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Abstract: OLAP applications are widely used in business applications. They are of-
ten (implicitly) defined on top of OLTP systems and extensively use aggregation and
transformation functions. The main OLAP data structure is a multidimensional ta-
ble with three kinds of attributes: so-called dimension attributes, implicit attributes
given by aggregation functions and fact attributes. Domains of dimension attributes
are structured and thus support a variety of aggregations. These aggregations are used
to generate new values for the fact attributes. In this paper we systematically develop
a theory for OLAP applications. We first define aggregation functions and use these
to introduce an OLAP algebra. Based on these foundations we derive properties that
guarantee or contradict correctness of OLAP computations. Finally, for pragmatical
treatment of OLAP applications the OLTP-OLAP specification frame is introduced.
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1 Introduction

1.1 OLAP versus OLTP Computations

While OLTP systems are defined in a rigorous mathematical way (e.g. [Schewe
and Thalheim, 1993]) OLAP technology lacks of a rigorous mathematical frame-
work and an engineering methodology for sound application. OLAP functionality
is based on cube operations [Gray et al., 1997] that provide an intuitive way for
data analysts to navigate through various levels of summary information in the
data warehouse. Data cubes can be generated by application of the basis opera-
tions crossing and nesting [McCullagh and Nelder, 1983] (also see [Lenz, 1994]).
OLAP approaches have been re-introducing this generation for the cube but in a
different and more complex way. In a data cube, attributes are categorized into
dimension attributes and measure attributes. A number of pitfalls with respect
to usage of OLAP databases [Lehner et al., 1998; Lenz and Shoshani, 1997; Lenz
and Thalheim, 2001a] may occur when cube operations are executed. For exam-
ple, OLAP operations are often not completely defined, the formal treatment of
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transformations within OLTP databases and OLAP operators is contradictory
or consequences of inherent (stochastic) dependency structures between dimen-
sions are unknown, and the innocent user does not know about implied side
effects.

SQL and database systems use aggregation operators heavily. These opera-
tors are applicable in the case that null values are not used in the database and
computation is based on disjointness, completeness, and extraction of values
[Lenz and Thalheim, 2001a]. The average function as well as other aggregation
functions are not well-behaved or not meeting intentions in the presence of null
values for SQL aggregation since summarisation is based on existing values but
counting considers all objects despite from null values. Since OLAP computation
uses aggregation functions and aggregated values to a large extent, the danger
of integrating obtained wrong values into subsequent applications is even higher.

Furthermore, a systematic treatment of OLTP-OLAP-transformations has
not yet been developed. The cube operators have been introduced in an ad-hoc
manner, e.g., [Gray et al., 1997], without systematic treatment of its potentials
and deficiencies. There are, however, a number of corrections [Franconi and
Kamble, 2004; Gyssens and Lakshmanan, 1997; Thalheim, 2000; Vassiladis and
Skiadopoulos, 2000].

Finally, the cube operations are given either in an intuitive and informal way
[Rafanelli, 2003; Rafanelli, 2005] or are entirely neglected during definition of
the cube. Efficient processing of operations must be taken into consideration at
the moment of schema design and definition of database structures.

1.2 Aggregation Functions

OLAP functionality and analysis is based on aggregation functions. Thus, aggre-
gation functions applied to a data cube need to be well-defined in order to get
correct results. Relational database aggregation functions are widely used but
not well-applied in SQL. They may lead to unexpected results and paradoxes
such as the Simpson and the hierarchy paradoxes [Lenz, 1993; Lenz and Neiling,
1998; Lenz and Shoshani, 1997; Lenz and Thalheim, 2001b]. Aggregation must
consider dependencies, e.g., stochastic dependencies, among the dimensions, and
must obey the laws of associativity, commutativity and perfect aggregation [Lenz
and Thalheim, 2006].

Aggregation can be viewed as a mapping of data to data defined on an
associated simple schemata (typically a relationship type) and with a higher-level
view of the data. The simpler description by a schema is then used instead of the
original data collection. The aggregation can be done at multiple granularities
and for different schemata.

A classification of aggregation functions has been introduced in [Gray et al.,
1997] and extended in [Lenz and Thalheim, 2001b]. We distinguish between dis-
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tributive or inductive aggregation functions that can be defined using a struc-
tural recursion schema, algebraic aggregation functions that are expressed by
finite bounded algebraic expressions, and holistic aggregation functions that are
not bound on the size of storage needed to describe the sub-aggregates.

Aggregation functions may have properties [Lenz and Thalheim, 2005] such
as being idempotent, min/max-invariant, continuous, homogeneous, additive, or
associative and may have the Lipschitz property. The last property becomes cru-
cial if data are noisy or null-valued. The classical simple aggregation operations
min, max, sum, avg, count obey this property. sum is for instance not idem-
potent, not shift-invariant, and not self-identical. The invalidity of one of these
properties limits the applicability of aggregation functions.

The aggregation problem can be formulated as follows: Given a database DB
and a database schema S. We need conditions for a separation of applicability
of SQL aggregation functions and data cube operations. They either can be ap-
plied either without restrictions or must be used under strict consideration of
restrictions given by the metadata in the repository and under consideration of
integrity constraints. In the last case, we are interested in a transformation of
these operations and functions that maintains their intention and allows to cor-
rectly compute their result.

This problem is closely related to the pragmatical aggregation problem of value

collections that requires the existence of an approximation function which retains
the essential features of the collection but is simpler to represent for large or huge
collections of values.

1.3 Outline of the Paper

This paper extends the ideas found in [Lehner et al., 1998; Lenz and Shoshani,
1997; Lenz and Thalheim, 2001a] by providing a formal basis for defining OLAP
schemata that provide a basis for correct computations. We develop a theory of
aggregation functions, introduce OLTP-OLAP transformations, generalize the
notion of the OLAP cube and derive properties for correct OLAP computations.
We introduce in this paper a novel definition of the data cube by generalizing
the approaches proposed in [Gyssens and Lakshmanan, 1997; Thalheim, 2000;
Vassiladis and Skiadopoulos, 2000]. Our general definition of the OLAP cube
avoids problematic computations and anomalies.

2 OLTP Schemata and Aggregation Operations

2.1 OLTP Schemata

Definition 1. A database attribute type is based on a type system TA that is
defined by the type definition t = b | (A1 : t1, . . . , An : tn) | {t} | [t] | � : t where
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� is a collection of labels, Ai is an attribute name and b is an arbitrary collection
of base types, e.g., base types such as BOOL = {T,F}, 1l = {1}, TEXT , PIC ,
MPIC , CARD, INT , REAL, DATE , URL, and MAIL . The union of all base
types that are numeric (real, cardinal, integer, complex, rational or other number
types) is denoted by NUM .

Definition 2. A (relation or) entity database type E is defined by a named
relation (or tuple) type expressions on TE , i.e., E � ((A1 : t1, . . . , An : tn), ΣE)1

for a (relation or) entity type name E, attribute names Ai ∈ N, attribute types
ti on TA and a set of integrity constraints ΣE defined on (A1 : t1, . . . , An : tn).
A relationship type R is defined by a name R ∈ N, a relationship type expression
tR and a set of integrity constraints ΣR defined on tR, i.e., R � (tR, ΣR).
A cluster type C is defined by a name C ∈ N, a cluster type expression tC and
a set of integrity constraints ΣC defined on tC , i.e., C � (tC , ΣC).
A relationship type expression tR is based on a type system TR that is defined
by the type definition tR = (�1 : tR | �1 : tE | �1 : tC , . . . , �m : tR | �m : tE | �m :
tC , A1 : t1, . . . , An : tn) for relationship types tR, entity types tE , cluster types
tC and attribute types ti.
A cluster type expression tC based on a type system TC that is defined by the
type definition tC = �1 : tR | �1 : tE | �1 : tC

·∪ . . .
·∪ �m : tR | �m : tE | �m : tC

for the disjoint union
·∪ operation, for relationship types tR, for entity types tE

and for cluster types tC .

Definition 3. An entity-relationship database schema (also called object-rela-
tional database schema) S consists of a finite set of entity, relationship and
cluster types on a type system TER = TE ∪ TR ∪ TC that extends TA by type
names N and by integrity constraints ΣS defined on TER.

We typically assume that names are unique, i.e., there is only one assignment of a
type expression to a name and labels or attributes are unique in type expressions.
The ER model language abbreviates the type assignment by the names of the
types used if names are unique. The ER schema is typically closed, i.e., each type
used in a type expression is defined within the schema. The cluster type can also
be defined by other operations beside

·∪ such as join, selection, or quotient. We
restrict cluster type expressions to the disjoint union operation..

The database schema S is used to define (well-structured) objects , the
database DB over a database schema S, the query algebra, and general oper-
ations through structural recursion [Buneman et al., 1994].

Definition 4. The set DOM(t) of all objects defined on type t is called carrier
set. A (entity, relationship or cluster) class NC of a type N � (tN , ΣN ) consists
1 We use � for the explicit assignment of a name to a structure expression or to a

type.
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of a finite collection of objects on DOM(tN ) that obeys ΣN . The database DB
over S consists of a set of collections NC

i for each type Ni that satisfies ΣS .

Collections are often to be considered bags (or multisets) of objects of the given
type. We also may consider other collection types such as sets and lists. Typically,
sets are used for collections. Aggregation functions are defined on bags. We
typically associate a type with one kind of collections, e.g. the type KT for finite
sets of objects defined on T . Each type has thus its specific (finite) collection
type KT . The set of all collections on T forms an algebra with the generalisations
of the set operations such as generalized union ∪T , generalized intersection ∩T ,
and generalized empty elements ∅T on T .

Operations and queries are definable through structural recursion.

Definition 5. [Thalheim, 2000] Given types T , T ′, the collection types KT on
T and operations ∪T , ∩T , ∅T on KT . Given further an object h0 on T ′ and two
functions defined on the types h1 : KT → T ′ and h2 : T ′×T ′ → T ′

.
We define the structural recursion srech0,h1,h2 on T and T ′ as follows:
srech0,h1,h2(∅T ) := h0

srech0,h1,h2(|{|s|}|) := h1(s) for singleton collections |{|s|}| and objects s on T

,
srech0,h1,h2(T

C ∪T |{|s|}|) := h2(srech0,h1,h2(T
C), h1(s)) iff TC ∪T |{|s|}| �= TC .

Typical examples of functions defined by structural recursion are sum (defined
through srecundef,id,+), max (i.e., srecundef,id,max), min (i.e., srecundef,id,min),
and count (i.e., srec0,1,+) (also called size or cardinality) for the identical map-
ping id of values of components of objects defined on T and a subcomponent type
T ′ of T or the type N0 of natural numbers with 0 for the size function. Struc-
tural recursion is a specific kind of general recursion schemes [Malzew, 1965] (or
recursion in brief).

This definition uses insertion of objects into a collection. We may also define
structural recursion using disjoint union of collections on T . If the collection is a
set then the condition for srech0,h1,h2(T

C ∪T |{|s|}|) is equivalent to TC ∩T |{|s|}| =
∅T .

Each query q has a result type type(q) and is defined on an input type
inp type(q). A query can be defined by structural recursion on S = inp type(q)
and type(q). A view V on S is given by defining query qV that defines the view
schema SV = type(q) on S.

We notice that view schemata may consist of more than one type. Relational
database schemata typically use singleton view schemata.
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2.2 Database Aggregation Functions

Database aggregation functions map a collection of objects defined on a type
to numeric values. The typical collection considered is the bag. An aggregation
function is defined as an infinite family F = (fk : Bagk → NUM |k ∈ N0) with
functions

fk : Bagk → NUM

that map a bag Bagk on a type T with k elements to a numerical range. The type
T may be a type of the database schema or simply a numerical type. Database
types have a number of ordering schemes.

Equivalently, instead of functions defined on bags with k elements, we take
symmetric k-ary functions fk : T k → NUM . A function fk is called symmetric if
fk(x1, . . . , xk) = fk(xρ(1), . . . , xρ(k)) holds for any permutation ρ on {1, . . . , k}.

Database research has been defining aggregation functions for bags of any
size. In this case the bag algebra must be considered as well for function defini-
tion. Our definition defines an aggregation function as an infinite family of bag
functions. The shortcut f � fF can be used for convenience.

Definition 6. A family of symmetric functions F = (fk : Bagk → NUM |k ∈
N0) for bags of size k on T is called database aggregation function f on T if each
fk is defined through recursion on the basis of f1, ...., fk−1 for k ≥ 2 and if they
are monotone according to one order of T and to the order of NUM .

[0, 1]-interval aggregation functions are surveyed in [Calvo et al., 2002]. Database
aggregation functions differ from those by symmetry, constructivity and are
not limited to the [0, 1]-interval. Constructivity by recursion on the basis of
f1, ...., fk−1 within the family is defined by the existence of a recursion function
gF such that fk = gF (f1, ...., fk−1). The recursion function can be defined on a
subset fi1 , ...fim of f1, ...., fk−1. The recursion function is called compositional
[Malzew, 1965] if for any r a function gr : NUMr → NUM exists such that
fq = g(fk1 , ..., fkr) for q, k1, ..., kr with q = k1 + ... + kr.

Typically, the domain DOM(T ) is a partially ordered set with minimal and
maximal elements and has an operation +T (sum, union or concatenation of
objects) and ·T (product of objects).
Aggregation functions from F may have the following properties:

Idempotent: fk(x, ...., x) = f1(x) for all x ∈ DOM(T ) for all k-bags consisting
only of x,

Min/Max-invariant: fk(minT , ....,minT ) = f1(minT ) and fk(maxT , ...,maxT ) =
f1(maxT ) for the minimal and maximal elements in DOM(T ) and for all
k-bags consisting only of minT ,

Self-identical: fk(x1, ..., xk) = fk+1(x1, ..., xk, fk(x1, ..., xk)) for any x1, ..., xk,
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Shift-invariant: fk(x1 +T b, ..., xk +T b) = fk(x1, ..., xk) + f1(b) for all k-bags
x1, ..., xk and b ∈ DOM(T ),

Homogeneous (of degree 1): fk(b ·T x1, ..., b ·T xk) = f1(b) · fk(x1, ..., xk) for all
k-bags x1, ..., xk and b ∈ DOM(T ),

Additive: fk(x1 +T y1, ..., xk +T yk) = fk(x1, ..., xk) + fk(y1, ..., yk) for all k-bags
x1, ..., xk and y1, ..., yk,

Associative: The recursion function gF is compositional.

Min/Max-invariance is defined in a general setting. One should however be aware
whether the data type T is ordinal or metric. Some systems allow to com-
pute minimal values that do not make sense, e.g. min{male, female} = female.
Associativity is called summarizability in [Lenz and Shoshani, 1997]. The re-
cursion function gF can be based on a separation of input variables, on a
value extraction function hk : T k → NUMk and separated computation, e.g.,
gF (gF (hk1(x1)), ..., gF (hkr(xr))) = gF (hk1+...+kr(x1, ..., xr)) for tuples x1, ..., xr

with k1, ..., kr elements, correspondingly. If the aggregation is idempotent then
it is min/max-invariant.

We distinguish between distributive, algebraic and holistic aggregation func-
tions:

Distributive or inductive functions are defined by structural recursion. A typi-
cal example are the simple statistical functions of SQL-92: count (absolute
frequency, size), sum (total), min, max.

Distributive functions are associative. They preserve partitions of bags or
sets, i.e. given a bag X with k elements and a partition X = X1∪X2∪...∪Xn

of X into pairwise disjoint subbags with ki elements correspondingly. Then
for a distributive function f there exist a function g such that fk(X) =
g(fk1(X1), ..., fkn(Xn)). Functions such as count, sum, min, max are dis-
tributive.

Algebraic functions can be expressed by finite algebraic expressions defined over
distributive functions. Typical examples of algebraic functions in database
languages are average and statistical covariance. The average function for
instance can be defined on the basis of an expression on count and sum.

Holistic functions are more complex aggregation functions used in order or tem-
poral statistics which relate data subsets to other subsets or supersets, e.g.
growth rates, changes in an aggregate value over time or any dimension
set (banded reports, control break reports, OLAP dimensions). For holistic
functions there is no bound on the size of the storage needed to describe
a sub-aggregate. Typical examples are mostFrequent, rank and median .
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Usually, their implementation and expression in database languages requires
tricky programming. Holistic functions are computable over temporal views.
We will not discuss these functions in detail within this paper.

Theorem7. Aggregation functions have the following properties:

max, min are idempotent, min-/max-invariant, self-identical, additive, homoge-
neous, and associative.
sum is homogeneous, additive, associative, is not idempotent, not self-identical,
and not shift-invariant,
avg is idempotent, shift-invariant, homogeneous, additive, is not self-identical,
and not associative,
count is associative, not idempotent, not self-identical, not shift-invariant but
cardinality preserving, not homogeneous, and not additive.

The proof of the theorem is straightforward and thus omitted. It uses the defini-
tion given above. For instance, srecundef,id,max is idempotent, as max{id, ...., id}
= id by the definition of structural recursion. If null values are used then max-
imum and minimum are undefined. The sum function can be defined in four
different ways in the presence of null values in DOM(T ), e.g., by suml :=
srecundef,hl

1,1,+ with hl
1,1(x) = Id(x) for x �= NULL and hl

1,1(NULL) = l

for l ∈ {0, undef, default, expect}, the default value in DOM(T ), the sta-
tistical expectation in DOM(T ) and the undefined value that extends T ′. In
the case of hundef

1,1 we may propagate the undefined value through +. Similarly,
countl

′
= srec0,hl′

1,2,+ and hl′
1,2(x) = 1 for x �= NULL hl′

1,2(NULL) = l′

for l′ ∈ {1, undef, default, expect}. The function count1 is abbreviated by
count. The average function avg can be defined in sixteen different ways [Lenz
and Thalheim, 2001b] depending on the treatment of null values. SQL chooses
avgSQL := sum0

count1
. It is better to use avg := sumundef

countundef . An aggregation function
is cardinality preserving if it equals to the cardinality of the bag.

Depending on these properties, the behavior of aggregation functions varies.
For instance, if the aggregation function is not associative then roll-up (defined
below) may falsify the result [Lenz and Shoshani, 1997].

The existence or the non-existence of null values in NUM is not only a design
issue. It heavily influences the behavior of aggregation functions. For instance, as
noted in [Lenz and Thalheim, 2001a] the min and max functions will not remain
to be idempotent, the average function can be defined in at least nine different
ways. SQL is using a less convenient notion for the average function.

3 OLAP Schemata as Derived Schemata

The data cube [Gray et al., 1997] also known as the multidimensional table in
OLAP systems is designed to provide an intuitive way for data analysts to nav-
igate through various levels of summary information. In a data cube, attributes
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are categorized into dimension attributes and measure (or fact) attributes. Mea-
sure attributes of those records with the same values are combined (mainly
summed up) into an aggregate value. The intuition behind the cube is intrigu-
ing. Since it seems so simple to combine values the cube operator is applied
whenever a summary is requested. But intuition may fail or may be misled. It is
a matter of fact that all OLAP operators have to be carefully re-defined [Meo-
Evoli et al., 1992] because they operate on multi-way tables (data cubes) but not
on flat tables (“data matrices”). The starting point of our investigation is given
by a number of known pitfalls, which correspond to unsound OLAP operations.

The data cube is mainly queried by selection and navigation or equivalently
by subcubing. Selection is based on a criterion that is evaluated against data
or levels of dimension in order to restrict the set of retrieved data. Possible
navigation operations which can be applied to a cube are roll-up (aggregation
of data from a lower level to a higher level of granularity within a dimension
hierarchy), drill-down (the inverse of roll-up), slice (selection by subset of values
of the dimension), and dice (by table projection or equivalently by grouping of
data with respect to a subset of dimensions of a cube).

There have been a number of proposals for the data cube definition, e.g.,
[Agrawal et al., 1997; Gray et al., 1997; Lehner et al., 1998]. But each approach
presents its own view of multidimensional requirements, terminology and for-
malism. The first precise operational definition can be found in [Lenz and Thal-
heim, 2005]. These functions are analogues of functions of the object-relational
or entity-relationship algebra [Gyssens and Lakshmanan, 1997; Thalheim, 2000;
Vassiladis and Skiadopoulos, 2000]. We revise these notions and the proposals in
[Franconi and Kamble, 2004; Rafanelli, 2003; Rafanelli, 2005] and in [Lenz and
Thalheim, 2006] by a novel introduction of a rigorous mathematical cube model.

Any OLAP specification language must satisfy a number of requirements.
◦ Analytical or OLAP data need a conceptually generic data type, i.e. a data
cube together with well-defined methods.
◦ The formalism must be implementation independent, must be based on a sepa-
ration of schema definition (e.g., the cube itself) and real data, and must support
a generic definition of the query algebra.
◦ Dimensions must support representation by different structures or schemata
in order to allow flexible querying of cubes.
◦ The data model supports views or so-called complex structured cell values or
measures.
◦ The query language must have a formal description.

It is surprising [Lenz and Thalheim, 2006; Molnar, 2007; Molnar and Thalheim,
2007] that none of the proposed OLAP models satisfies at least three of the re-
quirement groups. For instance, the usual prosaic specification of OLAP queries
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is highly ambiguous. Drill-down and other OLAP operations are often only ver-
bally explained on trivial three-dimensional examples.

3.1 The Mathematical Cube Model

The data cube operator has informally been introduced in [Gray et al., 1997].
Despite its partial realisation in SQL it is surprising that the pitfalls of this
definition have not yet been repaired [Lenz and Thalheim, 2006]. The operator
is typically introduced in an intuitive or example-based way that is based on
an intentional use of a relationship type (called a fact type) with component
types (called dimension types) that are typically entity types. This understand-
ing [Lewerenz et al., 1999] has been neglected in research. Classical treatment
leads to an informal or vague introduction of main functions such as roll-up,
drill-down, pivoting, dice and slice functions.

We define the cube using the partition model [Molnar, 2007; Molnar and
Thalheim, 2007]. The mathematical cube model is based on a layered schema
definition. We start with a re-definition of types. Types have their carrier sets
or domains. Carrier sets have their value partitions. Some of the partitions may
be used for grouping of values. For instance, the values in DateTime may be
grouped into hours, days, months and quarters. Groups can be extended by a
name for each group of values. This multi-layer model is the basis for introducing
a new and simple cube model.

Let us consider first an arbitrary domain DOM(T ) of a type T . The set
2DOM(T ) of all subsets of DOM(T ) constitutes a Boolean lattice. At the same
time, any equivalence relation on DOM(T ) defines a set of equivalence classes on
DOM(T ). Let us assume that each of these equivalence classes can potentially
be named. We denote by P(DOM(T )) the set of all pairs consisting of equiv-
alence classes on DOM(T ) together with their names. Let us for convenience
assume that each equivalence class is uniquely named. In this case we can use
a function name that assigns to a name nc its equivalence class c for the pair
(c, nc) ∈ P(DOM(T )). In the opposite direction, the function group assigns an
equivalence class c to a name nc.

Definition 8. A subset P̂ of 2DOM(T ) is called a partition of DOM(T ) if the
union of the subsets covers DOM(T ) and the elements of P̂ are pairwise disjoint.
We may also consider the trivial partitions ⊥ = {{d}|d ∈ DOM(T )} and � =
{DOM(T )}. A named partition consists of a partition together with the names
for its classes.

A named partition is denoted by p. The names used for a named partition p are
denoted by names(p). The partitions of p are denoted by partitions(p). Trivial
partitions are not assigned to names. The element relation ∈ may be generalised
to named partitions. We write c ∈ p instead of c ∈ partitions(p).

282 Lenz H.-J., Thalheim B.: A Formal Framework of Aggregation ...



Partitions may be ordered by inclusion.

Definition 9. The canonical order of partitions on DOM(T ) relates two named
partitions p, p′. We define p � p′ iff for all (c, nc) ∈ p there exists one element
(c′, nc′) ∈ p′ such that c ⊆ c′.

We also may consider non-canonical orderings such as the majority order
�choice

m that relates two named partitions iff for all (c, nc) from p there exists
one and only one element (c′, nc′) ∈ p′ such that

either |c ∩ c′| > max{|c ∩ c′′| | (c′′, nc′′) ∈ p′, c′′ �= c′}
or (c′, nc′) ∈ p′ is determined by a (deterministic) choice operator among

{c+ ∈ p′ | |c ∩ c+| = max{|c ∩ c′′| | (c′′, nc′′) ∈ p′}}.
If the last case does not appear then we omit the choice operator in �choice

m .
The choice operator must be deterministic. Otherwise, computation of values
would lead to different values in any case of computation.

Example 1. Let us consider the domain DateTime as an example. The named
partitions ⊥, Days, Weeks, Months, Quarters, Y ears, and � denote the named
partition of highest granularity (i.e., equivalence classes are singleton), the named
partitions of DateTime by days, by weeks, by months, by quarters, by years, and
the trivial no-granularity named partition, correspondingly. We observe ⊥ � p

and p � � for any named partition in this list. We notice too that Days �
Months � Quarters � Y ears.
Weeks �m Months is a different ordering that causes a lot of confusion.

Naming of partitions is also necessary if we want to distinguish different treat-
ment of values. For instance, GMT−Time, BusinessWeek, WeekInSemester

form partitions over DateTime which can or cannot be ordered by inclusion in
the same way.

[Hurtado and Mendelzon, 2002] introduced dimension constraints. They ex-
tend the notion of split constraints introduced by the same authors, of path con-
straints [Thalheim, 2000], and of disjunctive existence constraints [Thalheim,
1991]. Partitions can be expressed through dimension constraints. Dimension
constraints can be completed to form partitions. Typically they do not form a
cover. Dimension constraints may be used to restrict partitions to meaningful
ones.

Example 2. The selection of partitions may depend on the application. The di-
mensions DateTime and Area may vary in dependence of the application. For
instance, the partitions in Figure 1 display the order of regions in Germany and
Hungary [Molnar, 2007] (Land(county)-Kreis(region)-Gemeinde(municipality)-
Gemeindeteil(district) and Regio-Megye-Kisterseg-Települes-Kerület).
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Figure 1: Application dependent partition lattices for Area

The cube definition can be based on the ER model [Lewerenz et al., 1999].
The fact table is a relationship collection RC defined on a relationship type R.
We assume that entity types E1, ..., Ek are component types of R. The relation-
ship type may be extended by additional derived attributes A1, ...Am which are
associated to aggregation functions.

Definition 10. A cube schema C consists of a relationship type R that is defined
on entity types E1, ..., Ek called “dimensions” and on pairs (Ai, fi) of “fact”
attributes A1, ..., Am and aggregation functions f1, ..., fm, i.e.,

R = (E1, ..., Ek, (A1, f1), ..., (Am, fm)).

We notice that a cube schema can be defined as a relationship type that is ex-
tended by derived attributes which use aggregation function for their derivation.
Relationship types may also be used instead of entity types. Most applications
base the cube schema on a relationship type that only uses entity types.

Definition 11. Given a cube schema C, a collection (or relationship class) RC on
R, and partitions pi of DOM(Ei) for any component E1, ..., Ek. A cell R(c1,...,ck)

of RC is a non-empty set σE1∈c1,...Ek∈ck
(RC) for ci ∈ pi and for the classical

relational selection operation σα.
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Definition 12 (Cube). Given now partitions p1, ..., pk for all component types
of C.
A cube cubep1,...,pk(RC) on RC and on pi, 1 ≤ i ≤ k consists of the set

{σE1∈c1,...Ek∈ck
(RC) �= ∅ | c1 ∈ p1, ..., ck ∈ pk}

of all cells R(c1,...,ck) of RC for the partitions pi, 1 ≤ i ≤ k.
If pi = � then we may omit the partition pi from the cube superscripts.

Example 3. Typically, empty cells are removed from a cube. Data within a cube
are not uniformly distributed. Therefore, a cube may have cells that are not
uniform. Figure 2 illustrates a three-dimensional cube with nonuniform cells.

Figure 2: An abstract example of a cube with nonuniform cells that should not
be considered

The cube is defined as a class over a relationship type. The extended cube
additionally consists of the derived attributes and the aggregation functions.
Aggregation functions are assigned to attributes A1, ..., Am and applied to cells
of RC . For instance,

sum(πSales(σSellingDate∈Weekx(RC)))

computes the total turnover in week x based on the projection function πSales,
the selection function σSellingDate∈Weekx and the relationship class RC .
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Population Place Inhabitants
Municip Region (#Inhabitants, sum) (Income, avg)

Kiel KI 232270 16.300
Plön PLÖ 12988 14.270

Preetz PLÖ 15800 17.900
Raisdorf PLÖ 7583 11.340

... ... ... ...

πRegion,#Inhabitants(Population) Region (#Inhabitants, sum)
KI 232270

PLÖ 133624
... ...

σRegion=PLÖ(πRegion,#Inhabitants(Population)) Region (#Inhabitants, sum)

PLÖ 133624

σMunicip=Raisdorf(Population) Place Inhabitants
Municip Region (#Inhabitants, sum) (Income, avg)

Raisdorf PLÖ 7583 11.340

πRegion,#Inhabitants(σMunicip=Raisdorf(Population)) Region (#Inhabitants, sum)

PLÖ 7583

Definition 13. An extended cube consists of cells R(c1,...,ck) and values
fi(R(c1,...,ck)) for each of the attributes A1, ..., Am.

Our definition of the cube is based on cells and on names. These names are
sometimes necessary if we need to distinguish attributes or components of the
cube depending on varying granularity.

Example 4. Let us consider a cube that aggregates data about the population of
a certain area.

We may apply different aggregation operations to this cube. The following
tables show that aggregating first over region and the number of inhabitants
and then restricting this new cube to a certain region will not give the same
result as in the case if we first restrict the cube to the region and then apply the
aggregation. Therefore, the classical equivalences used for optimisation of query
processing do not commute with aggregation operations. Therefore, summaris-
ability is only a necessary condition for correctness of cube computations.

The meaning of attributes is different depending on the way of aggregation.
For instance, #Inhabitants means at the same time (1) the number of inhab-
itants of certain municipality and (2) the number of inhabitants in a certain
region after aggregation. Therefore, we should use our naming or annotation
concept if we want to differentiate the meaning.
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Our cube model allows to consider the changing meaning of the dimensions,
components and attributes depending on the level of the aggregation. The op-
erations we use for the computation of the aggregations must be explicitly con-
sidered if we need a more meaningful interpretation. For instance, the attribute
#Inhabitants can be adorned by the operation that has been applied to the
cube: #InhabitantsπRegion,#Inhabitants and #InhabitantsσMunicipality=‘Raisdorf′ carry a
meaning that is different from the original #Inhabitants.

A cube and an extended cube can be materialised . Then each cell is recorded
with its corresponding aggregations for the attributes.

Definition 14. Spreadsheet cubes are defined for sequences p1 � ... � pn of par-
titions for one or more dimensional components where � denotes the canonical
order.

For instance, the partitions Days, Months, Quarters, Y ears define a spread-
sheet cube for components defined over DateTime.

Definition 15. A named (extended) cube consists of names for each cell instead
of the sets for the cells.

Our notion of the cube also results in natural definitions of main OLAP
operations without additional special consideration of summarisability and non-
summarisability. If partition orders are used then summarisability comes for free.

3.2 Operations of the OLAP Schema

Our definition of the cube can be now easily used for a precise mathematical
definition of the main operations for cubes and extended cubes. In literature
cube operations are typically given in an informal way. For instance, [Rafanelli,
2003; Rafanelli, 2005] defines the drill-down operation as a “specific operation
(analytical technique) for looking at data going from the most summarized view
to the most detailed view”. Often cube operations are not defined at all but only
illustrated by examples. Users who would like to learn more about cube oper-
ations are linked to existing implementations. We may adapt the definitions of
[Gyssens and Lakshmanan, 1997; Thalheim, 2000; Vassiladis and Skiadopoulos,
2000].
A cube algebra is given by a cube schema R = (E1, ..., Ek, (A1, f1), ..., (Am, fm))

and an algebra consisting of at least navigation, selection, projection and split
functions.

We introduce now the main query operations. Selection is based on a criterion
that is evaluated against data or levels of dimension in order to restrict the set
of retrieved data. Roll-up is an aggregation of data from a lower level to a higher
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level of granularity within a dimensions hierarchy. Drill-down is the inverse of
roll-up. Dice can be defined by roll-up to ALL. Slice groups data with respect
to a proper subset of dimensions of a cube. The last four operations may be
considered to be navigation operations. Thus, the data cube is mainly queried
by selection and navigation.

Given a cube with partitions pi, p
′
i for the dimensional component Ei with

pi � p′i , the drill-down operation transfers a cube defined on p′i to a cube
defined on pi. Roll-up transfers a cube defined on pi to a cube defined on p′i. The
slice operation is nothing else but the object-relational selection operation. The
dice operation can be defined using � partitions for all dimensional components
that are out of scope.

Definition 16. Given a cube cubep1,...,pk(RC) on the cube schema

R = (E1, ..., Ek, (A1, f1), ..., (Am, fm)),

a dimension i and (named) partitions pi � p′i � �i.
Basic drill-down functions map the cube cubep1,...,p′

i,...,pk(RC) to the cube

cubep1,...,pi,...,pk(RC).

Basic roll-up functions map the cube cubep1,...,pi,...,pk(RC) to the cube

cubep1,...,p′
i,...,pk(RC).

Basic slice functions map the cube cubep1,...,pk(RC) to the cube

σα(cubep1,...,pk(RC)).

Basic dice functions map the cube cubep1,...,pi,...,pk(RC) to the cube

cubep1,...,�i,...,pk(RC).

Roll-up functions are the inverse of drill-down functions. Basic slice functions
are similar to selection of tuples within a set. The slice function is nothing else
then the object-relational selection operation. Basic dice functions are similar
to projection in the first-order query algebra. Basic dice functions are defined
as special roll-up functions. We also may omit the dimension i. In this case we
loose the information on existence of this dimension.

These operations may be combined using staggering of functions. We, thus,
obtain drill-down functions by superposing basic drill-down functions.

Slice function can also be defined through cells. Let dimension(α) be the set
of all dimensions that are restricted by the selection criterion α. Let further

σ∂
α(ci) =

{∅ if Ri ∈ dimension(α) ∧ σα(ci) �= ci

ci otherwise
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a modified selection function that considers only those cells that entirely fulfill
the selection condition α.
Close slice functions restrict the cube cells to those that entirely fulfill the se-
lection criterion α, i.e., {σR1∈σ∂

α(c1),...Rn∈σ∂
α(cn)(RC) �= ∅ | c1 ∈ p1, ..., cn ∈ pn}.

Liberal slice functions restrict the cells to those that partially fulfill the selection
criterion α, i.e. to cells {σR1∈σα(c1),...Rn∈σα(cn)(RC) �= ∅ | c1 ∈ p1, ..., cn ∈ pn}.
Lazy and eager slice functions apply the selection functions directly to values in
the cells.

We observe that the aggregation functions must be additive along the dimen-
sion for drill-down and dice functions.

Generalizing the first-order query algebra, [Thalheim, 2000] defines additional
OLAP operations such as

join functions for mergers of cubes,

union functions for union of two or more cubes of identical type if union is de-
fined,

rotation or pivoting functions for rearrangement of the order of dimensions, and

rename functions for renaming of dimensions.

The definition of these operations is the same as in the classical case [Thalheim,
2000].

Our new definition of the cube allows one to generalize a large body of
knowledge obtained for object-relational databases to cubes. The integration
of cubes can be defined in a similar form [Molnar, 2007].

We observe that the slice, drill-down, roll-up, union, rotate, and rename
functions form a relationally complete query algebra of OLAP operations. The
proof is based on the relational completeness of the corresponding operations of
the first-order query algebra and straightforward following the proof scheme of
[Paredaens et al., 1989].

3.3 Properties of Cube Aggregations

Definition 17. Given a query function q, a database DB, and aggregation func-
tions f, g ∈ F , the function q is called F-invariant in DB if f(q(DB)) = g(DB).

Definition 18. An aggregation function f preserves partitions of sets if a func-
tion g exists such that f(X) = g(f(X1), ..., f(Xn)) for X = X1 ∪ X2 ∪ ... ∪ Xn

with Xi ∩ Xj = ∅ , i �= j.

Proposition 19. Distributive aggregation functions preserve partitions of sets.
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Figure 3: Invariance of aggregation functions for query transformations

Distributive aggregation functions are defined through structural recursion. We
may equivalently use the union approach to definition of structural recursion
instead of the insertion approach.

This proposition implies an important statement for distributive aggregation
functions. Its proof is based on the definition of distributive aggregation functions
and the disjointness of equivalence classes of partitions.

Theorem20. Distributive aggregation functions are invariant for dice, roll-up,
and drill-down aggregation functions.

We may, however, conclude also a number of negative properties: We may di-
rectly conclude the following properties:
Proposition 21. Roll-up functions are neither sum-invariant nor avg-invariant
in general.
This behaviour has already been reported in [Lenz and Thalheim, 2001b; Lenz
and Thalheim, 2006]. The counterexamples are based on the hierarchy and Simp-
son paradoxes [Lenz and Thalheim, 2006]. The average function is already an
algebraic function and depends on the weight of partitions under consideration.
The sum-non-invariance is observed for partial roll-up functions or for bag-based
roll-ups.

Proposition 22. Rearrangement functions are min-, max-, count-, and sum-
invariant. They are avg-invariant along partition orders.
Rearrangement functions provide a different representation of the same cube,
e.g., using another order in the domains. The proof of this proposition is based
on the definition of distributive functions. The average function is invariant as
long as the partition is not concerned.

A number of invariance properties can be observed for classical relational
database functions. For instance, the Bag2Set operation (DISTINCT) is min-,
max-invariant, not sum-invariant but sum-invariant for sets, not avg-invariant
but avg-invariant for sets without NULL’s. The Project function is invariant
for all distributive functions. The Select, Join functions are not invariant for
most aggregation functions. The Union, Difference, Intersection functions
are not invariant in most cases. The Renaming function is invariant for all ag-
gregation functions.
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Selection functions are typically not invariant for most cubes. This property
is based on the partiality of selection, i.e. the subset generation.

Definition 23. An aggregation function f is called subset-sensitive if a database
DB and a selection condition α exist such that f(DB) �= f(σα(DB)).

Definition 24. A query q is object-preserving iff for any database DB objects
of q(DB) remain to be distinguishable from each other [Thalheim, 2000]. A
query q is value-set-preserving if for any database DB allV alues(q(DB)) =
allV alues(DB), i.e., none of the values appearing in DB is lost through q(DB)
for the function allV alues that collects all values occurring in DB.

Selection, join, intersection, and difference are subset-sensitive operations.

Proposition 25. All classical aggregation functions are subset-sensitive.
Object-invariant queries are min- and max-invariant.
Value-set-preserving queries are min- and max-invariant.

The proposition is obvious.
The exclusion/inclusion principle is one of the important properties for count-

ing. Given classes C1, ..., Cm. The intersection of Ci1 ,..., Cin is denoted by
I(Ci1 , ...Cin).

Definition 26. A function f can be computed based on the exclusion/inclusion
property if
f(D) =

∑m
i=1 f(Ci) −

∑m−1
j=1

∑n
k=j+1 f(I(Cj , Ck)) + −...

+(−1)r−1
∑

1≤j1<...<jr≤m

f(I(Cj1 , ...Cjr)) + . . . + (−1)m−1f(I(C1, ..., Cm)).

Theorem27. Distributive aggregation functions can be computed based on the
exclusion/inclusion principle.

The proof of the theorem is based on the definition of distributive functions
through structural recursion based on the union approach, is straightforward
and can be thus omitted.

3.4 Enriching OLAP Specifications By Metadata Information

We use annotation schemes for characterisation of data types. The following
characteristics are extended to any data used for exploration and analysis:

– Ordering of data may be applied using a number of ordering schemata at
the same time. Novel ordering schemata not applied in database manage-
ment must be developed since ordering of historical data is often based on
associated data such as history, region, and important events.
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– Defaults change over time. They are also context-dependent. Therefore, the
time and context must also be represented whenever defaults are used.

– Representation systems vary for different platforms, for historical periods
and for different regions. They depend on agreements of the society at that
time and at that place. Additionally data representation may have been
changed by the chroniclers.

– Casting of data is necessary whenever we are interested in normalised data
that can be used for comparisons. The casting schema may have to be
changed in the case that the new data are replacing data currently used.

– Classification are dependent on the habits of the region and the historical
period. Classification schemata carry an important part of the semantics and
must thus be maintained also in the case of data aggregation.

– Data types may have their specific hierarchical ordering of partitions (e.g.,
within time, space). These partitions may also be used for approximation by
generalisation of data.

Enriching OLAP data by type information enhances the correctness of analysis.
Data types can typically be characterised by their properties [Mansmann et al.,
2007; Thalheim, 2000].

3.5 The OLTP-OLAP Transformation

We define a layered OLTP-OLAP architecture by introducing an OLTP schema,
by characterizing aggregations, and by introducing OLTP-OLAP transforma-
tions. Based on this framework we derive a specification frame that is useful for
guaranteeing correctness of OLAP applications.
Definition 28. An OLTP-OLAP transformation is defined through

– a family of grouping functions G,

– a family of aggregation functions F , and

– a family of transformations T .

Grouping functions are used for defining lattices of partitions. Aggregation func-
tions are used to associate values computed through application of aggrega-
tion functions. Transformations are used to transform the fact attributes. An
example for a nonlinear transformation is the conversion of fuel consumption

l
100km �→ miles

gallon [Hand, 1994].
It is now well understood that OLAP applications can be built on top of

OLTP systems. An enriched OLTP-OLAP transformation consists of
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Figure 4: Three dimensions of the OLAP space: Data layers, user profiles, and
quality of data

an enriched OLTP scheme that provides partitions together with domain
types, contains a schema of the OLTP database, and a set of permitted
aggregation functions applicable for the fact attributes and

a transformation function defined by a view on the enriched OLTP scheme,
by attributes and derived attribute where the latter are defined through
aggregation functions applied to the cells of the cube and by a number of
partitions for some of the dimensions.

The result of the OLTP-OLAP transformation is a (materialised) (exten-
ded) (spreadsheet) cube that typically defines a star or a snowflake schema.

The OLAP schema consists of an OLTP-OLAP transformation and a set of
modelling assumptions [Lenz and Thalheim, 2005]. Typical assumptions taken
into consideration for an OLAP schema are P1-subset invariance, P2-superset
invariance, P3-update invariance, P4-union invariance, and equidistance. Subset
invariance states that the fact values remain fixed if the the underlying OLTP
database is restricted to a sub-database guided by a policy P1. Superset, update
and union invariance is defined in a similar way. Equidistance requires that the
transformation functions used are linear.

OLAP applications use data in a variety of ways, in different granularity,
with different scope and of different quality. Conceptual development of such
applications must take this into account. We thus use for conceptual development
an additional characterisation depicted in Figure 4 and discussed in detail below.
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3.6 The OLTP-OLAP Specification Frame

We already observed that the correctness of computations within the cube de-
pends on the aggregations and OLAP query functions, and on properties of
the domains of fact attributes A1, ..., Am. If we can restrict the application to
some OLAP query functions then correctness of computation may be achieved
more easily. If some of the aggregation functions are not of interest in the given
application we may exclude them. The domain types Dom(Mj) of the fact at-
tributes Mj may preserve a set Ψ of properties. Furthermore, the correctness
depends on the cube under consideration. Therefore, we propose specification
frames restricting OLAP applications.

Various modelling assumptions can be applied to cubes. Some of them are:
– Disjointness: OLTP-OLAP transformations are restricted to groupings which

generate disjoint groups.

– Completeness: Groupings used for OLTP-OLAP transformations cover the
entire set of database objects.

– P-subset invariance: Fact values are not changed if the OLTP database is
restricted to objects based on the policy P.

– P-union invariance: Fact values are not changed if the OLTP database is
extended by new objects which depend on the policy P.

– Equidistance: Transformations T ∈ T which are used are linear.
A policy restricts the modification of a database. Policies are used to automat-
ically enforce OLTP and OLAP constraints integrity. Integrity enforcement is
based on the constraints management supported by systems (checking mode,
statement or row level, preor postconditions, scope conditions, matching condi-
tions, reference types), integrity constraint modules execution (scheduling, con-
flict resolution, and granularity of triggers or procedures; order of execution),
level of consistency during integrity control, and level of specification (declara-
tive, imperative, interface-backed).

Domain types may be restricted by properties such as precision and accuracy,
granularity, and ordering. Furthermore, domains can be based on scales, can
represent classifications and can contain default values.Domain values can be
extended by measures, e.g., relative, absolute, linear and non-linear. Domain
values can be transformed by casting functions to values of other domain types.
[Thalheim, 2000] distinguishes nominal, absolute, rank, ratio, atomar, complex,
and interval types.

Typically application do not need the full expressive power for their compu-
tation. Instead we may restrict the application to a specific set of aggregation
functions, to OLAP query functions defined with the OLAP algebra, by some
constraints or properties and to some modelling assumptions.
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Definition 29. A specification frame F = (F,O, Ψ,M) consists of a set F of
aggregation functions, a set O of OLAP query operations, a set Ψ of properties,
and a set M of modelling assumptions.
The cube C is called F-correct if the OLTP-OLAP transformations are restricted
to the functions in F , fact domains fulfill Ψ , and the modelling assumptions are
valid for the cube C.

Definition 30. An OLAP application consists of an OLTP schema S and of
a specification frame F and of a set of F-correct cubes.

Next we show how to avoid incorrect application cases. Then we characterize
OLAP schemata by elaborating modelling assumptions.

4 Correct OLAP Applications

4.1 Incorrect OLAP Computations and OLAP Paradoxes

Several observations concerning wrong OLAP computations have already been
made but are not well considered in the current practice of OLAP computations.
This fact is surprising since mathematics provides an appropriate background
to avoid these paradoxes. We hint at some of them without defining them or the
operations. These paradoxes have been reported in [Lehner et al., 1998; Lenz
and Shoshani, 1997; Lenz and Thalheim, 2001a] and are based on [Fisher, 1962;
Schneeweiß, 1965; Sondermann, 1973].

Summarization over one-way tables: The first category of incorrect OLAP
applications is related to grouping [Lenz and Shoshani, 1997]. Roll-up oper-
ations become incorrect if hierarchies used for the cube are not based on the
disjointness property for groupings.

The Simpson Paradox [Simpson, 1951] appears if one dices or summarizes
over a separator Z of a binary join dependency which is a type of MVD
Z →→ X|Y or binary join dependency � (XZ, Y Z) of a cube scheme with
component sets X ∪ Y ∪ Z.

Non-commutative operators: It is well known in mathematics but not so
well known in the OLAP community that the transformation T and the
arithmetic mean are not generally commutative. This fact is essential even in
the phase of popularization of a data warehouse as part of ETL (Extraction-
Transformation-Loading). Let O be a given set of numeric operators. Let
o1 ∈ O be a linear operator and o2 ∈ O a non-linear operator. Then it is
generally not true that o1 ◦ o2 = o2 ◦ o1 .

Collapsing hierarchies: Hierarchies or classifications may be asymmetric and
unbalanced. Such hierarchies may collapse whenever groups are combined
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without preservation of the asymmetry. The inhomogeneous granularity of
attributes involved causes incoherence of information computed by the cube
operator.

Imperfect aggregation: Cube materialisation is sometimes senseless. There
exists an appropriate homomorphism H only if a pseudo-inverse of the ag-
gregations is used, e.g, [Sondermann, 1973].

Loss of identifiability in OLAP schemata: OLAP schemata use aggre-
gated values. After aggregation detailed computations based on identifiable
database objects may be impossible, be infeasible or lead to superficially
complex computations. These computations become simpler if the OLTP
schema is well-designed and the OLAP schema is properly based on the
OLTP schema.

These paradoxes can be avoided if operations and transformations are well-
defined and conditions for their application are provided.

4.2 Correctness Conditions for OLAP Operations

Cube operations may be still correct for some data, whereas in other cases in-
correctness becomes obvious. The development of guards is a appropriate way
to avoid incorrectness. We may include these guidelines into the specification of
OLAP schemata depending on the functions used.

Based on the theory of aggregation functions, our cube schema definition and
its properties we can now identify a number of properties2. Drill-down functions
are used for decomposing groups of data along a hierarchy.

Proposition 31. Drill-down functions are well defined

if the cube construction is based on disjointness and completeness modelling
assumptions and
if data granularity is guaranteed at leaf level L1 and no structural null are
used at any level Li (i > 1) in between.

The proof of this observation is straight-forward and based on direct application
of the definitions.

Data granularity allows to identify each object used by its values. We notice
that the conditions are only necessary ones. For instance, the avg function may
be incorrect if the domain is ordinal.

Roll-up functions are used for merging groups along a hierarchy. Problematic
results are observed for collapsing hierarchies especially in the case of algebraic
and holistic aggregation functions.
2 We omit their proofs since they are straightforward checks of the function application.
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Proposition 32. Roll-up functions are only well-defined if data granularity is
guaranteed at leaf level L1 and no structural null are used at any level Li (i > 1)
in between.

The proof is based on properties of roll-up functions and the completeness prop-
erty.

This proposition directly leads to a restriction for roll-up functions.

Proposition 33. Roll-up functions must be based on disjointness and complete-
ness modelling assumptions.

Dice functions are unproblematic for distributive functions. Algebraic aggre-
gation functions may be combined with repairing functions[Lenz and Thalheim,
2001a].

Proposition 34. The Simpson paradox is observed if for groups at dice level
Lp � Lr or at roll-up level Lp � Lr

(∀j(o(gij) < o(gkj))) �⇒ o(
∑n

j=1 gij) < o(
∑n

j=1 gkj) for given k and i.

Proposition 35. Dice functions can only correctly be applied if the cube con-
struction is based on union invariance, i.e.

f(�∗
o∈gi

value(o)) = �∗
o∈gi

(f(value(o)))

holds for groups gi along dimensions for the generalized union �∗.
Distributive aggregation functions are union invariant. Otherwise repair func-
tions must be applied for algebraic aggregation functions.

Proposition 36. Dice functions can only be used along dimensions for which
constraints among cube dimensions are not lost, i.e. if the constraint set that is
shrunk to the new dimensions implies all constraints within these new dimen-
sions.

Slice functions are similar to selection of tuples within a set. They are subset
operation and equivalent to conditioning in statistics.

Proposition 37. Slice functions and roll-up functions must be query-invariant,
i.e. for the slice or roll-up function o′ and the query function q: q(x1, ...xn) =
q(o′(x1), ...., o

′(xn)).

Figure 2 illustrates a cube that is not query-invariant.

Proposition 38. Slice functions must be subset invariant.

If the case that a slice function is subset-dependent then the slices under con-
sideration change with partitions p � p′.
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Constraints invalidated by subset construction are those integrity constraints
that have to be expressed through ∀∃-constraints[Thalheim, 2000], e.g., inclusion
dependencies, multivalued dependencies, tuple-generating constraints.

OLTP-OLAP transformations can cause paradoxes or lead to problematic
OLAP schemes. Statistics and the theory of mathematical functions have devel-
oped a rich theory that must be considered for OLTP-OLAP transformations.
For instance, the arithmetic average is very sensitive to extreme values such as
outliers and may be distorted by them.

Proposition 39. Application of median instead of mean average functions for
aggregation leads to a robust OLAP query operation with respect to outliers.

4.3 Repairing Approaches

We distinguished between distributive, algebraic, and holistic aggregation func-
tions. Distributive aggregation functions are gracious functions in the sense that
OLAP application are correct. We can, however, also extend this approach to
algebraic functions.

Definition 40. An aggregation function f can be be expressed by the aggrega-
tion function f∗ if functions g, h exist such that f((DB)) = h(f∗(g(DB))) for
all databases DB.

We also say that the function f can be extended to the function g ◦ f∗ ◦ h.
h is called a forgetful function and g is called a pre-computation functor.
Applying the construction to the average function directly leads to functions
g({s}) = {(1, s)}, g(M) = �s∈Mg(s) for bags,
f∗
1 (i, k) = (i, k),

f∗
2 ((i, k), (j, l)) = (i + j, i·k + j·l

i+j ),
f∗

p+1((i1, k1), ..., (ip, kp), (ip+1, kp+1)) = f∗
2 (f∗

p ((i1, k1), ..., (ip, kp)), (ip+1, kp+1)),
and h(i, k) = k.

Algebraic aggregation functions are defined through expressions over dis-
tributive aggregation functions. Expressions of functions are built [Poeschel and
Kaluznin, 1979] using an algebra of function construction operators consisting
of identification of arguments, permutation of arguments, introduction of fictive
arguments and superposition
g(f1(x11, ..., x1n1), ..., fk(x11, ..., x1n1)) of functions f1, ...., fk, g.
We can use now the construction of algebraic functions for derivation of the
extensions of these functions and conclude:

Theorem41. Algebraic aggregation functions can be extended to distributive
functions.
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This theorem seems to be surprising. We may however use the expression that has
been used for the definition of the algebraic aggregation function. This expression
is used for the introduction of an extended schema. The algebraic aggregation
function can thus be removed without loss of information.

The average function is quasi-associative, i.e. there are functions f, g, h and
associative operators such that

avg(x1, ..., xn) = f(B(g(x1), ..., g(xn)), C(h(x1), ..., h(xn)))

for B ≡ C ≡ sum, f(x, y) = x
y , g(x) = x, and h(x) = 1.

Quasi-associativity can be extended to bisymmetry that is an important
property for aggregation over dimensions:
∀n,m ∈,∀x11, ..., xmnfm·m(x11, .., xmn) = fm(fn(x11, .., x1n), .., fn(xn1, .., xmn)).
Typical bisymmetric functions are the classical distributive aggregation functions
and the geometric mean.

Theorem42. The average function is well-defined on hierarchies only if the
hierarchy is well-balanced.

The bisymmetry property of the average function proves the theorem. Each cell
of the cube has the same number of values. In this case we can use the sum

function together with the size values instead of the average function.

5 Conclusion

OLAP computations may lead to correct results but may also lead to incorrect
ones. The main reason for this unpleasant behavior is the ambiguity in the
definitions used for the OLAP cube and OLAP operations.

Our definition of the cube and the cube schema is based an a two-layer spec-
ification frame for OLTP schemata. The base layer extends the definition of the
base data types by partitions of the domains used for the data types of the
OLTP schema. The OLTP specification layer is similar to the specification of
object-relational or entity-relationship schemata. Cube can be then defined as
being structured according to the partitions of the base layer. Cube definitions
given in the literature do not use this base layer. In this case, special structuring
schemata or lattices of hierarchical structures are introduced. This way of defin-
ing a cube becomes cumbersome and is difficult to understand, to apply and to
evolve.

As far as we known, a systematic treatment of properties of aggregation
functions has not yet been made in database research. Aggregation functions
have their own properties. Their application is restricted by these properties.
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The paradoxes in the last section of this paper demonstrate the importance of
systematic treatment.

We thus decided to introduce the two-layer specification frame for OLTP
specification. It should be noticed that stream processing would also be simplified
if such layered specifications are used. OLAP schemata can be derived from
OLTP schemata. They typically form a view on the OLTP database. The OLAP
algebra consists of a number of specific operations such as roll-up and drill-
down functions. It is surprising that our definition is the first formal one in the
literature. Typically OLAP functions are given on the basis of an illustration of
their computation and of examples. The literature then refers to existing systems
and their decisions for implementation.

The OLTP-OLAP specification frame we introduced in this paper can be ex-
tended to a theory of database aggregations and database abstractions. Further-
more, we did not discuss the impact of constraints to OLTP-OLAP specification
frames.

Most of the propositions in this paper give only necessary conditions for
correctness. The development of a correctness theory is one of the main issues
for future research. We concentrated the paper on distributive and algebraic
aggregation functions. Holistic aggregation functions are very important in ap-
plications. The existence of a theory for these functions would be beneficial.
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