gives the matching view of the data-
mart. We use an external function op:operation to represent the current opera-
tion processed, registered:user for the logged on users, and a set of functions
Vi (i = 1, . . . , n) to define the views for the respective OLAP queries available
in the system. With each of the views we define a general function DM-Vi to
model the datamarts that are opened over view Vi.

Figure 5 illustrates this processing of the main rule of OLAP-ASM.

ASM OLAP-ASM

IMPORT DW-ASM(Shop, Product, Customer DW, Time, Purchase)

EXPORT V sales, DM-V sales, create V sales, main,
the-datamart, the-matching-view

SIGNATURE

V sales:sid× region × state × month × quarter × year×
sales × profit → {1l },

DM-V sales:dm × sid × region × state × month × quarter×
year × sales× profit → {1l } ,

type: op → {open, close, quit},
owner: datamart → user,
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Figure 5: The main rule in OLAP-ASM

issuer: op → user,
the-datamart: op → datamart,
the-view: op → view,
the-matching-view: datamart → view

BODY

main = if o-type(op) = login then LOGIN
elsif if registered(issuer(op))=1 then

if o-type(op) = open then OPEN
elsif o-type(op) = close then CLOSE
elsif o-type(op) = quit then QUIT

endif

LOGIN =
registered(issuer(op)):=1

OPEN =
import dm

datamart(dm) := 1
owner(dm) := issuer(op)
the-matching-view(dm) := the-view(op)
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end-import;
request(open-datamart,dm):= 1

CLOSE =
owner(the-datamart(op)) := ⊥
datamart(the-datamart(op)) := ⊥
close datamart(the-datamart(op))

QUIT =
let usr = issuer(op) in

forall dm with owner(dm) = usr

do close datamart(dm)
datamart(dm) := ⊥ owner(dm) := ⊥ enddo

registered(usr) := ⊥
close datamart(dm) = case the-matching-view(dm) of

V sales : forall s, r, st, m, q, y, S, P with

(the-datamart(op), s, r, st, m, q, y, S, P ) ∈ DM-V sales do
DM-V sales(the-datamart(op), s, r, st, m, q, y, S, P ) :=

⊥ enddo

enddo endcase

create V sales = forall s, r, st, m, q, y with

∃n, t, ph.(s, n, t, r, st, ph) ∈ Shop∧
∃d, d′, w.(d, d′, w, m, q, y) ∈ Time
do let S = src[0, πs′ , +]

({(i, s, p, d, s′) | ∃q′, p′.
(i, s, p, d, q′, s′, p′) ∈ Purchase ∧
d.month = m ∧ d.year = y})

P = src[0, πp′ , +]
({(i, s, p, d, p′) | ∃q′, s′.
(i, s, p, d, q′, s′, p′) ∈ Purchase ∧
d.month = m ∧ d.year = y})

in V sales(s, r, st, m, q, y, S, P ) := 1
enddo

4 The Refinement Approach

The ASM method assumes that we first set up a ground model. In particular,
we have assumed separate ASMs for the database, the data warehouse and the
OLAP. Each of these ASMs uses separate controlled functions to model states of
the system by logical structures and rules expressing transitions between these
states. The ASMs are then linked together via queries that are expressed by these
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transitions. The ground model above captures only the basic requirements, fur-
ther refinements are required for incorporating features such as systems optimi-
sation, implementation, and new OLAP requirements. Our refinement approach
is developed based on the 3-tier model and the ASM method, the former pro-
vides the logical structure of the system, the latter provides the step-by-step
refinement approach. In the following, we classify refinements into three cate-
gories: requirements capture, system optimisation, and system implementation.
For each category we present a set of refinement rules, in a rather abstract man-
ner, that are ultimately decomposed and formalised into a set of concrete rules
in a later development stage, e.g. the formal rules for view integration, which
will be discussed in Section 5.

4.1 Requirements Capture

Like most software systems, data warehouse design begins with the requirements
from the user end, i.e. the OLAP system. We build data warehouse schemas
based on what OLAP needs, for example, the set of analysis queries or reports.
As this is not a one-off process due to the dynamic nature of business analysis,
it is not uncommon that we may need to deal with new OLAP requirements
regularly after the data warehouse has been implemented. The new requirements
may result in change in the data warehouse schemas. We tackle this problem with
the schema integration technique, i.e. we integrate the new set of data schema
from the new requirements with the existing data warehouse schema, so we get
an integrated data store and at the same time we maintain a data warehouse
with little redundancy.

Using the data warehouse/OLAP ASM ground model as a basis, we handle
new OLAP requirement, such as adding new OLAP functions, as follows: in
the OLAP ASM, define the new OLAP functions; in the data warehouse ASM,
to support the new OLAP functions, define the data and the extraction rule
which are needed but not yet present; in the database ASM, incorporate the
changes corresponding to the changes from the data warehouse. In fact, we are
propagating the changes from the OLAP tier down through the data warehouse
tier further to the operational database tier.

The refinements for requirement capturing are classified under conservative
extension or incremental refinement in ASM method. That means, the existing
functions will be preserved when new features are added in the refinement. A
tailored refinement process for systematically capturing new requirements in
OLAP is described below.

1. Add a new rule to the OLAP ASM: This is used to model an additional
OLAP function by adding a new rule name and the definition of the rule for
the new function to the OLAP ASM.

372 Zhao J., Schewe K.-D., Koehler H.: Dynamic Data Warehouse Design ...



It is presumed that the newly added function is not present in the OLAP
ASM before. The new function will work under a condition to be included in
OLAP machine such that the old machine has no effect under. In such case,
adding a new rule preserves the existing functions from the old machine.

2. Add a new controlled function to the OLAP ASM: This is used to model a
view that is needed for the support of any new OLAP function, provided the
existing view definitions are not yet sufficient.

3. Add new controlled function(s) to the DW ASM: This is used to model the
schema that is needed in supporting the new OLAP function.

4. Integrate controlled functions on the DW ASM: This is used whenever the
schema is extended. As a consequence, the view creation rules on the OLAP
ASM must be changed accordingly.

The integration process aims to preserving the information by the notion of
schema equivalence and dominance when two schemas are integrated. This
step relates a set of schema transformation rules.

5. Add additional controlled functions to the DW ASM: This is a consequence of
the view integration, when new schema should be added to data warehouse
after the integration.

6. Change the rules on DW ASM: These rules are defined for extracting data for
the data warehouse refresh. Thus each change to a data warehouse schema,
the corresponding extraction rule should be adapted.

7. Change the rules on DB ASM: These rules are used in data extraction upon
data warehouse refresh request. Any changes, either new addition or updates,
to data extraction rules should be reflected in the related rules in DB ASM.

8. Change the functions/rules on OLAP ASM: This is used to change the func-
tions or rules that are affected in this refinement process, such as rules that
make reference to the schemas which are changed during the integration, or
rules that process the newly added OLAP functions.

4.2 Optimisation

Some refinements are used to optimise the performance of the system. These
refinement rules are applied to reorganise the specification independently from
the user requirements simply for optimisation reasons. Refinements for system
optimisation can be classified under procedural refinement in ASM method.

We consider some typical optimisation steps in data warehousing:
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– To materialise the OLAP views: That is, to compute the OLAP queries in
advance and store them as views in the data warehouse. When the queries
are called, they can be answered by the stored views instantly from the data
warehouse without waiting for computation of the queries. This will speed
up the system performance particularly as business analysis is usually data
intensive, but it also result in the issue of view maintenance.

– To update the data warehouse incrementally: That is, not to recompute the
queries from scratch, as the case in our ground model but only propagate
the changes to the data warehouse.

Again a tailored refinement process for systematically incorporating the above
two optimisation steps is specified as follows:

10. Incorporate view materialisation :

(a) Add new controlled function in DW ASM : This is used to add the OLAP
views to the data warehouse as the materialised views.

For a more effective approach in view selection we can adopt some se-
lection process or algorithm.

(b) Integrate materialised views in DW ASM : This is used to reduce redun-
dancy that may have occurred after more views are materialised. A set
of transformation rules can be applied.

(c) Add new rules in DW ASM : This is used to define the transition rules
to maintain the materialised views up to date with the data warehouse
changes. These rules are called after each refreshing of the data ware-
house.

(d) Change the rules in DW ASM : These rules are for opening datamart
for the OLAP ASM. After the view materialisation or view integration,
these rules need to be adapted too.

11. Incorporate incremental updates :

(a) Add monitored functions in DB ASM : This is used to define relations
to store updates of the source relations, called delta files.

(b) Add controlled functions in DW ASM : This is used to define relations
for store computed changes for data warehouse relations.

(c) Add rules in DW ASM : This is used to define the rules for computing
the changes from source relations and propagating changes into data
warehouse relations.

(d) Replace rules in DB ASM : This is used to replace the refresh rules with
the rules for incremental updates.
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4.3 Implementation

The final group of the refinements in our discussion is the system implemen-
tation refinements. Our refinements for implementation are not just limited to
those dealing with the refinements which moves the specification to codes but
also those refinements which realise high level design decisions such as data dis-
tribution, the focus of the refinement process in the following. This group of
refinements can be classified under the procedural or data refinement in ASM
method.

12. Apply implementation refinements: These refinement rules apply to the ASMs
on all three levels and consist of realising design decisions for moving the
ASMs closer to their implementation while preserving the semantics of runs.
It is not intended to discuss this further since the topic of moving specifica-
tion to codes has been thoroughly discussed in [Schewe, 1997].

13. Distribution design:

(a) Replicate the data warehouse and the OLAP ASMs: For each node in
the network assume the same copy of the data warehouse ASM and the
OLAP ASM.

(b) Remove controlled functions and rules in local OLAP ASMs: If the needed
OLAP functionality is different at different network nodes, then these
rules will simply reduce the corresponding OLAP ASM.

(c) Fragment controlled functions in local data warehouse ASMs: This rules
will reorganise and reduce a local data warehouse ASM, if the corre-
sponding OLAP ASM does not need all of the replicated data warehouse.
The refresh rules are then adapted accordingly.

(d) Recombine fragments in local data warehouse ASMs: This rules will re-
organise a local data warehouse ASM according to query cost consider-
ations. The refresh rules are then adapted accordingly.

(e) adapt the view creation rules accordingly in local OLAP ASM: This is
used when fragmentation is implemented. The OLAP views are created
over the fragments at the local data warehouse.

5 Refinement Rules

Our intention is to set up rules of the form

M � aFunc, . . . , aRule, . . .

M∗ � newFunc, . . . , newRule = . . .
ϕ
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That is, we indicate under some side conditions ϕ, which parts of the machine
M will be replaced by new functions and rules in a refining machine M∗. Fur-
thermore, the specification has to indicate, which relations belong to the schema,
and the correspondence between main rules.

Due the space constraint, we will introduce a subset of the rules which are
used in the examples.

5.1 Schema Extension

This group of rules deal with the schema extensions. This either concerns new
attributes, new types, new subtypes or the simplification of hierarchies. These
rules are needed in step 1 of our method.

Rule 1 Add a new type R. In such case we obtain a dominant schema.

M∗ � R = � : label × t

With a new type added we get a dominant schema. The corresponding ab-
straction predicate A is simply defined as true. The corresponding computable
queries f and g can be defined as identity function.

Rule 2 Add a new attribute A to the type R, i.e. attr(Rnew) = attr(R)∪ {A}.
In addition, the new attribute may be used to extend the key, i.e. we may have
key(Rnew) = key(R) ∪ {A}.

M � R = t → {1l}
M∗ � Rnew = A : ta × t → {1l}

The corresponding abstraction predicate A:

∀x.(∃a.Rnew(a, x) = 1 ⇔ R(x) = 1)

The corresponding computable queries f and g:

Rnew := {(a, x) | (x) ∈ R}, for a constant a

and

R := {(x) | ∃a.(x, a) ∈ Rnew}
respectively.

Adding a new attribute A by Rule 2 does not change the cardinality of
the type R, i.e. card(R) = card(Rnew). This rule always results in a dominant
schema.

The next two rules allow to introduce a new subtype via selection or projec-
tion on non-key-attributes. In both cases we have schema equivalence.
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Rule 3 For a type R introduce a new relationship type R′
new with comp(R′

new)
= {r : R} = key(R′

new) and add a constraint R′
new = σϕ(R) for some selection

formula ϕ.

M � R = r : id × t → {1l}
M∗ � R = r : id × t → {1l}

R′
new = r : ref → {1l}

with a constraint:
R′

new = σψ(R)

for some selection formula ψ.
The corresponding abstraction predicate A:

∀r.(R′
new(r) = 1 ⇔ ∃x.ψ(x) = 1 ∧ R(r, x) = 1)

The corresponding computable queries f :

R′
new := {(r) | ∃x.(ψ(x) = 1 ∧ (r, x) ∈ R)}

and g an identity function, respectively.

Rule 4 For a type R and attributes A1, . . . , An ∈ attr(R) such that there are
no Bi ∈ key(R) with Ai ≥ Bi (for projection on non-key-attributes) introduce
a new relationship type R′

new with comp(R′
new) = {r : R} = key(R′

new) and
attr(R′

new) = {A1, . . . , An}, and add a constraint R′
new = πA1,...,An(R).

M � R = r : id × A1 : t1 × . . . An : tn × t → {1l}
M∗ � R = r : id × A1 : t1 × . . . An : tn × t → {1l}

R′
new = r : ref × A1 : t1 × . . . An : tn → {1l}

ϕ

with the side condition ϕ:

∀Bi ∈ key(R) we have Ai � Bi.

The constraint:
key(R′

new) = {r : ref}
The corresponding abstraction predicate A:

∀x1, . . . , xn, r.((R′
new(r, x1, . . . , xn) = 1) ⇔ ∃x.R(r, x1, . . . , xn, x) = 1)

The corresponding computable queries f :

R′
new := {(r, x1, . . . xn) | ∃x.(r, x1, . . . xn, x) ∈ R}

and g an identity function, respectively.
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Rule 5 Replace types R, R1, . . . , Rn with comp(Ri) = {ri : R} = key(Ri) and
card(Ri, R) = (1, 1) (i = 1, . . . , n) by a new type Rnew with comp(Rnew) =

comp(R), attr(Rnew) = attr(R) ∪
n⋃

i=1

attr(Ri) and key(Rnew) = key(R).

M � R = r : id × t → {1l}
R1 = r : ref × t1 → {1l}
. . .

Rn = r : ref × tn → {1l}
M∗ � Rnew = r : id × t × t1 · · · × tn → {1l} ϕ

with the side condition ϕ:

comp(Ri) = {ri : R} = key(Ri) ∧ card(R, Ri) = (1, 1)(i = 1, . . . , n)

The constraint:
key(Rnew) = key(R)

The corresponding abstraction predicate A:

∀x1, . . . , xn, r, x.(R′
new(r, x, x1, . . . , xn) = 1 ⇔

(R(r, x) = 1 ∧ R1(r, x1) = 1 ∧ · · · ∧ Rn(r, xn) = 1))

The corresponding computable queries f and g:

Rnew := {(r, x, x1, . . . xn) | (r, x) ∈ R ∧ (r, x1) ∈ R1 ∧ · · · ∧ (r, xn) ∈ Rn}

and

R := {(r, x) | ∃x1, . . . xn.((r, x, x1, . . . , xn) ∈ Rnew)}‖
R1 := {(r, x1) | ∃x, x2, . . . , xn.(r, x, x1, . . . , xn) ∈ Rnew}‖ . . . ‖
Rn := {(r, xn) | ∃x, x1, . . . , xn−1.(r, x, x1, . . . , xn) ∈ Rnew}

respectively.

5.2 Type Integration

This group of rules deals with the integration of types in step 4 of our method.
Rule 6 considers the equality case, Rule 7 considers the containment case, and
Rule 8 covers the overlap case. Note that these transformation rules cover the
core of the approaches in [Koh and Chen, 1994; Spaccapietra and Parent, 1994;
Larson et al., 1989].
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Rule 6 If R1 and R2 are types with key(R1) = key(R2) and we have the
constraint R1[key(R1) ∪ X ] = f(R2[key(R2) ∪ Y ]) for some X ⊆ comp(R1) ∪
attr(R1), Y ⊆ comp(R2) ∪ attr(R2) and a bijective mapping f , then replace
these types by Rnew with comp(Rnew) = comp(R1)∪ (comp(R2)−Y − key(R2)),
attr(Rnew) = attr(R1) ∪ (attr(R2) − Y − key(R2)) ∪ {D} and key(Rnew) =
key(R1) ∪ {D} and an optional new distinguishing attribute D.

M � R1 = K1 : tk1 × X : tx × t1 → {1l}
R2 = K2 : tk2 × Y : ty × t2 → {1l}

M∗ � Rnew = K1 : tk1 × X : tx × t1 × t2 → {1l} ϕ

with the side condition ϕ:

K1 = K2 ∧ R1[K1 ∪ X ] = h(R2[K2 ∪ Y ]),

where K1 and K2 are the keys, h is a fixed computable bijective mapping.
The corresponding abstraction predicate A:

∀k1, x, x1, x2.(Rnew(k1, x, x1, x2) = 1

⇔ R1(k1, x, x1) = 1 ∧ R2(h−1(k1, x), x2) = 1)

The corresponding computable queries f and g:

Rnew := {(k1, x, x1, x2) | (k1, x, x1) ∈ R1 ∧ (h−1(k1, x), x2) ∈ R2}

and

R1 := {(k1, x, x1) | ∃x2.(k1, x, x1, x2) ∈ Rnew}‖
R2 := {(h−1(k1, x), x2) | ∃x1.(k1, x, x1, x2) ∈ Rnew}

respectively.
When X and Y are empty, then Rule 6 merges two types by combining the

two attribute sets.

Rule 7 If R1 and R2 are types with key(R1) = key(R2) and the constraint
R2[key(R2)∪Y ] ⊂ f(R1[key(R1)∪X ] holds for some X ⊆ comp(R1)∪attr(R1),
Y ⊆ comp(R2)∪ attr(R2) and a bijective mapping f , then replace R1 by R1,new

with comp(R1,new) = comp(R1), attr(Rnew) = attr(R1)∪{D} and key(Rnew) =
key(R1) ∪ {D} and an optional new distinguishing attribute D. Furthermore,
replace R2 by R2,new with comp(R2,new) = {rnew : R1,new} ∪ (comp(R2) − Y −
key(R2)), attr(R2,new) = attr(R2) − Y − key(R2) and key(R2,new) = {rnew :
R1,new}.
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M � R1 = r1 : id × K1 : tk1 × X : tx × t1 → {1l}
R2 = K2 : tk2 × Y : ty × t2 → {1l}

M∗ � R1 = r1 : id × K1 : tk1 × X : tx × t1 → {1l}
R2,new = r1 : ref × t2 → {1l}

ϕ

with the side condition ϕ:

K1 = K2 ∧ R2[K2 ∪ X ] ⊆ h(R1[K1 ∪ Y ]),

where K1 and K2 are the keys, h is a fixed computable bijective mapping.
The corresponding abstraction predicate A:

∀k, x, x1, x2, r.(R1(r, k, x, x1) = 1 ⇒
(R2(h(k, x), x2) = 1 ⇔ R2,new(r, x2) = 1))

The corresponding computable queries f and g:

R2,new := {(r, x2) | ∃k, x.((k, x, x2) ∈ R2 ∧ ∃x1.(r, h(k, x), x1) ∈ R1}

and

R2 := {(k, x, x2) | ∃r.((r, x2) ∈ R2,new ∧ ∃x1.(r, h(k, x), x1) ∈ R1,new)}

respectively.

Rule 8 If R1 and R2 are types with key(R1) = key(R2) such that for X ⊆
comp(R1) ∪ attr(R1), Y ⊆ comp(R2) ∪ attr(R2) and a bijective mapping f the
constraints

R2[key(R2) ∪ Y ] ⊆ f(R1[key(R1) ∪ X ]) ,

R2[key(R2) ∪ Y ] ⊇ f(R1[key(R1) ∪ X ]) and

R2[key(R2) ∪ Y ] ∩ f(R1[key(R1) ∪ X ]) = ∅

are not satisfied (the first two cases are covered by Rule 6 and 7, the last one has
no case for integration) then replace R1 by R1,new with comp(R1,new) = {r1,new :
Rnew}∪ (comp(R1)−X−key(R1)), attr(R1,new) = attr(R1)−X −key(R1) and
key(R1,new) = {r1,new : Rnew}, replace R2 by R2,new with comp(R2,new) =
{rnew : R1,new} ∪ (comp(R2) − Y − key(R2)), attr(R2,new) = attr(R2) − Y −
key(R2) and key(R2,new) = {rnew : R1,new} and introduce a new type Rnew

with comp(Rnew) = comp(R1) ∩ (key(R1) ∪ X), attr(Rnew) = attr(R1) ∩ (X ∪
key(R1) ∪ {D}, and key(Rnew) = key(R1) ∪{D} and an optional new distin-
guishing attribute D.
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M � R1 = K1 : tk1 × X : tx × t1 → {1l}
R2 = K2 : tk2 × Y : ty × t2 → {1l}

M∗ � R1,new = r : ref × t1 → {1l}
R2,new = r : ref × t2 → {1l}
Rnew = r : id × K1 : tk1 × X : tx → {1l}

ϕ

with the side condition ϕ:
K1 = K2

where K1 and K2 are the keys.
The guideline: apply the rule when none of the following hold:

R2[key(R2) ∪ Y ] ⊆ h(R1[key(R1) ∪ X ]),

R2[key(R2) ∪ Y ] ⊇ h(R1[key(R1) ∪ X ]) and

R2[key(R2) ∪ Y ] ∩ h(R1[key(R1) ∪ X ]) = ∅

with a fixed computable bijective mapping h.
The corresponding abstraction predicate A: ∀k, x, x1, x2.

((∃r.(Rnew(r, k, x) = 1 ∧ R1,new(r, x1) = 1) ⇔ R1(k, x, x1) = 1) ∧
(∃r.(Rnew(r, k, x) = 1 ∧ R2,new(r, x2) = 1) ⇔ R2(h−1(k, x), x2) = 1))

The corresponding computable queries f and g:

R1,new := {(z(k), x1) | ∃x.(k, x, x1) ∈ R1‖
R2,new := {(z(k), x2) | ∃x.(h(k, x), x2) ∈ R2‖

Rnew := {(z(k), k, x) | ∃x1.(k, x, x1) ∈ R1 ∨ ∃x2.(h(k, x), x2) ∈ R2}

and

R1 := {(k, x, x1) | ∃r.((r, k, x) ∈ Rnew ∧ (r, x1) ∈ R1,new)‖
R2 := {(h(k, x), x2) | ∃r.((r, k, x) ∈ Rnew ∧ (r, x2) ∈ R2,new)}

respectively, for some fixed computable injective function z : K1 → id.

Rule 9 If R and R′ are types with comp(R′) ∪ attr(R′) = Z ⊆ comp(R) ∪
attr(R) such that the constraint R′ = σϕ(πZ(R)) holds for some selection con-
dition ϕ, then omit R′.

M � R = Z : tz × t → {1l}
R′ = Z : tz → {1l}

M∗ � R = Z : tz × t → {1l} ϕ

with side condition ϕ:
R′ = σψ(πZ(R))

381Zhao J., Schewe K.-D., Koehler H.: Dynamic Data Warehouse Design ...



for some selection condition ψ.
The corresponding abstraction predicate A:

∀z.(R′(z) = 1 ⇔ ∃x.R(z, x) = 1 ∧ ψ(z) = 1)

The corresponding computable queries g:

R′ := {(z) | ∃x.(z, x) ∈ R1 ∧ ψ(z) = 1}
and f an identity function.

6 Dynamic Data Warehouse Design

As performance is a critical issue in data warehousing, we will look at the impacts
of the system dynamics on the set of materialised views in this section. We
suggest to materialise a new view under a space constraint if it is beneficial for
the overall query performance, even if the new query can be computed from the
existing materialised views. In addition, we apply view integration techniques
whenever new views are added.

We first present the models for query evaluation and view maintenance and
for determining view selection, and then describe the view selection process. We
demonstrate how the system model is refined using some examples.

6.1 Cost and Benefit Model

For simplicity, we adopt the basic idea from [Harinarayan et al., 1996] in esti-
mation of the query evaluation cost and view maintenance cost. That is, we use
the size of a view v as its maintenance cost and the query evaluation cost if the
query is computed totally from v:

qcost(q, v) = s(v)

Similarly, we have the view maintenance cost:

mcost(v) = s(v)

Furthermore, we introduce the notion of benefit for computing a view v from a
materialised view v1 instead of v2, where v is queried with frequency f(v):

b(v, v1, v2) = (s(v2) − s(v1)) · f(v)

When presented with a new OLAP view v, we have to decide whether to mate-
rialise it, or compute it from an existing materialised view v2. For that we could
simply compare the benefit b(v, v, v2) with the maintenance cost mcost(v), and
materialise v if the benefit is greater than the cost.

However, it is possible that another OLAP view v′ which has not been ma-
terialised also benefits from materialising v. This happens if
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1. v′ could be compute from v (denoted by v′ � v), and

2. s(mv(v′)) > s(v), where mv(v′) is the materialized view from which v′ is
currently computed

In this case we get an additional benefit of b(v′, v, mv(v′)).
In order to decide whether or not to materialize v, we have to add up the

benefits for all OLAP views, and compare this figure to the maintenance cost.
The OLAP views benefitting are

bv(v) = {v′ ∈ OLAP-views | v′ � v ∧ mv(v′) > v}

The total benefit b(v) of materializing v is thus:

b(v) =
∑

v′∈bv(v)

b(v′, v, mv(v′))

Further we introduce a notion of benefit for comparing two materialised views
v1 over v2 in computing query q of frequency f as:

b(v1, v2) = (s(v2) − s(v1)) × (f + 1)

where both the query cost and the view maintenance cost are considered. If
b is positive, it means materialising v1 is more beneficial. The other way round
otherwise.

In the case that one of the views is already materialised, thus maintaining it
does not involve additional cost, the benefit of using existing materialized view
v1 to compute query q over creating a new view v for query q is composed:

bx(v1) = (s(v) − s(v1)) × f + s(v)

For deciding if materialising a new view v is more favorable for other OLAP
view o, the benefit is estimated:

bz(o) = ((s(v(o)) − s(v)) × f(o)

where v(o) is a materialised view which is used for computing o.
If the sum of bz(o), where o is all the OLAP views which make the bz(o)

greater than 0, is greater than s(v), we consider it is beneficial to materialise
view v, and therefore we rewrite all the OLAP views o using v.

The above estimation is rather simple. However, it can be replaced by a more
comprehensive one easily.
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6.2 View Selection Process

The basic idea of our view selection is that under a given space constraint S,
we always materialise a new view if it can not be computed from the existing
materialised views, or it is more beneficial for computing other OLAP queries.
Although we should be more concerned with the time for refreshing the materi-
alised views than the storage space, our justification is that the larger the total
size of the views, the longer it will take to maintain. Whenever there is a new
OLAP view added, we invoke the selection process to check if the set of existing
materialised views can be used to compute the OLAP view. In order to do so,
we define a notion of fineness to compare two views, such that we can compute
the less fine one from the finer one. We agree with [Kotidis and Roussopoulos,
2001] that it is rarely beneficial to compute a view using multiple views working
with typical OLAP queries involving aggregations, and thus we do not consider
this option.

Definition 4. A view(query) v1 is said to be finer than v2, denoted as v1 � v2,
if v2 is computable from v1 by aggregating operations.

Example 1. If v1 is the view of sales by day, and v2 is the view of sales by month,
then v1 is finer than v2, since we can get the monthly sales by summing up the
daily sales for the month. ��

Our view selection algorithm is used for determining whether a new view
v is to be materialized for a query q, or whether an existing materialized view
m′ should be used. We proceed with finding the best candidate m′ from the
materialised view set mv based on s(m′). If not found, v will be materialised if
it meets the constraint S. Otherwise, i.e. if there exists a materialised view m′

from which q can be computed, we move on with calculating the total benefit
b(v) of materialising v. If the sum of b(v) is greater than the maintenance cost
s(v), we materialise v and rewrite all queries which benefit. We still use m′ for
computing or updating the materialized view v, as this is more efficient.

Let mv be the set of materialised views, ov the set of OLAP views, and v the
newly added view. We denote the frequency of OLAP view v by f(v) and its size
by s(v). The function mview : ov → mv maps OLAP views to the corresponding
materialized views from which they are calculated. Finally, the space constraint
Smax gives the maximal space allowed for the materialised views.

The following algorithm describes how we can update ov, mv and the function
mview when a new OLAP view v is added.

select(mv, ov, v(q), f(v), m′) =
bmax := 0, bsum := 0
forall m ∈ mv do
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if m � v(q) then do

b(m) := (s(v(q)) − s(m)) × f(v) + s(v(q));
if b(m) > bmax then

bmax = b(m), m′ := m enddo

enddo

if bmax = 0 ∧ S′ + s(v(q)) ≤ S then mv := mv ∪ v(q)
else forall o ∈ ov do

if v(q) � o then do

b(o) := (s(the-view(o)) − s(v)) × f(o)
bsum := bsum + b(o) enddo

enddo

if bsum > s(v) ∧ S′ + s(v(q)) ≤ S then mv := mv ∪ v(q)

add view(v) =
ov := ov ∪ {v}
m′ := ⊥
forall m ∈ mv with m � v do

if m′ = ⊥ or s(m) < s(m′) then
m′ := m

enddo
mview(v) := m′

if s(mv) + s(v) ≤ Smax then do
bv := {v}
forall o ∈ ov with v � o do

if s(mview(o) > s(v)) then
bv := bv ∪ {o},
b := b + (s(mview(o)) − s(v)) · f(o)

enddo
if b > s(v) then do

mv := mv ∪ {v}
forall o ∈ bv do

mview(o) := v

enddo
enddo

add view(v) =
ov := ov ∪ {v}
mview(v) := m′ with m′ ∈ mv, m′ � v and s(m′) minimal
if s(mv) + s(v) ≤ Smax then do
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bv := {v′ ∈ ov | v′ � v ∧ s(mview(v′)) > s(v)}
b :=

∑
v′∈bv(s(mview(s′)) − s(v)) · f(v′)

if b > s(v) then do
mv := mv ∪ {v}
forall v′ ∈ bv do

mview(v′) := v enddo enddo

6.3 Some Examples

Example 2. Let us look at a case for view selection. Assume that our current
data warehouse has two OLAP views:

View V1: the total sale by shop and day, its average number of tuples: s(V1) =
20000, its frequency f(V1) = 2;

View V2: the total sale by state and month, its average number of tuples:
s(V2) = 5000, its frequency f(V2) = 0.3;

Furthermore, V1 is materialized, V2 is rewritten from V1 and not materialised,
and space is not a concern in this case.

Now the user requests for a new OLAP query, view V , the total sale by region
and day, its average number of tuples: s(V) = 10000, its frequency f(V) = 0.8.

We now need to decide whether to materialize V , or instead compute V from
one of the existing materialized views. For the latter case, the best (and only)
materialized view to compute V from is V1, since V1 � V and V2 � V .

The views which would benefit from materializing V are V and V2, so the
benefit b(V) of doing so can be computed as

b(V) = (s(V1) − s(V)) · f(V) + (s(V1) − s(V)) · f(V2)

= (20000− 10000) · 0.8 + (20000 − 10000) · 0.3

= 11000

On the other hand, the update cost s(V) for materializing V is only 10000. Thus
we should materialize V and rewrite the query for V2 to use V . ��

It is obvious that V1 � V holds, which means we can rewrite the new view
from V1. Our estimation of the benefit of rewriting V from V1:

b(V1) = (s(V) − s(V1) × f(V) + s(V)

= (18000− 20000)× 5 + 18000

= 8000

As we have bmax = b(V1) positive, we should rewrite V from V1. However,
we shall also consider if materialize V will be more beneficial for other OLAP
views which are rewritten from V1.
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It is obvious that we have V � V2, so the benefit of writing V2 from V is
estimated:

b(V2) =(s(V1) − s(mathcalV )) × f(mathcalV2)

= (20000− 18000)× 10

= 20000

Now we have bsum = b(o) and bsum > s(V), that means, we should materialise
the new view V and rewrite V2 from V . ��
Example 3. Let us look at a case of dynamic data warehouse design. Assume
the money figures in the ground model is in US$, and we have OLAP query on
total sales in US$ with no figures on profit for the sake of the example. A new
OLAP query is requested from the store manager for total sales in EURO and
the corresponding profit.

It is obvious that we are not able to rewrite the new view from the existing
total sales with the data on profit missing, so we extend the materialsied view
set with the view for the new query. Let us define a function cnv for converting
from US$ to EURO. Let us recall the relevant relations in the star schema:

Shop:sid × name × town × region × state× phone → {1l },
Time:date × day × week × month × quarter × year → {1l },
Purchase:cid× sid × pid × date × qty × sale × profit → {1l }
We proceed with the refinement steps as follows:

1. Add a new rule to the OLAP ASM:

create V sales euro = forall s, r, st, m, q, y with

∃n, t, ph.(s, n, t, r, st, ph) ∈ Shop ∧
∃d, d′, w.(d, d′, w, m, q, y) ∈ Time
do let S = src[0, πs′ , +]({(i, s, p, d, s′) | ∃q′, p′.

(i, s, p, d, q′, s′, p′) ∈ Purchase
P = src[0, πp′ , +]({(i, s, p, d, p′) | ∃q′, s′.

(i, s, p, d, q′, s′, p′) ∈ Purchase
in V sales euro(s, r, st, m, q, y, cnv(S), cnv(P )) := 1 enddo

2. Add a new controlled function to the OLAP ASM: apply the schema trans-
formation rule 1, to add the OLAP view
V Msales euro to the OLAP-ASM:

OLAP-ASM∗
� V sales euro = shop × region × st ×

month × qtr × year × msale euro × profit euro → {1l}
3. Invoke view selection. As we have indicated we need to materialise the new

view, and assume space is not a concern in this case, we proceed with adding
the new view to the materialised view set in the next step.
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4. Apply the schema transformation rule 1 to add the new OLAP view to the
DW-ASM as a materialised view:

DW-ASM∗ � MV V sales euro = shop × region × st ×
month × qtr × year × msale euro × profit euro → {1l}

5. Integrate controlled functions on the DW ASM: apply type integration rule
6 to the materialised views as follows:

DW-ASM � MV V sales euro = shop × region × st × month×
qtr × year × msale euro

×profit euro → {1l}
MV V sales = shop × region × st × month×

qtr × year × msale → {1l}
DW-ASM∗

� MV V sales prf = shop × region × st × month × qtr

×year × msale×
profit euro → {1l}

ϕ

Then the side condition ϕ of rule 6 is satisfied as:

- both of the types have the same key: sh × month × year;

- and they map to the same tuples by that the data being originated from
the same data warehouse and with no further selections;

- and the bijective mapping is defined as h := (id, id, id, id, cnv), where
id is an identity function for mapping the keys and other three identical
attributes.

6. As a consequence of the integration, we need to replace refresh MV V sales,
which is created after view materialisation is incorporated at the DW-ASM:

refresh-MV V sales=
create V sales;
forall s, r, st, m, q, y, S with

(s, r, st, m, q, y, S) ∈ V sales do
MV V sales(s, r, st, m, q, y, S) := 1 enddo

by a new rule refresh MV V sales prf as follows:

refresh MV V sales prf =
create MV V sales prf ;
forall s, r, st, m, q, y, S, P with

(s, r, st, m, q, y, S, P ) ∈ V sales do
MV V sales prf(s, r, st, m, q, y, S, cnv−1(P )) := 1 enddo
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7. Similarly we replace the view creation rules create V sales and
create V sales euro at the OLAP-ASM by the followings:

create V sales prf =
forall s, r, st, m, q, y with

∃n, t, ph.(s, n, t, r, st, ph) ∈ Shop∧
∃d, d′, w.(d, d′, w, m, q, y) ∈ Time
do let S = src[0, πs′ , +]

({(i, s, p, d, s′) | ∃q′, p′.
(i, s, p, d, q′, s′, p′) ∈ Purchase ∧
d.month = m ∧ d.year = y})

P = src[0, πp′ , +]
({(i, s, p, d, p′) | ∃q′, s′.
(i, s, p, d, q′, s′, p′) ∈ Purchase ∧
d.month = m ∧ d.year = y})

in V sales prf(s, r, st, m, q, y, S, cnv−1(P )) := 1
enddo

8. Then we need to change the datamart opening rules accordingly in DW-
ASM:

open datamart(dm) = case the-matching-view(dm) of
V sales : forall s, r, st, m, q, y, S, P with

(s, r, st, m, q, y, S, P ) ∈ MV V sales prf do
DM-V sales(dm, s, r, st, m, q, y, S) := 1 enddo

V sales euro : forall s, r, st, m, q, y, S, P with

(s, r, st, m, q, y, S, P ) ∈ MV V sales prf do
DM-V sales euro(dm, s, r, st, m, q, y, cnv(S), P ) := 1

enddo endcase ��

7 OLAP Functions in Business Statistics

The main undertaking of data warehousing is to support the business analysis
happening in the OLAP tier. Most of such analysis requires applying business
statistics for the support in decision making. Often such requirements are dy-
namic and arise with the change of economic and business conditions. In the
following, we take single linear regression, correlation and time series analysis as
the examples in the dynamic data warehouse design to demonstrate how these
changes are incorporated in the data warehouse process model using our tailored
refinement method.
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7.1 Single Linear Regression and Correlations

Regression analysis is used primarily for the purpose of prediction. The goal is to
develop a statistical model that can be used to predict the values of a dependent
variable based on the values of at least one independent variable. In contrast to
regression, correlation analysis is used to measure the strength of the association
between numerical variables [Levine et al., 2000].

Example 4. Let us take one of the examples in [Levine et al., 2000] for the case
of grocery store data warehousing. We aim at showing how the ground model is
refined to support the regression analysis. Our scenario is that the director of
the grocery stores is being asked to develop an approach for forecasting annual
sales for all new stores. Suppose he decided to examine the relationship between
the size(square footage) of a store and its annual sales, that is, to build a sample
linear regression model equation as follows:

Ŷi = b0 + b1Xi

where Ŷi = predicted value of Y for observation i

Xi = value of X for observation i

In our example, the X is the size of a store, and the Y is the annual sales.
In order to predict the value Y , we need to compute the two coefficients,

b0(the sample Y intercept) and b1 (the sample slope). The simplest way is to
use the least-squares method, which requires a sample with details of store size
and annual sales from the data warehouse. Thus we need to make the required
data, store size and annual sales available for the sample selection.

Following the refinement process described in Section 4, we refine the ground
model for the requirement on data in the following:

1. Add a new rule in OLAP: We first define a rule populate V size sales for
populating the required data on store size and the annual sales.

populate size sales = forall s, size, y with

(s, size) ∈ Store ∧
∃d, d′, w, q, m.(d, d′, w, m, q, y) ∈ Time ∧
do let S = src[0, πs′ , +]

({(i, s, p, d, s′) | ∃q′, p′.(i, s, p, d, q′, s′, p′) ∈ Purchase ∧
d.year = y})

in V size sales(s, size, y, S) := 1
enddo

2. Add a new controlled function to the OLAP ASM: apply the schema trans-
formation rule 1, to add function V size sales: (sid × size× year × sales)
for supporting the above OLAP rule.
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3. Add a new controlled function to DW ASM: As the store size is not available
in the current data warehouse, we define a function Store(sid×size) in DW
ASM.

4. Integrate controlled functions on the DW ASM: apply the schema trans-
formation rule 6, the two functions Shop and Store are integrated to
Shop(sid × name × size× town × region × state× phone).

5. Change the view creation rules on the OLAP ASM: This is a consequence
from view integration.

populate size sales = forall s, size, y with

∃n, t, r, st, ph.(s, n, t, r, st, ph, size) ∈ Shop ∧
∃d, d′, w, q, m.(d, d′, w, m, q, y) ∈ Time ∧
do let S = src[0, πs′ , +]

({(i, s, p, d, s′) | ∃q′, p′.(i, s, p, d, q′, s′, p′) ∈ Purchase ∧
d.year = y})

in V size sales(s, size, y, S) := 1 enddo

6. Change the rules in the DW ASM: As one of the consequences of integration,
the refresh rule extract shop will be changed to extract the details of store
size into the relation Shop.

extract shop = forall s, n, s′, a with Store(s, n, s′, a) �= ⊥
do let t = a.town, r = a.region, st = a.state, ph = a.phone

in Shop(s, n, s′, t, r, st, ph) := 1 enddo

7. Change the rules in the OLAP ASM: In addition, all the other rules that are
referring to Shop(which is changed in the integration), such as create V sales
in the ground model OLAP ASM, will be changed to include a function f

as follows:

newRule = oldRule ◦ f

where f is only applied on the relation Shop:

f(Shop) = {(s, n, t, r, st, ph) | ∃s′.(s, n, s′, t, r, st, ph) ∈ Shop}

Once the newly defined view View size sales is populated, it can be used
as the population for sample selection. With a sample, say last year’s sales as
an example, we may proceed with the regression and correlation analysis, which
can be realised through applying relevant formulas over the selected sample. We
will not discuss it further due to it involving only the application of statistical
calculations. ��
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7.2 Time Series Analysis

Regression analysis provides a useful methodology for managerial decision mak-
ing. Similarly, the business forecasting methods applying the concept of time
series analysis are used in the process of managerial planning and control. Time
series forecasting methods involve the projection of future values of a variable
based entirely on the past and present observations of that variable. As an ex-
ample, we may make prediction of next year annual sales for a store based on
its annual sales from year 1990 up to now.

Numerous methods applying time series analysis are devised for the purpose
of forecasting. In the following we discuss how our data warehouse ground model
is refined to include the exponential smoothing technique as an additional OLAP
function. Exponential smoothing is not just being used for smoothing (provid-
ing impression of long-term movements) but also for obtaining short term (one
period into the future) forecasts [Levine et al., 2000].

The formula for exponential smoothing is defined as follows:

Ei = WYi + (1 − W )Ei−1

where Ei = value being computed in time period i

Ei−1 = value being computed in time period i − 1

Yi = observed value of the time series in period i

W = subjectively assigned weight or smoothing coefficient

(where 0 < W < 1)

E1 = Y1

Example 5. In our grocery store example, let us consider the exponential smooth-
ing (e-smoothing in short), for forecasting store’s annual sales. First we refine
the ground model to include the data population for annual sales by store and
year. This will be a simple refinement as follows:

1. (Add a new rule in OLAP) we define a rule populate-annual-sales for popu-
lating data on the annual sales by store and year.

populate-annual-sales = forall s, y with

∃n, t, r, st, ph.Shop(s, n, t, r, st, ph) �= ⊥ ∧
∃d, d′, w, m, q.Time(d, d′, w, m, q, y) �= ⊥
do let S = src[0, πs′ , +]({(i, s, p, d, s′) | ∃q′, p′.

Purchase(i, s, p, d, q′, s′, p′) �= ⊥ ∧ d.year = y})
in V annual esales(s, y, S) := 1

enddo
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2. Add a new controlled function to the OLAP ASM: apply the schema trans-
formation rule 1, to add function V annual esales (sid× year× sales) for
supporting the new rule.

It would be possible to just model the OLAP function e-smooth as the open-
datamart operation, for which we would need to change the open-datamart rule
to incorporate the computation of e-smoothed value. Another simpler way is to
keep the open-datamart unchanged and make the e-smooth function as a new
operation. In the latter case, we have the refinements under system implemen-
tation as follows:

1. First, we change the operation type function type: op → {open,close,quit,
e-smooth} to include the new OLAP function e-smooth;

2. In order to process the new type e-smooth, we need to change the rule
main:

elseif type(op)= e-smooth then E-SMOOTH

3. Then we add a new rule for the OLAP function e-smooth:

E-SMOOTH = if the-view(op) = V annual sales then
import dm

datamart(dm) := 1, owner(dm) := issuer(op),
the-matching-view(dm) := the-view(op)
populate-annual-sales ;
for all s, y, S with V annual sales(s, y, S) �= ⊥ do

if pre-esales-value(s,y) �= 0 then let

E = the − weight(op) ∗ S + (1 − the − weight(op)) ∗
pre-esales-value(s, y)

in DM-V annual sales(dm, s, y, S, E) := 1
else let E = S in DM-V annual sales(dm, s, y, S, E) := 1 endif

enddo

end-import

4. To support the new rule, we define two universes evalue to model the e-
smoothed value and weight to model the co-efficient or weight. Over the
universes, we define two ASM functions the-weight: op → weight for re-
trieving the weight from the operation, and Pre-evalue: sid × year →
evalue for getting the previous year’s e-smoothed value. ��

8 Conclusion

In this paper we presented a formal approach to dynamic data warehouse and
OLAP systems design using Abstract State Machines.
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We started from a basic model that is based on the fundamental idea of
separating input from operational databases from output to so-called data marts,
which can be understood as views supporting particular analytical tasks. This
ground model was already discussed partly in [Zhao and Ma, 2004; Zhao and
Schewe, 2004].

We clarified what we want to achieve by refinements in data-intensive appli-
cation areas. Strong data refinement is more restrictive with respect to changes
to the signature of an ASM in order to preserve the semantics of data in ac-
cordance with schema dominance as discussed in [Ma et al., 2005]. The view
integration techniques grounded in the notion of schema dominance are used to
support the schema evolution in dynamic data warehouse design.

We have shown that dynamic data warehouse design can be realised by ASM
refinements in our examples. With a tailored design guide and a set of correctness
proved refinement rules, we aim to simplifying the design work and improving
the design quality.

We will continue our research in the area of providing pragmatic guidelines for
the application refinement rules, and investigate the potential of an automated
approach for dynamic data warehouse design.
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