
Development of Ambient Intelligence Systems Based on
Collaborative Task Models

Roberto F. Arroyo
(Departamento de Lenguajes y Sistemas Informáticos, Universidad de Granada, Spain

robfram@ugr.es)

Miguel Gea
(Departamento de Lenguajes y Sistemas Informáticos, Universidad de Granada, Spain

mgea@ugr.es)

José Luis Garrido
(Departamento de Lenguajes y Sistemas Informáticos, Universidad de Granada, Spain

jgarrido@ugr.es)

Pablo A. Haya
(Departamento de Ingeniería Informática, Universidad Autónoma de Madrid, Spain

Pablo.Haya@uam.es)

Abstract: So far, the Ambient Intelligence (AmI) paradigm has been applied to the
development of a great variety of real systems. They use advanced technologies such as
ubiquitous computing, natural interaction and active spaces, which become part of social
environments. In the design of AmI systems, the inherent collaboration among users (with the
purpose of achieving common goals) is usually represented and treated in an ad-hoc manner.
However, the development of this kind of systems can take advantage of rich design models
which embrace concepts in the domain of collaborative systems in order to provide the
adequate support for explicit or implicit collaboration. Thereby, relevant requirements to be
satisfied, such as an effective coordination of human activities by means of task scheduling,
demand to dynamically manage and provide group- and context-awareness information. This
paper addresses the integration of both proactive and collaborative aspects into a unique design
model for the development of AmI systems; in particular, the proposal has been applied to a
learning system. Furthermore, the implementation of this system is based on a blackboard-
based architecture, which provides a well-defined high-level interface to the physical layer.

Keywords: collaborative model, ambient intelligence, ubiquitous computing, task modeling,
context awareness
Categories: D.2.1, D.2.11, H.1.2, H.5.3

1 Introduction

Ambient intelligence (AmI) represents the next step in the user-centred approach of
computer applications. They incorporate technology into an omnipresent and
transparent infrastructure for the implementation of smart environments. AmI
paradigm highlights on user-friendliness, more efficient services and support for
human and group interaction [Campbell 03]. This paradigm is based on emerging

Journal of Universal Computer Science, vol. 14, no. 9 (2008), 1545-1559
submitted: 30/4/08, accepted: 19/2/08, appeared: 1/5/08 © J.UCS

technologies, such as ubiquitous computing, collaborative systems and intelligent user
interfaces for natural interaction [Riva 05]. Up to date, although interest in this
technology and its benefits are high, it is difficult to develop this kind of systems
fulfilling all elicited requirements.

Task modeling [Paterno 99] is a useful technique to describe interactive and
collaborative systems translating user activities and their required data into structured
knowledge fragments, the so-called tasks. In general, a task is portrayed on the basis
of a set of actions to be performed, namely of information required for these actions,
and of the actors who perform them. However, no context information is normally
taken into account in task modeling, or at least, it is not represented in an appropriate
way.

Collaboration means a tacit implication to the achievement of a common goal
[Aldunate, 02]. In this way, according to the Activity Theory (AT) [Nardi 95], a
collaborative task is accomplished by different actors (playing roles) and coordinates
them to reach a precise objective. Although several approaches focus on collaborative
task modeling [Paterno 03; Veer 00], its integration in AmI systems taking advantage
of more complete domain models results in new challenges in research.

When collaborative tasks are modeled in AmI systems, two kinds of actuation
manners in participants can be observed: a) an explicit way if these participants are
conscious of the intervention of the environment in the activity [Card 00]; b) an
implicit way when they delegate portions of work to the system, which acts in
transparently solving activities from context information. The environment is a
participant itself, being able, if needed, to behave actively. The last way has very
interesting connotations from the AmI point of view, since most of the system
decisions can be taken using the context information. In [Dey 00], context is defined
as "any information that can be used to characterize the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and applications themselves".

This paper aims to address the modeling and design of the collaborative and
proactive aspects of intelligent environments, where contextual information is
required to manage situations successfully. To this objective, the use of rich models
can provide benefits in order to pay special attention to relevant parts of the system.

The starting point is AMENITIES [Garrido 05], which provides a conceptual and
methodological framework on the basis of task models and group behavior and has
been specially devised for the study and development of cooperative systems. The
concepts that are present in collaborative systems are also present in AmI systems,
namely, tasks, groups, roles, artefacts, shared resources, etc. Furthermore, the
methodology proposes the creation of a system model, which is independent of its
implementation. A software platform based on the blackboard architecture has been
built in order to support the development of these systems [Haya 04]; the context
layer is implemented by using a blackboard model-based middleware that maintains a
global data structure for relevant information about the world model. Blackboard
architectures facilitate the dynamic configuration of the system components. This is
achieved by means of an anonymous communication mechanism that enables loosely-
coupled interactions among different elements of the architecture. Accordingly, every
time a new component appears, the rest remain unchanged, rather than resetting up to
discover the location of the new component. Thereby, the blackboard paradigm is

1546 Arroyo R.F., Gea M., Garrido J.L., Haya P.A. : Development of Ambient ...

very suitable for AmI systems, in which the composition of the environment changes
very frequently.

The paper is organized as follows. Section 2 briefly introduces the case study
used to describe this research work in detail. In Section 3 we present the conceptual
framework in which the proposal is based on. Section 4 proposes a design model
specially devised for the development of AmI systems. We describe how to integrate
the conceptual design to the main AmI mainstream in Section 5. The implementation
of this design by means of the blackboard architecture will be illustrated in Section 6.
Finally, conclusions and future works are exposed in Section 7.

2 Learning AmI Systems: Case Study

The work shown in this paper is part of the framework of U-CAT (Ubiquitous
Collaborative Adaptive training) project, a Spanish research project for the definition
and development of smart learning environments. The aim of this project is to adapt
the proposed teaching activities, the tools to be used and the contents presented to the
users, by considering the context of each element involved in the activities, together
with the information about the physical devices that can be used to perform the
activity. This provides an interesting social community model with different actors
playing roles (students and teachers) and collaborating, acquiring knowledge and
skills when they participate in classes, do exercises in group and share resources
(slides, documents, etc).

AmI systems can improve the traditional model of teaching. For example,
students can participate from a different physical location where the lesson is lectured,
using devices like PDAs or computers, and sharing the same context. Similarly, the
system is aware of several facts, such as the arrival of teachers in the classroom, the
presence and number of students in it, etc. [William, 04 and Nylander, 03] show some
properties obtained with ubiquitous e-learning systems, which share properties with
the AmI environments.

In this case study, we focus on the analysis of giving a class, taking into account
participants, events to be carried out and other relevant concepts, as well as AmI
system features (proactiveness, ubiquity, etc). In order to teach a lesson, first this task
must be scheduled first, and then carried out. Hence, we have two related tasks linked
up by an order relationship: the teacher must schedule an appointment with his/her
students (date and place of the lesson). The teacher who gives the lesson and the
students attending the lesson must appear in person at that place and date agreed.

Usually, the scheduling is done in an asynchronous way, and the arrival of the
teacher to the classroom represents the beginning of the lesson. Both tasks need the
participation of the students, the teacher and the system. Some students can attend the
lesson in a virtual manner, thus not being physically in the classroom but using a
device which let them send and receive comments and contributions. We can also
think about the possibility that the student does not want to participate voluntarily in
the lesson because he/she is busy (i.e. with another lesson and he/she does not want to
be interrupted).

Scheduling is a collaborative task among teachers, students and environment.
This task uses context information such as the student location, previously stated

academic timetable of teachers and students, their availability, their preferences, etc.

1547Arroyo R.F., Gea M., Garrido J.L., Haya P.A. : Development of Ambient ...

The decision may be conditional to certain policies which determine the type of
lesson (mandatory, recovery, tutorship, etc.) and the specific setting according to the
students who are participating (the whole class, some groups, an individual), and
different coordination strategies (an hour established by the official timetable, by
consensus, by voting, by available timetable holes, etc.) As we can see in the case
study above considered, a first challenge arises from the need to provide a feasible
orchestration procedure for collaborative task scheduling.

Moreover, this procedure should overcome the mapping between available
physical resources and tasks to be done. To address these problems, we propose as
starting point the use of the conceptual framework defined in AMENITIES, which is
introduced in the following section.

3 Conceptual Model

AMENITIES, a methodological approach developed in the Granada University, is
based on tasks and behavior models, with tasks being the main concept of any system
modeled using this methodology. [Fig. 1a] shows, using an UML class diagram, the
concepts and relationships included in the AMENITIES conceptual framework.
According to this framework, an action is an atomic unit of work. Its event-driven
execution may require/modify/generate explicit information. A subactivity is a set of
related subactivities and/or actions. A task is a set of subactivities intended to achieve
certain goals. A role is a designator for a set of related tasks to be carried out. An
actor is a user, program, or entity with certain acquired capabilities (skills, category,
etc.) that can play a role in the execution (using artefacts) of (or responsibility for)
actions. A group performs certain subactivities depending on interaction protocols. A
cooperative task is one that must be carried out by more than one actor, playing either
the same or different roles. A group is a set of actors playing roles and organized
around one or more cooperative tasks. A group may comprise (i.e. be formed of)
related subgroups. A law is a limitation or constraint imposed by the system that
allows it to adjust the set of possible behaviors dynamically. An event is based on its
common software definition, which is an occurrence or happening of significance to a
task or program. An organization consists of a set of related roles. Finally, a
cooperative system is composed of organizations, groups, laws, events and artefacts.

In Fig. 1b the U-CAT physical laboratory of the Autonomous University of
Madrid is shown. This laboratory has got several devices such as cameras, TV, radios,
lights or switches. The AMENITIES proposal provides a conceptual framework for
defining task-based models, and the laboratory provides some of the AmI features
such as location or physical interaction. Fig. 1c shows our proposal of a design to
model an AmI system with the benefits of tasks, without forgetting the context
information such as location, and their connections to real entities.

Fig. 2 shows the specification of the roles in AMENITIES involved in the task of
scheduling a lesson. This collaborative task ScheduleClass must be carried out by an
actor playing the role of Teacher, none or more actors (specified as 0..n) playing the
role of Student, and another one actor playing the role of System. Moreover, this task
is defined according to the ordering of the following subactivities:

1548 Arroyo R.F., Gea M., Garrido J.L., Haya P.A. : Development of Ambient ...

• Identifying teacher preferences (GetDatesAndResources); the teacher
decides which resources he/she will need for the lesson, and the dates for it.

• Obtaining the list of possible configuration of the resources and dates
(ProvideDateAndResources); the scheduler gets the dates in which the
required resources are available and the state of the required resources for the
specified dates.

• Selecting the candidate dates (ChooseCandidateDates); the teacher chooses a
suitable set of dates as possible solutions to reach the goal: "find a date to
give the lesson".

• Choosing the kind of the class (KindClass); the teacher decides the best
manner to adjust the date and time of the lesson. He/she may choose one,
delegate it to the scheduler, or even ask the students their preferences (by
voting).

• Depending on the previous decision, the following options are possible
alternatives:

1. To determine the best date (DecideDate), on which the scheduler chooses the
dates (according to the classroom availability) best fitting the teacher
preferences..

2. To vote the best date (VoteDates), where every student votes the date
according to their personal preferences.

• To add the lesson and notify it (NotifyClass); the scheduler annotates the
new appointment, and notifies it to the related people. Additionally, to
maintain the consistency, it updates the availability of the used resources for
the selected date.

Figure 1: a) AMENITIES, main concepts for task modeling; b) The U-CAT
laboratory: Web interface and on-line camera screen; c) Semantic model entities
corresponding to physical entities

1549Arroyo R.F., Gea M., Garrido J.L., Haya P.A. : Development of Ambient ...

This model describes the complete system from a technology-independent point
of view, it doesn't include any information about how the computer-based system will
be implemented. However, it describes main functional requirements to be satisfied,
which provide key information about, for instance, what tasks/subactivities can be
assigned to the system (e.g., those assigned to the role Scheduler), or even the need of
providing some type of awareness mechanisms in order to accomplish certain
tasks/subactivities adequately (e.g., the support to notify the class agreed to be defined
in the subactivity NotifyClass). The following section just describes the design
proposal for the development of the computer-based system in charge of supporting
these requirements (i.e. the AmI System).

 (a) (/b)

Figure 2: (a) Teacher and Student roles and (b) Cooperative task ScheduleClass
modeled in AMENITIES conceptual framework

4 Design Model

Our approach is based on a model-driven architecture [Mellor 04], where these
abstract concepts are refined and mapped onto other computational models.

Therefore, abstract concepts and relationships will be mapped on components
with certain internal structure, encapsulating an expected behavior (interface) hiding,
in some cases, the physical device. Relevant components are entities (roles, actors,
objects), related set of actions (tasks), relevant facts (events) and rules governing the

1550 Arroyo R.F., Gea M., Garrido J.L., Haya P.A. : Development of Ambient ...

system (preconditions, laws). These components are helpful to understand and
represent the world, and further, to detect the underlying context of such activities to
predict events and anticipate the intelligent assistance. Associations between
components (links) could be tagged to add additional information about the nature of
the relation. Afterwards, we describe the mechanism to translate conceptual
statements to this compact notation, considering relations and cardinality. The
advantages of such an approach are the management of concepts of different nature in
a straightforward and homogeneous way. Thus, these concepts are enough to describe
collaborative task on intelligent environments.

4.1 Law

Law is defined in AMENITIES as a constraint that determines the system behavior.
A law has the following properties: self-information to identify the law itself;

preconditions, comprising a set of conditions that must be satisfied in order for the
law to be fulfilled; actions that are performed once the law has been fulfilled; and
finally, a logical expression connecting previously defined preconditions by means of
logical operators and possible events (with or without parameters) producing changes
in the system activity. If this logical expression has not been specified, then the AND
operator among preconditions is assumed by default. A scheme of a law definition is
shown in Fig. 3. In order to create the logical expressions, we need a set of operations.
For example, a law can specify that a lesson cannot start if the teacher is absent.

Figure 3: Law definition

4.2 Preconditions

A precondition is another logical component containing a set of restrictions to be
applied to laws. Therefore, a set of logically interrelated restrictions is formed.

This comprises self-information, a set of restrictions specifying a list of particular
attributes that a task should guarantee in order to carry out the system activities. These
restrictions consist of elements with the attribute to be evaluated, a condition to be
satisfied for this attribute, and a field indicating the obligatory nature of the
restriction; a logical expression on the defined restrictions or an implicit logic AND
(if the logical expression has been omitted). The compulsory nature can be used as a
preference criterion for the candidate object choice. For example, when we establish
the preference of one classroom instead of another, due to capabilities or equipment,
we are speaking about preconditions.

The restriction set represents the attribute list that any goal object must achieve to
fulfil the precondition. It is composed of the attributes to evaluate, the condition that
each attribute must fulfil, and a field containing the obligatory nature of that
restriction. Additionally to the pair <attribute, value>, a field regarding the type of
restriction is defined. This field can contain requisite (0) or preference (1).

1551Arroyo R.F., Gea M., Garrido J.L., Haya P.A. : Development of Ambient ...

4.3 Tasks/Subactivities

A task is a subactivity in a higher level of abstraction with an intended goal.
Consequently, we will refer to elaborate groups of actions (or simpler ones) with

the term subactivity. Subactivity is defined as the combination of actions performed
by active or passive entities.

Analysing the needs of a subactivity, we characterize its components as a set of
roles, determining which ones take part in this subactivity; a set of outcoming events,
determining what events are generated; a set of incoming events, determining the
events required; a set of actions, specifying what actions are done by the subactivity;
and a set of subactivities, determining what subactivities are called by this one. A
student carries out work when he/she gets involved in subactivies.

We must note that our purpose is to define a subactivity in a way that the system
will be able to determine, using stored information, which tasks can depend on the
subactivity, or which one is necessary to carry out the subactivity. Fig. 4 shows an
example of it.

To facilitate the dependency identification process, the event representation will
be in an unique event entity, related to two different ways (generate or receive) to
determine which entities generate the necessary event enabling a specific subactivity
to continue.

Figure 4: Relationship scheme about the objects which can participate in a
subactivity

4.4 Events

An event is defined as an occurrence or incident of significance for a task or
program. The information about its concrete use is stored in the relationships (link).

This specification consists of the type of relation with the event, i.e. whether the
event is being sent or received; of a roles expression including at least one role or a
composition of some of them which uses an exclusive OR operator, or the reserved
word any followed by a list of roles to be excluded; and of a list of parameters that
might be necessary for certain events. For instance, when a teacher leaves the
classroom, an event is generated.

4.5 Roles

A role is a set of interruptible subactivities that can be assigned to an actor with both
event-triggered and law-controlled executions. Therefore a role is an object composed
by interruptible subactivites with both event-triggered and law-controlled execution, a
role is formed by the interruptible specification defining under what circumstances a

1552 Arroyo R.F., Gea M., Garrido J.L., Haya P.A. : Development of Ambient ...

specific subactivity is interruptible; a task list composed by a starting law, a
subactivity and an ending law. Fig. 5 shows a graphic representation of the relation
between role object, laws and subactivities. Teachers and students are two kinds of
roles in learning scenarios.

Figure 5: Relationships between different objects of a role

4.6 Actions

Anyway, we need to reflect in any way the actions made by tasks and other entities in
the whole system. Therefore, we add them as an object in the semantic network. This
is the purpose of the action object.

5 From the Task Model to the AmI System Model

This section describes the application of the proposed design model to the previous
case study, showing the transformation of the abstract conceptual model of
AMENITIES into the corresponding design model for these components, emphasising
on the AmI characteristics.

Fig. 6a shows the model of a Teacher role using our proposed design model
based on the objects, according to the previous specification of the roles for this case
study (see [Fig. 2a]). Note that the relations among objects together with the object
attributes allow maintaining contextual information about the modeled system without
loosing the hierarchical structure of task modeling. [Fig. 2b] has showed the modeling
of collaborative task ScheduleClass, and Fig. 6b shows the set of subactivities that the
role Scheduler performs inside it. The information related to the data flow about the
shown part has been omitted due to clarity, since the interesting part is centred on the
actor System, which plays the role Scheduler as shown.

Accordingly, we can check how the participation of the system is made explicit in
relation to perform tasks. It determines which task/subactivities are performed
automatically. Conversely, in the conceptual model, it has only been specified the set
of roles which takes part in the tasks. However, in this phase, the underlying AmI
nature is taken into account on the modeling. The task to be carried out must be
determined to provide proactivity.

Additionally, those in which the system will participate or aid users must be
determined to. As it is an AmI system, it can be considered that the system is present
in the performance of every task in an implicit manner. For example, inside the
VoteDates task which is carried out by the student, the system is responsible for
showing the different options to the student; it may be qualified for, in an automatic
way, asking for the academic schedule of this student, remarking the applicant dates
which coincide with leisure in its schedule and providing the necessary information
about it. We must note that the conceptual model developed as a semantic network
contains context information too, as reflected in Fig. 7.

1553Arroyo R.F., Gea M., Garrido J.L., Haya P.A. : Development of Ambient ...

Figure 6: (a) Teacher role and (b) Scheduler role subactivities inside the
ScheduleClass subactivity

The System actor is responsible of generating the event that will trigger the
starting of a lesson (HourClass event in the begin transition of the GiveClass task)
too, which implies that it must check the set of planned lessons every time, and it will
trigger those which meets the specified requirements. Therefore, from this case of
study we can extract a well known stereotyped behavior for schedule systems,
composed by a set of meeting and a temporal trigger for them, which can be modeled
as separated and be reused in any design. The implementation is done using the
blackboard architecture of the U-CAT project, described in the following section.

1554 Arroyo R.F., Gea M., Garrido J.L., Haya P.A. : Development of Ambient ...

Figure 7: The network specifies both structure (tasks, roles) and context awareness
(location)

6 Implementation based on a Blackboard Architecture

The AmI system is implemented on the basis of a blackboard model [Haya, 04]. The
blackboard stores the relevant and information available about the environment. In it,
the set of devices, people, relations, etc. are defined, establishing a world model. The
specification shown in Fig. 6 is stored in the blackboard, which defines a model based
on a semantic network about concepts and properties for maintaining the state and
context of the system. The model stored in the blackboard is based on a global data
structure. Classic blackboard implementations rely on a shared tuple data space.

On the contrary, the core of this blackboard implementation is a directed graph
composed of entities and relations. One of the key benefits in using our approach is
how the linked representation of the graph better fits the structure of the explained
model rather than the tuple representation. Another important advantage is the
improvement on the browsing mechanism. Every object (roles, actors, laws, events,
etc.) that has to be introduced in the blackboard must be described using this graph for
its storage.

The blackboard is based on the client-server programming paradigm. A reduced
set of operation allows access to AmI model. Such operations include querying and
updating model variables, discovering new entities and relationships and subscribing
to blackboard changes.

The blackboard allows five kinds of clients that interact with it: sensors,
actuators, interpreters, producers and consumers. These are distinguished according to
whether they contribute to or obtain information from the blackboard, and according
to whether they belong to the physical world or to the virtual world.

1555Arroyo R.F., Gea M., Garrido J.L., Haya P.A. : Development of Ambient ...

• Sensors. They are information sources belonging to the physical world. A
sensor directly measures context from the real world, providing fine-grain
information with very little abstraction.

• Actuators. These components convert blackboard changes into the real
world. Alike sensors, actuators are physical devices.

• Interpreters. These components are subscribed to blackboard changes.
Depending on how the changes are processed, we can split interpreters into
two different types. The first ones convert raw sensor data into high-level
information. These interpreters are new entities and relationships that are
added to the blackboard model. The second ones divide complex tasks into
several simpler actions.

• Consumers. They are the final receivers of the blackboard changes. This
group includes user interface views or event-based autonomous applications.

• Producers. This group are composed of applications, modules and agents,
which update the AmI model stored at the blackboard. These changes can be
received by consumers or can be interpreted as commands affecting the
physical world such as a temperature variation.

Fig. 8 summarizes the interaction between these five groups of components. As it
can be shown in this figure, the blackboard acts as a rendez-vous point for the rest of
the AmI system components. Dotted arrows indicate events produced by changes on
the AmI model. On the contrary, solid arrows reflect two different types of
communications: queries and updates. The first ones retrieve information about the
entities and relationships of the AmI model. The last ones modify the value of some
property or change the number of entities or relation of the model.

When producers/sensors/interpreters need to communicate new changes, they
modify the information stored on the blackboard. There are two ways that
consumers/actuators can use to find out what new information is available: they can
either consult the blackboard to see if there are any new changes or if they can
subscribe to blackboard modifications whereby they are notified of any modification.

Currently, the blackboard supports a collection of heterogeneous control buses
such as EIB or X10. Various drivers provide a transparent gateway between the
virtual and physical world. Hence, the status of the physical devices is reflected in the
value of model variables, and vice versa.

One of the advantages of the proposed paradigm stems from the fact that it is not
necessary for each client to be aware of the existence of the remaining components;
each client only knows the location of the blackboard and the part of the model they
are interested in. This approach loosely connects the different components on two
levels: a temporal level and a spatial level. On one hand, clients do not need to be
synchronized, which means that a producer can make changes to the model and finish
its execution. Then, a consumer can make a request to the blackboard and retrieve the
change since it has already been stored. On the other hand, when a client makes a
modification on the blackboard, he/she will not be aware of the users affected by that
change. Each client interacts with the blackboard as if they were the only one; hence,
the development is easier.

1556 Arroyo R.F., Gea M., Garrido J.L., Haya P.A. : Development of Ambient ...

Figure 8: Blackboard architecture

As shown in Fig. 6b, we already separate in a conceptual way the Scheduler role,
as this is played by the System actor. In the implementation stage over the blackboard
these parts are clearly identified. The System actor is implemented as a producer-
consumer client of the blackboard, responsible of carrying out the assigned tasks. For
example, when it will execute the GetDatesAndResources task, this client will query
the blackboard to obtain the state of everyone of the requested resources by the
teacher in the selected dates. It must consult the dates by which every resource is
available, and generate the expected result from them.

In summary, the system acts inside the blackboard model as a loosely connected
agent in charge of managing a set of resources from its relation with roles,
preferences, etc. Additionally, from the point of view of the blackboard, it can be a
producer/consumer of transverse context information to many tasks, as a prerequisite
or as a resource pager (simply changing the set of roles and policies which it depends
on.)

7 Conclusions and Future Works

This paper presents the application of a task-based methodology, called AMENITIES,
and also the use of a blackboard-based implementation for a learning AmI system, in
the scope of the U-CAT Spanish project. The importance of AmI systems is growing
in the last years because of its presence in different types of scenario (collaborative
learning, mobile computing, etc.) The features of AmI systems imply an inherent
complexity to address their development. Therefore, methodologies and techniques
aimed at ensuring the success of the system should be applied. In this way, a proposal
of a task-driven design has been devised to reflect the particularities of AmI systems.
This design encourages the use of context, regarding the advantages of a conceptual
design model based on tasks.

A design model (based on elemental patterns among entities) is proposed
allowing us to model and implement collaborative tasks in learning AmI

1557Arroyo R.F., Gea M., Garrido J.L., Haya P.A. : Development of Ambient ...

environments on the basis of crucial concepts related to collaboration, context, and
proactivity.

In relation to the implementation of the system, the blackboard interaction
paradigm provides flexible design and deployment procedures. A new client can be
added and removed dynamically without affecting the configuration of the clients
already present in the AmI system. Consequently, the development of new
components is a process that can be done in an independently way. Each new client
manages a part of the whole model, without concerning which other clients are
already interested in the same part.

But, it is worth noting that an immediate problem arising when two or more
different components try to update the same part of the model concurrently. Since
each client is not aware about the existence of the rest of the components, it is
necessary to have a mechanism that coordinates the access to the blackboard [Haya
06].

Future work is oriented to explore more general scenarios, fulfilling the
implementation of this collaborative model on the blackboard. We are also interested
in adding task restriction thus solving capabilities to increase the proactiveness.

Further works will be driven to provide means to facilitate the representation and
management of the exposed concepts such as users, activities and resources in
collaborative intelligent environments using context-aware information for task
scheduling. One of the main features to achieve is to facilitate the coordination of
different users when doing collaborative activities from diverse locations though
different devices. We aim to provide dynamic task scheduling and decision support,
which facilitates human coordination and collaboration. A theoretical prototype is
being developed for this approach [Arroyo 07].

Acknowledgements

This research is partially supported by a Spanish R&D Project TIN2004-03140,
Ubiquitous Collaborative Adaptive Training (U-CAT).

References

[Aldunate 02] Aldunate, R. Nussbaum, M. and González, R. An Agent Based Middleware for
supporting Spontaneous Collaboration among Co-Located, Mobile and not Necessarily Known
People. Workshop on Ad hoc Communications and Collaboration in Ubiquitous Computing
Environments, CSCW 2002, New Orleans, USA, November 2002.

[Arroyo 07] Arroyo, R.F., Gea, M., Garrido, J. L., Haya, P.A. , Carro, R.M. Smart Group-
Aware Navigation for Active Spaces. Fifth International Workshop on Authoring of Adaptive
and Adaptable Hypermedia at the 11th International Conference on User Modeling (UM'2007).
In press.

[Campbell 03] Hess, C. and Campbell, R.: An application of a context-aware file system.
Personal Ubiquitous Comput. 7, 6 (Dec. 2003), 339-352. 2003. DOI=
http://dx.doi.org/10.1007/s00779-003-0250-y.

[Card 00] Card, S. K., Newell, A., and Moran, T. P.: The Psychology of Human- Computer
Interaction. Lawrence Erlbaum Associates, Inc. 2000.

1558 Arroyo R.F., Gea M., Garrido J.L., Haya P.A. : Development of Ambient ...

[Dey 00] Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., and Steggles, P.:.
Towards a Better Understanding of Context and Context-Awareness. In Proceedings of the 1st
international Symposium on Handheld and Ubiquitous Computing (Karlsruhe, Germany,
September 27 - 29, 1999). H. Gellersen, Ed. Lecture Notes In Computer Science, vol. 1707.
Springer-Verlag, London, 304-307.

[Garrido 05] Garrido J.L., Gea M. Rodrguez M.L.: Requirements Engineering in Cooperative
Systems. Requirements Engineering for Socio-Technical Systems. Chapter XIV. IDEA
GROUP INC. (USA), (2005) 226-244

[Haya 04] Haya, P. A., Montoro, G., Alamán, X.: A Prototype of a Context-Based Architecture
for Intelligent Home Environments. CoopIS/DOA/ODBASE (1) 2004: 477-491

[Haya 06] Haya, P.A., Montoro, G., Esquivel, A., García-Herranz, M., Alamán, X.: A
Mechanism for Solving Conflicts in Ambient Intelligent Environments. Journal of Universal
Computer Science, 12, 3. ISSN 0948-6968. 2006.. 284-296.

[Mellor 04] Mellor, S. J., Scott , K., Uhl, A., Weise, D.: MDA Distilled, Addison-Wesley, 2004

[Nardi 95] Nardi, B. A. : Activity theory and human-computer interaction. In Context and
Consciousness: Activity theory and Human-Computer interaction, B. A. Nardi, Ed.
Massachusetts Institute of Technology, Cambridge, MA, 1995. 7-16.

[Nylander 03] Nylander, J.: E-clasroom - 2003 Award Winner. Larry L. Sautter Award. 2003
DOI= http://www.cnc.ucr.edu/sautter/index.php?content=2003/recipients.html

[Paterno 99] Paterno, F. 1999 Model-Based Design and Evaluation of Interactive Applications.
1st. Springer-Verlag.

[Paterno 03] Paternò, F.: ConcurTaskTrees: An Engineered Notation for Task Models. In The
Handbook of Task Analysis for Human-Computer Interaction, pp.483-503, Lawrence Erlbaum
Associates, Mahwah, 2003

[Riva 05] IST Advisory Group. Ambient intelligence: from vision to reality. In G. Riva, F.
Vatalaro, F. Davide, and M. Alca niz, editors, Ambient Intelligence. IOS Press, 2005.

[William 04] Griswold, W. G., Shanahan, P., Brown, S. W., Boyer, R., Ratto, M., Shapiro, R.
B., and Truong, T. M.: ActiveCampus: Experiments in Community-Oriented Ubiquitous
Computing. Computer 37, 10 (Oct. 2004), 73-81. DOI= http://dx.doi.org/10.1109/MC.2004.149

[Veer 00] Veer, G.C., Welie, M.: Task Based Groupware Design: putting theory into practice,
In Proceedings of DIS 2000 , 17-19 August 2000, New York

1559Arroyo R.F., Gea M., Garrido J.L., Haya P.A. : Development of Ambient ...

