
CrossMDA: a Model-driven Approach for Aspect
Management

Marcelo Pitanga Alves
(Departamento de Ciência da Computação, Núcleo de Computação Eletrônica, Federal

University of Rio de Janeiro (UFRJ), P.O.BOX 2324, Rio de Janeiro – RJ - Brazil
mpitanga@gmail.com)

Paulo F. Pires

(DIMAp: Departamento de Informática e Matemática Aplicada - Federal University of Rio
Grande do Norte (UFRN), Natal – RN – Brazil

paulo.pires@dimap.ufrn.br)

Flávia C. Delicato
(DIMAp: Departamento de Informática e Matemática Aplicada - Federal University of Rio

Grande do Norte (UFRN), Natal – RN – Brazil
flavia.delicato@dimap.ufrn.br)

Maria Luiza M. Campos

(Departamento de Ciência da Computação, Núcleo de Computação Eletrônica, Federal
University of Rio de Janeiro (UFRJ), P.O.BOX 2324, Rio de Janeiro – RJ – Brazil

mluiza@ufrj.br)

Abstract: Nowadays, the complexity of software applications has brought new challenges to
developers, having to deal with a large number of computational requirements. Among these
requirements, those known as crosscutting concerns transpass components boundaries, leading
to maintainability and comprehension problems. This paper presents CrossMDA, a framework
that encompasses a transformation process to integrate crosscutting concerns in model-oriented
systems. It uses the concepts of horizontal separation of concerns from AOP to create
independent business and aspect models, integrating those models through MDA
transformations (vertical separation of concerns). CrossMDA comprises a development
process, a set of services and support tools. The main advantages of this approach are to raise
the abstraction level of aspect modeling, to promote the reuse of crosscutting concerns modeled
as PIM elements, besides automating the process of mapping the relationship of crosscutting
concerns and business models through the process of MDA transformations.

Keywords: Model Driven Architecture, Aspect Oriented Software Development, Crosscutting
concerns, MDA Transformations
Categories: D.2.10, D.2.2, D.2.13, H.4.3

1 Introduction

The increasing complexity of current software applications, along with the emergence
of new technologies and the demand of final users for a high quality in the delivered
systems, require developers to deal with a growing set of software requirements.
Among these requirements, computational requirements such as concurrency,

Journal of Universal Computer Science, vol. 14, no. 8 (2008), 1314-1343
submitted: 15/11/07, accepted: 25/3/08, appeared: 28/4/08 © J.UCS

distribution, persistence, and fault recovery, affect a large number of components in a
given system, that is, they crosscut the boundaries of such components. This
crosscutting behavior leads to the scattering and tangling of software functionalities
and, as a consequence, of the code that implements such functionalities. The code
scattering and tangling hinder the comprehension, maintainability and evolution of
the generated system [Tekinerdogan, 04].

Requirements that crosscut components, spreading over several different parts of
a system instead of being encapsulated in a unique component, are known as
crosscutting concerns. Such concerns typically crosscut system parts according to two
different dimensions: horizontal and vertical. The horizontal dimension refers to
concerns that crosscut system components within the same abstraction level of the
system life cycle (analyses, design, and implementation). On the other hand, the
vertical dimension refers to concerns that crosscut components spread over different
levels of abstractions of the system life cycle. Since both dimensions of crosscutting
behavior decrease the modularity of the system and compromise the reuse of parts, it
is important to adopt principles and techniques to avoid such behavior [AOSD, 07]
[MDD, 03].

In order to manage crosscutting behavior issues, thus promoting reusability,
adaptability and modularity of the system, a possible approach is to employ the
principle of Separation of concerns. Two important and complementary approaches to
provide advanced separation of concerns are Model Driven Development (MDD)
[MDD, 03] and Aspect Oriented System Development (AOSD) [AOSD, 07].

MDD is a software development approach where models are created before
source code is written. A primary example of MDD is the Model Driven Architecture
(MDA) [OMG-MDA, 06]. The Model Driven Architecture (MDA) is an OMG
initiative for model driven development that proposes three different abstraction
levels for system modeling: Computational Independent Model (CIM), Platform
Independent Model (PIM) and Platform Specific Model (PSM). These models are
mapped from one abstraction level to the other through the process of successive
transformations, during which new elements are included in the model, and the
abstraction level is decreased until reaching a level of platform dependency, meaning
a model that is coupled to the specific target platform where the application is to be
deployed.

MDA initiative naturally provides a way for vertical separation of concerns, since
each model encompasses only the elements related to a given abstraction level. For
instance, computational requirements are only included in the PSM model. However,
the separation of concerns according to the horizontal dimension is not addressed in
the MDA approach, that is, it lacks mechanisms for identifying and insulating
crosscutting concerns inside each particular model.

Regarding the horizontal dimension, Kiczales et al. [Kiczales, 97] presented the
Aspect Oriented Programming (AOP), which complements the Object Oriented
Programming by offering a set of techniques that allow the appropriate encapsulation
and insulation of crosscutting concerns in a new abstraction named aspect. Moreover,
they proposed mechanisms for aspect composition (weaving) and reuse of the aspect
code. The adoption of the aspect oriented approach promotes the horizontal separation
of concerns. However, techniques used in the context of AOP concentrate in the
system implementation phase. Therefore, such techniques are more suitable for

1315Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

development processes in which the effort falls in producing software artifacts at the
code level.

The horizontal separation of concerns at the modeling level is being tackled in the
area of Aspect Oriented Modeling (AOM) [AOM, 06]. Works in AOM focuses on
techniques for the identification, analyses, management and representation of
crosscutting concerns in the modeling phase, by using UML extensions [Aldawud,
03] [Baniassad and Clarke, 04][Chavez, 04] [Suzuki and Yamamotto, 99] [Stein, 02]
[Stein et. al, 02] [Tekinerdogan, 04]. However, the lack of suitable tools for modeling
and managing the relationship among business elements and a particular crosscutting
concern (weaving process) has been a hindrance in the wide-spread adoption of AOM
concepts in the MDA approach. Such gap is being addressed in works that combine
the concepts of the AOP area with MDA and propose the integration of crosscutting
concerns in models by using MDA transformations [Chaves, 04] [Graziadei, 05][
Reina and Torres, 05] [Simmonds et. al., 05] [Solberg et al., 05] [Wampler, 05].
Nevertheless, there are several open issues regarding the full combination of AOP and
MDA.

Relevant open issues in the area of AOSD concern aspect reuse and composition.
Several works report that the development based on aspects suffers from three
drawbacks: limited reuse [Gybels and Brichau, 03], hard to predict behavior
[McEachen and Alexander, 05], and difficult modular reasoning [Clifton and
Leavens, 03] [Aldrich, 05]. These issues hinder the full adoption of an Aspect
Oriented approach for software development.

The main motivation behind our work consists of finding a balance point between
both AOSD and MDA approaches, aiming to fully exploit their advantages, as well as
the synergy resulting from their integration. With this goal in mind, we propose a
framework, named CrossMDA, which encompasses a transformation process as well
as a set of services and associated support tools. Our approach aims at: (i) raising the
abstraction level of aspect modeling through the use of PIM models representing
crosscutting concerns independent on the business models; (ii) promoting the reuse of
crosscutting concerns modeled as PIM elements; (iii) automating the process of
mapping the relationship of crosscutting concerns and business models through the
process of MDA transformation; (iv) promoting the reuse of artifacts of MDA
transformations, and (v) promoting the reuse of PIM business models.

CrossMDA allows handling aspects at the modeling level and it provides
mechanisms that enable the separation of concerns both over the horizontal
dimension, among models of a same abstraction level, as well as the separation over
the vertical dimension, among models from different abstraction levels. The
separation of concerns over the horizontal dimension is achieved by adopting a
process that models aspects independently from business elements at the PIM level.
The PIM aspect model is an abstract representation of a particular crosscutting
concern, allowing the hiding of implementation details from the business developer,
thus raising the abstraction level of the modeling at the PIM level.

Regarding the vertical dimension, it is addressed by extending the MDA
transformation process with an interactive phase, carried out by the developer,
responsible for weaving the aspect and business models. The result of this model
weaving process is the generation of a MDA transformation program, which
corresponds to a formal specification of all the relationships among aspect and

1316 Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

business elements specified by the developer. The MDA transformation program is
generated using a transformation language based on MOF-QVT (Query, View,
Transformation) standard [OMG-QVT, 06].

This paper presents and describes CrossMDA, a framework to deal with the
horizontal and vertical separation of concerns. As a proof of concept and aiming at
showing the several steps comprising the use of CrossMDA, we also present a
complete case study. The target application used on the case study was Health
Watcher [Soares et al., 02], a typical Web-based information system, which has been
already adopted in several works [Soares et al., 06] [Kulesza et. al., 06].

The remainder of this paper is organized as follows. Section 2 describes the
CrossMDA framework, its operation and components. Section 3 presents a case
study. Section 4 presents related works. In Section 5, conclusions and future
directions of the work are depicted.

2 CrossMDA Framework

CrossMDA encompasses a process, a set of guidelines for modeling, and a set of
services supporting the process, which are described in the next subsections.

2.1 CrossMDA Process

Figure 1 depicts the CrossMDA process through a UML Activity Diagram. Such
process consists of several activities, organized in 4 phases: Phase 0 – Modeling,
Phase 1 – Source Model Selection, Phase 2 – Mapping, and Phase 3–Model Weaving.

The first phase of the CrossMDA process (Phase 0) encompasses two different
views of software artifacts modeling: (i) aspect modeling and (ii) business modeling.
The aspect model is an abstract representation, that is, a platform-independent
representation, in the MDA sense, of crosscutting concerns. Crosscutting concerns are
modeled as classes decorated with the stereotype <<aspect>> [Stein, 02] and
organized in packages. In CrossMDA, an aspect package is an entity that aggregates
related aspects, that is, aspects that deal with the same category of requirements. For
instance, a given package can contain several aspects related to authentication,
another one related to logging, and so on. Similarly to the aspect model, the business
model is also a platform-independent view, but of business process. However, the
CrossMDA process does not impose any constraint in business modeling. Therefore,
the business model can be composed of any valid UML element for modeling
business entities and their relationships. The aspect and the business models can be
developed independently by two different actors: the aspect architect and the business
architect, respectively. The models built in this phase are stored in a repository for
further use in the next phases.

The next phase (Phase 1) is carried out by a system architect in order to augment
a given business model with the necessary crosscutting concerns to address the
system requirements. This phase comprises two activities: (i) model selection and (ii)
model loading. Model Selection consists of selecting aspect and business PIM source
models that will be used in the transformation process. The Model Loading activity is
in charge of loading and making the selected models persistent in a metadata
repository.

1317Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

After the source model loading, the system architect starts the mapping phase
(Phase 2) which consists in specifying the relationships among aspects and elements
of the business model. This phase starts with the selection of crosscutting concerns
packages that are relevant for the application domain being modeled. Next, an
iterative process of defining the relationships among aspects and business elements
begins, in which the system architect selects the aspects that should be applied to a
(set) of business elements. When this iterative process ends, CrossMDA generates a
set of mappings that represents the pointcut and inter-type definitions generated
according to the relationships among aspects and business elements specified by the
system architect.

Phase 0 - Modeling

Phase 1 - Source model selection

Phase 2 - Mapping

Phase 3 - Model weaving

System architect

Business architectAspect architect

(1)
Aspects modeling

(case tool)

elements

elements

«datastore»
UML

metamodel«datastore»
Profile

CrossMDA

(1.1)
Generate XMI

aspect model

«datastore»
XMI aspect

(PIM)

(2)
Business modeling

(case tool)

elements

(2.1)
Generate XMI

business model

«datastore»
XMI business

(PIM)

(3)
Model

selection

(4)
Model loading

xmi files
artifacts

«datastore»
Repository

(5)
Crosscutting

concerns selection

aspect model

aspects

(6)
Aspect selection

aspect

(7)
Elements selection

business model

business
element

(8)
Relationships

mapping mapping

(8.1)
Save

«datastore»
Mapping

(9)
Intermediary model

generation

mapping

intermediary model

(10)
Script transformation

generation

templates

transformation
(script)

«datastore»
Templates

«datastore»
Transformation

(11)
Script

compilationscript byte-code

(12)
Script execution

business model
aspect model

elements
aspect model

«datastore»
XMI business

(PIM)

«datastore»
XMI aspect

(PIM)

«datastore»
XMI profile

«datastore»
XMI PSM model

(3.1)
Aspect model

XMI aspect (PIM)

(3.2)
Business

model XMI business (PIM)

[aspect selected]

[no]

[yes]

[another aspect]

Figure 1: CrossMDA Process

1318 Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

The next phase (Phase 3) is responsible for generating the PSM model, which
represents a refinement of the source business model added with aspect elements. The
phase is composed of four activities organized within two sub-processes: (i) model
weaving and (ii) model generation. The model weaving sub-process starts with the
generation of an intermediate model from the set of mappings produced as outcome of
Phase 2. This intermediate model is a representation that contains each aspect class
instance and its respective dependencies to the business model elements. Next, the
intermediate model is transformed into a formal specification through the generation
of a transformation program based on OMG MOF QVT specification [OMG-QVT,
06]. This transformation program is then compiled and executed in the model
generation sub-process generating as outcome the PSM model.

In the next sections we detail the guidelines that should be followed during Phase
0 of CrossMDA process.

2.2 Aspect Modeling in CrossMDA

This section details the guidelines for aspect modeling at PIM level in CrossMDA.
According to these guidelines, in order to build an aspect PIM the system architecture
should: (i) organize aspect in UML packages, (ii) follow the CrossMDA aspect
categorizations, and (iii) decorate aspect classes according to the CrossMDA profile
(Section 2.2.1). Since the organization in packages groups related crosscutting
concerns, it facilitates the choice of those aspects to be used in a given application,
constraining the amount of aspects presented to the architect during the model
weaving process. Regarding the adopted categorization for aspects, CrossMDA
supports the representation of abstract and non-abstract aspects. Abstract aspects are
meant to allow aspect reuse in different application domains.

br.ufrj.nce.security

ldap
AbstractLdapAspect

auth
Authorization
AbstractAuth

br.ufrj.nce.logging

log4j
AbstractTrace

middlog
Middlog

Figure 2: PIM aspect organized in crosscutting concerns packages

Figure 2 illustrates an aspect model following the described guidelines. In this
example, the package named br.ufrj.nce.security.auth contains authentication related
aspects. Figure 3 is a bird eye of a class that represents the AbstractAuth abstract
aspect inside of the auth package. An abstract aspect can have a pointcut defined as
abstract and it can either have or not an advice associated with this abstract pointcut.
Since abstract pointcuts have no knowledge of the join points that can be affected by
them, they are used in CrossMDA as a mechanism that allows aspect reuse in
different scenarios. In the example, the depicted abstract aspect has the pointcut
authOperations defined as abstract, which has an associated advice adv_auth. Since
the pointcut authOperations has no associated join points, it can be (re)used in
different applications. In CrossMDA the binding between an abstract pointcut is
defined by the system architect during the mapping phase (Section 2).

1319Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

<<aspect>>
AbstractAuth

{privileged=false,
instantiation=perVM}

<<advice>>+adv_auth(){type=before, pointcut=authOperations()}
<<pointcut>>+authOperations()

-authenticate()

Figure 3: Class representing an authentication abstract aspect of the PIM model
(adapted from Stein[Stein, 02] proposal)

The aspect PIM can be developed by the aspect architect from scratch or a
previously built model can be reused, assuming that it has been developed following
the presented guidelines. The next section describes the last CrossMDA guideline,
which refers to the UML profile to be used in aspect modeling.

2.2.1 CrossMDA Profile

This section describes the UML profile created for modeling aspects used in the PIM
model as well as aspects generated as output of the PSM transformation process. The
CrossMDA UML profile is based on [Stein, 02] and [Camargo and Masiero, 04]. In
spite of some works criticizing Stein's notation as being too close to AspectJ syntax
and therefore generating an aspect model not fully platform agnostic, we have
adopted an approach based on such notation for two reasons. First, currently there is
no standard notation for representing aspects at the PIM level. Second, AspectJ is a
widely used aspect language nowadays, containing all the most relevant aspect
constructs. Moreover, since our approach is based on MDA metamodeling,
CrossMDA is able to incorporate a different aspect model without affecting its
architecture. It is worthwhile mentioning that the current CrossMDA aspect
metamodel is expressive enough to represent all the main constructs encompassed in
the existent aspect languages.

Table 1 shows the stereotypes defined in the CrossMDA profile along with the
corresponding UML base classes and the respective tags.

Stereotype UML Base Class TagDefinition
aspect1 Class instantiation, privileged
pointcut1 Operation base
advice1 Operation type, pointcut
crosscut1 Dependency -
introduction2 Association attribute, method
parents_extends2 Operation pattern, type
parents_implements2 Operation pattern, type

Table 1: CrossMDA profile stereotypes definition

1 The stereotype semantics is based on Stein work [Stein, 02].
2 The stereotype semantics is based on Camargo and Masieiro work [Camargo and Masiero,
04].

1320 Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

The stereotype aspect is used to identify a class as an aspect. It requires the
presence of 2 tags: (i) instantiation and (ii) privileged. The tag instantiation specifies
how an aspect is to be instantiated in the aspect scope. Aspects may be instantiated on
a per object basis, a per control flow basis, or once for the global environment.
Having a distinct aspect instance for each object or for each control flow, the aspect
state may differ for each object or control flow, respectively. The possible values for
this tag are: per object (perTHIS or perTARGET); per control flow (perCFLOW or
perCFLOWBELOW); per virtual machine (perVM). The tag privileged defines if the
aspect can access members of its base class and its possible values are of type
Boolean.

The stereotype pointcut is used to identify aspect methods with pointcut
semantics and it requires the tag base, which defines the rules for executing advices,
i.e., the set of join points for which an aspect is to be instantiated. The possible values
are of type LinkSetExpression [Stein, 02]. The stereotype advice is used to identify
aspect methods with advice semantics. It requires 2 tags: (i) type, to identify the
advice type (after, before, after returning, after throwing, around); and (ii) pointcut, to
assign a method defined as pointcut to an advice. The stereotype crosscut defines
dependencies among aspects as well as among classes and aspects in the class
diagram. The stereotype introduction is used to inject attributes and/or methods in the
target entity. It requires 2 tags: (i) attribute, to identify the attributes to be injected;
and (ii) methods, to identify the methods to be injected.

Both stereotypes parents_extends and parents_implements are declarations that
cut across classes and their hierarchies. The stereotype parents_extends is used to
define an inheritance relationship between two classes or interfaces. It requires two
tags: (i) pattern, to identify the name of children classes or interfaces; and (ii) type, to
identify the name of the class or interface to be extended. The stereotype
parents_implements is used to define an implements operation of an interface. It also
requires two tags: (i) pattern, to identify the names of classes that implement an
interface; and (ii) type, to define the name of the interface that is to be implemented.

2.3 CrossMDA Services

This section describes CrossMDA services, which provide the foundation to perform
the activities encompassing the process offered by the framework. The provided
services are: (i) model persistence; (ii) element mapping; (iii) model weaving and;
(iv) model transformation.

2.3.1 Model Persistence Service

This service is responsible for implementing the basic operations to load and store
UML models as well as operations for browsing, fetching and creating new elements
in the current model. This service uses the NetBeans Metadata Repository [NetBeans-
MDR, 07] for managing model elements. Such choice was based mainly on the fact
that this repository is a popular and open implementation of the OMG MOF (Meta
Object Facility) pattern [OMG-MOF, 06]. This repository is handled by the Model
Persistence Service through one class that implements the IRepository interface
(Figure 4).

1321Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

Figure 4: Interface for a class for repository handling

2.3.2 Element Mapping Service

The Element Mapping Service supports two types of mapping, the pointcuts and the
inter-types mappings.

Pointcuts Mapping

This type of mapping provides mechanisms for managing the mapping of the
relationships among aspects and business elements. In CrossMDA, this type of
mapping follows the pointcut specification pattern of AOP approach and AspecJ
language [AspectJ, 06][Laddad, 03] (Figure 5). This approach was chosen based on
the wide use of such specification pattern by many aspect-oriented languages and
frameworks [JBossAOP, 06].

Figure 5: Pointcut definition

A pointcut specification is accomplished by using a primitive pointcut designator
and a join point signature. A primitive pointcut designator or PCD provides a
definition around join points, which designate pre-defined sets of join points from the
join point model. For instance, the PCD call pick out all join points that correspond to
a call to an existent method or constructor. The CrossMDA mapping process supports
several types of PCDs [Laddad, 03, 77pp]. PCDs can also be combined through logic
operators, which allow generating more complex pointcut specifications.

Aiming to facilitate mapping among business elements and their related
crosscutting concerns, CrossMDA provides the system architect with both a process
and a service to store the mapping elements. The process encompasses the following
steps: (i) selecting aspects; (ii) selecting a predefined pointcut, which can be either
abstract or non-abstract; (iii) selecting one or more elements from the business model
(classes, interfaces, methods, attributes, or packages); (iv) indicating the type of the
pointcut; and (v) indicating the type of the advice (after, before, after returning, after
throwing or around) [Laddad, 03, 81pp]. The steps of the process are quite repetitive
and steps (iii) and (iv) have a higher degree of complexity since they can be combined
in different ways by using logic operators.

public interface IRepository {
 public org.omg.uml.UmlPackage getUmlPackage();
 public Object getRepository();
 public void loadModel(String[] fileXmi, String
searchRef) throws Exception;
 …

[visibility] [abstract] key-word name([args]) : pointcut designator (join point)

1322 Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

select aspect from PIM model, ASPECT_SELECTED <- aspect
if ASPECT_SELECTED is abstract then
 ASPECT_SELECTED.name<- Question(“Aspect name for implementation:”)
Endif
RULES.initialize()
select pointcut (PC) from ASPECT_SELECTED
 PC <- selected pointcut
 Repeat
 if Question(“Would like to include precedence operator?”) = YES then
 select Precedence operator (OPD), OPD <- (“(“ || “)”)
 if OPD = “)” then
 if (hasBracketOpen() = YES) and
 (RULES.prior = PCD or RULES.prior = “)”) then
 RULES.add(OPD)
 else Message(“Inválid Operator”) endif
 else RULES.add(OPD) endif
 endif
 if (RULES.prior = PCD or RULES. Prior = “)”) then
 Add Logical Operator (LO), LO <- (OU || E)
 RULES.add(LO)
 Endif
 select joinpoint (JP) from Business PIM model
 JP <- (package || interface || class || method || attribute)
 if (JP = class) or (JP = interface) then
 if Question(“Would like to specialize?”) = YES then
 SPECIALIZE <- YES else SPECIALIZE <- NOT endif
 Endif
 select pointcut designator (PCD)
 PCD <- (execution || call || initialization || get || set || this || within ||
 withincode || target || args || cflow || handler)
 if Question(“Would like a negation operator "(!)" for the PCD?”) = YES
 then PCD.operatorNot <- “!” else PCD.operatorNot <- “” endif
 M<-Create_Mapping (ASPECT_SELECTED, PC, PCD, JP, SPECIALIZE)
 RULES.add(M)
 if Question(“Would like to continue?”) = YES then
 V <- To verify precedence operators
 if V = OK then break else Message(“Has brackets open”) endif
 endif
 end repeat

Figure 6: Pseudocode of the pointcut mapping process.

The pseudo code in Figure 6 details the execution steps of the mapping process.
Initially, the system architect selects an aspect from the PIM model and, whenever an
abstract aspect is selected, the architect should provide a name to be used in the
implementation of the concrete aspect. Next, the pointcut mapping begins, which

1323Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

follows a rule composed of pointcut designators (PCD) that can be combined by using
logical operator and brackets. The PCD is associated with a joinpoint selected by the
architect from the business model. After the selection of all element of the rule (pcd,
joinpoint, operator logical and/or brackets), the final mapping rule is generated.

The outcome of the mapping process is a set of mapping rules, which are made
persistent by the mapping service, following a simplified aspect metamodel (Figure
7), which represents a pointcut specification tailored to be managed by a MDA
transformation.

PointcutDesignator

PackageAspects

Aspect

IntroductionAdvice

Pointcut

Joinpoint

Parents
1

1..*

1

0..*

1 0..*

1

1..*

1..* 1..*

1
1..*

Figure 7: Simplified Aspect Metamodel

Inter-Type Mapping

Intertype declarations provide a way to express crosscutting concerns affecting the
structure of modules in a program. They are declarations related to a program
structure, allowing declaring in one place members or parents of another class,
typically to combine all the code related to a concern in one single aspect. For
instance, one aspect may be used to add new attributes and/or methods to a given
class. Another type of declaration allows that a class/interface extends a new super-
class/interface or implements a new interface.

Possible types of intertype declarations are: (i) inclusion of members (methods,
constructors, attributes) for types, including other aspects; (ii) inclusion of concrete
implementation for interfaces; (iii) declaration of new extensions or implementations
for types; (iv) declaration of aspect precedence order; (v) declaration of customized
errors or warnings messages; and (vi) conversion of checked exceptions to unchecked
exceptions [Winck and Junior, 06, 109-110pp] [Gradecki and Lesiecki, 03, 187pp].
Intertype declarations are declared as static crosscutting concerns since they affect the
program structure as a whole.

The CrossMDA process provides three different ways for the system architect to
accomplish intertype mappings: (i) inclusion of members for particular types; (ii)
inclusion of concrete implementations for interfaces; (iii) declaration of new
extensions for types. Aiming to facilitate such mappings, CrossMDA provides the
architect with a process and a service to store mappings elements. The pseudo code in
Figure 8 describes the provided process.

1324 Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

select aspect from PIM model, ASPECT_SELECTED <- aspect
if ASPECT_SELECTED is abstract then
 ASPECT_SELECTED.name <- Question(“Aspect name for implementation:”)
endif
RULES.initialize()
select inter-type (IT), IT <- (introduction || declare parents)

if IT = introduction then
 STEREOTYPE <- <<introduction>>
 select member from aspect class, MEMBER<-(attribute || method || constructor)
 select target class, TARGET <- selected class
M<-Create_Introduction_Mapping(ASPECT_SELECTED,STEREOTYPE,MEMBER,TARGET)
 RULES.add(M)
endif
if IT = declare parents then
 select predefined declare_parents method from ASPECT_SELECTED
 METHOD_PARENTS <- declare_parents selected
 if METHOD_PARENTS = NULL then
 select implementation type (TIMPL), TIMPL <- (implements || extends)
 if TIMPL = implements then
 STEREOTYPE <- <<parents_implements>>
 select interface(business || aspects) base of implementation
 TYPE <- selected interface
 select classes from business model that will implement TYPE
 PATTERN <- selected elements
 else STEREOTYPE <- <<parents_extends>>
 select element (class || interface) base of extension
 TYPE <- selected element
 select elements from business model that will extend TYPE
 PATTERN <- selected elements
 endif
 else
 select elements from METHOD_PARENTS
 STEREOTYPE <- METHOD_PARENTS.stereotype
 TYPE <- METHOD_PARENTS.taggedValues(“type”)
 if STEREOTYPE = <<parents_implements>> then
 select classes from business model, PATTERN <- selected elements
 else select elements(classes||interface) from business model that will extend
 TYPE
 PATTERN <- selected elements
 endif
 endif
 M<-Create_Parents_Mapping(ASPECT_SELECTED,METHOD_PARENTS,STEREOTYPE,
TYPE,PATTERN)
 RULES.add(M)
endif

Figure 8: Pseudocode of the inter-type mapping process.

1325Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

The pseudo code in Figure 8 details the execution steps of the inter-type mapping
process. Initially, the system architect selects an aspect from the PIM model and,
whenever an abstract aspect is selected, the architect should provide a name to be
used in the implementation of the concrete aspect. Next, the architect selects the
desired inter-type mapping (introduction and/or declare parents). The introduction
mapping is generated based on the selection of a target class and of a member
(attribute, method or constructor) from the aspect class. The declare parents mapping
has the following steps. First, the algorithm checks if a predefined declare parents
method exists in the selected aspect; if this is true the architect selects the elements
from the business model for mapping. Otherwise, the architect selects an
implementation of inter-type and the elements for mapping.

The outcome of the inter-type process is stored according to the mapping model
presented in Figure 7. In this model, classes Introduction and Parents are used to
store each instance of an inter-type mapping.

2.3.3 Model Weaving Service

The model weaving (composition) mechanism consists of generating the instances of
the selected aspects and their associations with the respective business elements, thus
integrating both the aspect and the business models. The CrossMDA weaving service
is provided by a class, named weaver, which is in charge of generating the
transformation program. The transformation program is a formal specification that
implements a model weaving of business elements and their related aspects according
to the outcomes of the element mapping service (Section 2.3.2).

The model weaving starts when the weaver receives a set of mapping instances
and generates the intermediary model, which is an internal representation, used only
inside the CrossMDA framework. Relying on this intermediary model, the generation
of the transformation program is initiated. The transformation program is generated
through the use of code template files (Figure 9), which are joined together, meaning
that several templates are integrated in a single template. In the resulting template file,
tags are replaced by information on aspects originating from the mapping set, in order
to generate the final code of the transformation program. For instance, during the
program generation, the tag <ASPECT_NAME> is replaced by the name of an
aspect. Templates are coded in the ATLAS Transformation Language (ATL) [Jouault
and Kurtev, 05], a transformation language proposed by ATLAS group (INRIA &
LINA, Nantes University) that is aligned to the OMG MOF QVT specification
[OMG-QVT, 06].

The reuse of transformation artifacts is an important feature implemented in
CrossMDA. The underpinning of such reuse is the use of template files, which allows
that a same template is used to generate different transformation programs according
to the application requirements.

The transformation program generated by the Weaver has as its target metamodel
a PSM aspect model based on the aspect model proposed in [Stein, 02], in which
UML classes marked with the aspect stereotype represent aspects. Pointcuts are
represented by methods of an aspect class marked with the pointcut stereotype while
advices are represented by methods with the advice stereotype and tags (tagged
values) type and pointcut, identifying the type of the advice (after, before, after
returning, after throwing or around) and the pointcuts, respectively. Specifications of

1326 Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

pointcut, PCDs and the join point signatures are mapped as tags of methods marked as
pointcut in the PSM.

Figure 9: Example of ATL template code for class and method creation

2.3.4 Model transformation

The activity of model transformation starts when a transformation program, generated
by the weaver, is to be compiled and executed. CrossMDA provides a service (Figure
10) to compile and execute the transformation program, generating the PSM model
that combines the source business PIM with the aspects specified by the system
architect.

lazy rule newClass {
from className : String, namespace : String
to t : UML!Class (
 name <-className,
 namespace <- thisModule.getPackage(namespace),
 stereotype <- thisModule.getStereotype('aspect')),
 ...}
lazy rule newOperation {
from c:UML!Class, s:UML!Operation,
stereotypeName:String
to t : UML!Operation (
 owner <- c, visibility <- #vk_public, name <- s.name,
 stereotype<-thisModule.getStereotype(stereotypeName),
 ... }...
thisModule.umlClass<-
if thisModule.classExists('<ASPECT_NAME_IMPL>','aspect')
then thisModule.getClass('<ASPECT_NAME_IMPL>','aspect')
else thisModule.newClass('<ASPECT_NAME_IMPL>',
 '<ASPECT_OWNER>') endif;
thisModule.umlOperation <-
 if thisModule.operationExists('<ASPECT_NAME_IMPL>',
 '<POINTCUT_NAME>','pointcut')
 then thisModule.getOperation('<ASPECT_NAME_IMPL>',
 '<POINTCUT_NAME>','pointcut')
 else thisModule.newOperation(thisModule.umlClass,
 thisModule.getOperation('<ASPECT_NAME>',
 '<POINTCUT_NAME>','pointcut'), 'pointcut')
 endif;
if thisModule.taggedValueExists(thisModule.umlOperation
 ,'base') then true
else thisModule.newTaggedValue(thisModule.umlOperation,
'base',thisModule.toString('',
 Sequence{<POINTCUT_VALUE>})) endif;

1327Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

Figure 10: Interface for services of compilation and execution of the transformation
motor

The Model Transformation service encapsulates an open source ATL
transformation engine (ATL engine) [ATL, 07]. The transformation engine is a
framework that includes a virtual machine (ATLvm) and a compiler. It also provides a
set of classes written in Java programming language that offers, among other services:
(i) parser, to perform syntax analysis of the transformation program; (ii) compiler, to
generate the byte-code; and (iii) loader, responsible for loading and executing the
transformation program. Since the Model Transformation service acts as a wrapper,
any other transformation engine can be used. However, in this case it is necessary to
rewrite the templates using the syntax of such engine (e.g. OMG Q.V.T).

3 Case Study

This section presents a case study of the application of CrossMDA process and
services to an information system. The case study was carried out using Health
Watcher (HW) [Soares e. al., 02], a typical Web-based application that manages
health-related complaints in order to improve the quality of services provided by
Health Institutions. HW was chosen since it is a testbed for the AOSD community.
Furthermore, its requirements are easy to understand, encompassing both crosscutting
as well as non-crosscutting concerns [Soares et al., 06][Kulesza et. al., 06].

The development process offered by CrossMDA allows the designer to build
his/her own aspect models and integrate aspects with elements of business models. In
this case study, we intend to demonstrate CrossMDA features by implementing the
persistence crosscutting concern in HW classes as an aspect. We have organized the
case study according to the phases of CrossMDA process (Section 2.1).

3.1 Phase 0 – Modeling

The tasks of building and maintaining the business and aspect models can be
performed using any existent UML modeling tool. The resultant models must be
exported as XMI files in order to be imported in CrossMDA framework. Currently,
CrossMDA supports only XMI 1.4 format. This constraint is due to the use of
NetBeans-MDR in the implementation of CrossMDA Model Persistence Service.

public interface IScriptCompiler {
 public void compile (String fileName);
}
public interface IScriptExecute {
 public int parseArgs(String[] args);
 public String[] setParameters(String script,
String in, String out, String libs);
 public void run(); }

1328 Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

3.1.1 The HW PIM

The model presented in Figure 11 is a partial implementation of the class model for
the HW case study that specifically addresses the use cases related to the register of
complaints. Such model will be used as one of the source models (business PIM) in
the first phase of the process.

ValidateComplaint
...

ValidateEmployee
...

SpecialComplaint
...

AnimalComplaint
...

HWServer
...

Complaint
...

FoodComplaint
...

IHWServer

Employee
...

Figure 11: Fragment of the HW class diagram

The class HWServer provides methods that perform operations for registering,
updating and querying complaints for a system user. The methods of this class are
used by the HW presentation layer to process the requests issued by users. Each
operation is validated by classes ValidateEmployee and ValidateComplaint that
communicate with classes Employee and Complaint. It is worthwhile noting that this
model is a business model free from any crosscutting behavior. Whenever using
CrossMDA with legacy models containing crosscutting concerns entangled with
business elements, a refactoring is needed in order to clean the business models from
these concerns.

3.1.2 The Aspect PIM

The crosscutting concerns that comprise the aspect PIM model are modeled as UML
abstract classes using the CrossMDA profile (see Section 2.2.1). These artifacts are
abstract representations of crosscutting concerns and they are independent from any
aspect-oriented platform or language. Moreover, since the information represented in
the aspect PIM is not tied to any business model, it can be reused in different
application scenarios. The building of the aspect model will be demonstrated through
the modeling of a persistence aspect, responsible for performing data persistence in
the database.

1329Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

The persistence aspect (Figure 12) is an abstract class with stereotype <<aspect>>
that represents the persistence crosscutting concern. It implements two abstract
pointcuts that will be configured in the implementation of the aspect, during its
weaving with the business model. The pointcuts are: (i) startMechanismPC() and; (ii)
persistElementsPC().

<<aspect>>
AbstractPersistence

{privileged=false,
instantiation=perVM}

<<advice>>+persistElements() : Object{type=around, pointcut=persistElementsPC()}
<<advice>>+startMechanism() : void{type=before, pointcut=startMechanismPC()}

<<parents_implements>>+declare_Parents_Persist(){type=IPersist}

+getPm() : IPersistenceMechanism

<<pointcut>>+persistElementsPC()
<<pointcut>>+startMechanismPC()

IPersistenceMechanism

IPersist

Figure 12: Abstract aspect for persistence.

The pointcut startMechanismPC() indicates the point in the application execution
where the aspect should initialize the persistence mechanism. The pointcut
persistElementsPC() is used to get a reference to the business elements that are to be
managed by the persistence mechanism. In order to implement this feature, the aspect
modifies the business classes to implement the interface IPersist. This modification is
indicated by the inter-type declaration defined by the abstract method
declare_Parents_Persist(). It is important to notice that abstract inter-type
declarations are not part of AOP semantics. However, we have added such construct
in order to increase the degree of reuse of aspect declarations at PIM level. Moreover,
this declaration is to be discarded during the PSM transformation process.

The aspect AbstractPersistence also includes the abstract method getPM(). The
getPM() is an utility method used to get a reference of the persistence mechanism.
This method provides flexibility once the aspect can implement different persistence
mechanisms.

In order to illustrate the next phases, we choose the HW use cases related to
complaint register. For such use cases, a data persistence mechanism is an important
requirement that crosscut several parts of the system. Thus, a persistence aspect can
be used to avoid the scattering and tangling of persistence related code in the HW
system and to ensure the transparency of the persistence layer in the event of
changing the adopted strategy for persistence.

3.2 Phase 1 – Source model selection

As described previously, the system architect is responsible for combining the
business and the aspect models generating the PSM model. To implement such
composition process (aspect + business), the system architect initially performs the
selection and load of both business and aspect models in the repository. In the case
study, the system architect should select the aspect PIM model containing the

1330 Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

persistence aspect definition as well as the HW model. Once these models are loaded,
the system architect starts Phase 2, which comprises the task of creating the
relationships among the elements of the aspect model and the business model.

3.3 Phase 2 - Mapping

The Phase 2 (Figure 1) is responsible for specifying the relationships among the
aspects and the elements of the business model. This phase enables the reuse of
artifacts of the aspect model since elements of the aspect PIM can be reused in
different mappings with different business models depending on the application
specific requirements.

The persistence aspect defined in Section 3.1.2 will be used to link the business
code to the persistence mechanism. Once the persistence aspect was selected from the
set of available aspects in the aspect model loaded during Phase 1, the point in the
application code where the aspect is to be activated must be identified. This
information will be used in the definition of the pointcut in the aspect. In the
description of HW requirements (Section 3.1.1) the class server (HWServer) is the
first to be accessed by the application control layer and it is responsible for the
creation of the class instances that validate the information (ValidateEmployee and
ValidateComplaint) and that interact with the business classes representing persistent
objects (Employee and Complaint). Therefore, the aspect should be activated when an
instance of class HWServer is created. The next sections present the activities of
pointcut and inter-type mappings for the HW system.

3.3.1 Pointcut mapping

When specifying the persistence aspect (Section 3.1.2), two abstract pointcuts were
specified: (i) startMechanismPC() and; (ii) persistElementsPC(). In order to map
these pointcuts the process provided by the Element Mapping service (Section 2.3.2)
should be used. Table 2 shows the information that should be provided by the system
architect when performing these mappings.

Pointcut (PC) PCD Joinpoint (JP) Logical
Operator

startMechanismPC() call HWServer constructor
call Specialized Complaint

constructor

 OR

persistElementsPC()

call Employee constructor
 AND
withincode all method of insertion of

ValidateComplaint

 OR
withincode all method of insertion of

ValidateEmployee

Table 2: Mapping of pointcut for AbstractPersistence

1331Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

The outcome of this mapping process can be visualized as follows:
• pointcut startMechanismPC(): call(HWServer.new(..))
• pointcut persistElementsPC():

(call(Complaint+.new(..)) || call(Employee.new(..))) &&
 (withincode(* ValidateComplaint.addAnimalComplaint(..)) ||
 withincode(* ValidateComplaint.addFoodComplaint(..)) ||
 withincode(* ValidateComplaint.addSpecialComplaint(..)) ||
 withincode(* ValidateEmployee.addEmployee(..)))

3.3.2 Inter-Type mapping

The persistence aspect in this case study uses the inter-type mapping to access the
instances of the persistence elements of the business model. In the aspect specification
(Section 3.1.2) the abstract method (declare_Parents_Persist) identifies an inter-type
mapping. This definition indicates that the concrete persistence aspect should set this
inter-type. To map this inter-type the process provided by the Element Mapping
service (section 2.3.2) should be used. Table 3 shows the information that should be
provided by the system architect when performing such mapping.

Type Method Stereotype TYPE PATTERN
Dp declare_Parents_Persist() parents_implements IPersist Complaint,

Employee
Legend: dp – declare parents

Table 3: Inter-Type mapping for AbstractPersistence

The outcome of this mapping process can be visualized as follows:
• declare_Parents_Persist : Complaint, Employee implements IPersist

3.3.3 Phase 3 – Model Weaving

The first step of Phase 3 (Figure 1) is the generation of the intermediary model based
on the set of mapping resulting from Phase 2, followed by the generation of the
transformation program. During the generation of the transformation program, the
weaver loads the templates and starts a parser in the template code searching for tags.
Each tag is then replaced by the appropriate value according to the outcome of Phase
2.

In our example, the first information retrieved from the intermediary model is the
persistence aspect. Therefore, the first artifact to be generated is responsible for
creating an instance of an aspect class. The generation of this artifact is done by
loading the code template depicted in Figure 13.

1332 Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

Figure 13: Template for generating an aspect class instance

Once this template is loaded the weaver starts parsing the tags and replacing each
tag by the corresponding values from the mapping. Table 4 presents the resulting
replacement according to our example.

TagName Description Value
<ASPECT_NAME> Aspect instance name AbstractPersistence
<ASPECT_NAME_IMPL> Aspect implementation

name
HWPersistence

<ASPECT_OWNER> Aspect namespace br.ufrj.nce.persistence

Table 4: Tags and their corresponding values for the aspect HWPersistence

Upon processing the template, the weaver generates a transformation artifact
(Figure 14) for creating the instance of the persistence aspect class to be added to the
main program.

Figure 14: Transformation code for generating an instance of aspect HWPersistence

Since the persistence aspect is abstract, the weaver must use other template
(Figure 15) to generate an instance of the generalization relationship.

Figure 15: Template for generating an instance of generalization

thisModule.umlClass<- if
 thisModule.classExists('<ASPECT_NAME_IMPL>','aspect')
then thisModule.getClass('<ASPECT_NAME_IMPL>','aspect')
else thisModule.newClass('<ASPECT_NAME_IMPL>',
 '<ASPECT_OWNER>') endif;

thisModule.umlClass<-
 if thisModule.classExists('HWPersistence','aspect')
 then thisModule.getClass('HWPersistence','aspect')
 else thisModule.newClass('HWPersistence',

 'br.ufrj.nce.persistence') endif;

if thisModule.generalizationExists(thisModule.getClass(
 '<ASPECT_NAME>','aspect'),
 thisModule.getClass('<ASPECT_NAME_IMPL>','aspect'))
then ''
else thisModule.newGeneralization(thisModule.getClass(
 '<ASPECT_NAME>','aspect'),
thisModule.getClass('<ASPECT_NAME_IMPL>','aspect'))
endif;

1333Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

Once the template is loaded, the weaver again performs the operations of parsing
and tags replacement. After processing the template, the weaver generates the artifacts
to create an instance of UML generalization element between the concrete aspect and
the abstract aspect (Figure 16).

Figure 16: Artifact for generating an instance of UML generalization

The next information retrieved from the intermediary model is the pointcut
mapping. To map each pointcut, the weaver loads the pointcut template (Figure 17)
and performs a new parser and tag replacement.

Figure 17: Template for generating pointcut instance

For the persistence aspect two pointcut were mapped: startMechanismPC and;
(ii) persistElementsPC. The pointcut startMechanismPC (Table 5) was chosen to
illustrate the steps for generating the transformation artifacts for pointcuts.

if thisModule.generalizationExists(thisModule.getClass(
 'AbstractPersistence','aspect'),
 thisModule.getClass('HWPersistence','aspect'))
then ''
else thisModule.newGeneralization(thisModule.getClass(
 'AbstractPersistence','aspect'),
 thisModule.getClass('HWPersistence','aspect'))
endif;

thisModule.umlOperation <-
 if thisModule.operationExists('<ASPECT_NAME_IMPL>',
 '<POINTCUT_NAME>','pointcut')
 then thisModule.getOperation('<ASPECT_NAME_IMPL>',
 '<POINTCUT_NAME>','pointcut')
 else thisModule.newOperation(thisModule.umlClass,
 thisModule.getOperation('<ASPECT_NAME>',
 '<POINTCUT_NAME>','pointcut'), 'pointcut')
 endif;

if thisModule.taggedValueExists(
 thisModule.umlOperation,'base')
then true
else
 thisModule.newTaggedValue(thisModule.umlOperation,
 'base',thisModule.toString('',
 Sequence{<POINTCUT_VALUE>}))
endif;

1334 Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

TagName Description Value
<ASPECT_NAME> Aspect instance name AbstractPersistence
<ASPECT_NAME_IMPL> Aspect implementation

name
HWPersistence

<POINTCUT_VALUE_ID> Pointcut identifier PointcutValueID_1
<POINTCUT_NAME> Pointcut instance name startMechanismPC
<ADVICE_TYPE> Advice type -
<POINTCUT_VALUE> Pointcut designator (PCD)

and joinpoint
call(HWServer.new
(..))

Table 5: Values selected for mapping the pointcut startMechanismPC

After processing the template shown in Figure 17, the weaver generates a
transformation artifact for creating an instance of a method marked as pointcut that
will be added in the main program. Figure 18 presents the resulting transformation
program.

Figure 18: Transformation artifact for generating pointcut startMechanismPC

The next information retrieved by the weaver from the intermediary model is the
inter-type mapping of declare_parents type. The weaver loads the template of inter-
type (Figure 19) and performs a new parse and tags replacement.

thisModule.umlOperation <-
 if thisModule.operationExists('HWPersistence',
 'startMechanismPC','pointcut')
 then thisModule.getOperation('HWPersistence',
 'startMechanismPC','pointcut')
 else thisModule.newOperation(thisModule.umlClass,
 thisModule.getOperation('AbstractPersistence',
 'startMechanismPC','pointcut'), 'pointcut')
 endif;
if
thisModule.taggedValueExists(thisModule.umlOperation,
 'base') then true
else thisModule.newTaggedValue(thisModule.umlOperation,
 'base',thisModule.toString('',
 Sequence{call(HWServer.new(..))}))
endif;

1335Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

Figure 19: Template for generating an instance of inter-type method

Table 7 presents the information used for tag replacement related to the inter-type
mapping.

TagName Description Value
<PARENT_VALUE_ID> Inter-type identifier declare_Parents_Persist
<ASPECT_NAME_IMPL> Implementation name HWPersistence
<PARENTS_STEREOTYPE> Inter-Type stereotype

for method definition
parents_implements

PARENT_TYPE Interface name that
will be implements.

IPersist

PARENT_PATTERN Class name to
implements the
interface

Complaint, Employee

Table 7: Values of inter-type for HWPersistence

After processing the template of Figure 19, the weaver generates the
transformation artifact for creating an instance for a method
(declare_Parents_Persist) that represents the inter-type operation that will be added
in the main program. Figure 20 presents resulting transformation artifact.

thisModule.umlOperationDeclare <-
 if thisModule.operationExists('<ASPECT_NAME_IMPL>',
 '<PARENT_VALUE_ID>','<PARENTS_STEREOTYPE>') then
 thisModule.getOperation('<ASPECT_NAME_IMPL>',
 '<PARENT_VALUE_ID>', '<PARENTS_STEREOTYPE>')
 else
thisModule.newOperationDeclare(thisModule.umlClass,
 '<PARENT_VALUE_ID>','<PARENTS_STEREOTYPE>')
 endif;
thisModule.declareType <- Sequence{<PARENT_TYPE>};
thisModule.declarePattern <- Sequence{<PARENT_PATTERN>};
if thisModule.taggedValueExists(
 thisModule.umlOperationDeclare, 'type')
then true
else thisModule.newTaggedValue(
 thisModule.umlOperationDeclare,'type',
 thisModule.declareType) endif;
if thisModule.taggedValueExists(
 thisModule.umlOperationDeclare, 'pattern') then true
else thisModule.newTaggedValue(
 thisModule.umlOperationDeclare,'pattern',
 thisModule.declarePattern)
endif;

1336 Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

Figure 20: Artifact for generating instance of inter-type method
declare_Parents_Persist

The next information to be processed is the dependency mapping. There are two
types of dependencies to be processed: crosscut and inter-type dependencies. The
same steps for generating the previous transformation artifacts are performed for
generating dependency artifacts. Figure 21 shows the used template.

Figure 21: Template for generating an instance of dependency relationship

thisModule.umlOperationDeclare <-
 if thisModule.operationExists('HWPersistence',
 'declare_Parents_Persist','parents_implements')
then thisModule.getOperation('HWPersistence',
 'declare_Parents_Persist','parents_implements')
else
thisModule.newOperationDeclare(thisModule.umlClass,
 'declare_Parents_Persist','parents_implements')
endif;
thisModule.declareType <- Sequence{'IPersist'};
thisModule.declarePattern<-Sequence{'Complaint','Employee'};
if thisModule.taggedValueExists(
 thisModule.umlOperationDeclare, 'type')
then true
else thisModule.newTaggedValue(
 thisModule.umlOperationDeclare,'type',
 thisModule.declareType) endif;
if thisModule.taggedValueExists(
 thisModule.umlOperationDeclare,'pattern') then true
else thisModule.newTaggedValue(
 thisModule.umlOperationDeclare,'pattern',
 thisModule.declarePattern) endif;

if thisModule.dependencyExists(thisModule.getClass(
 '<ASPECT_NAME_IMPL>','aspect'),thisModule.getClass(
 '<DEPENDENCY_NAME>','<DEPENDENCY_STEREOTYPE>'),'',
 'crosscut')
then ''
else thisModule.newDependency(thisModule.getClass(
 '<ASPECT_NAME_IMPL>','aspect'), thisModule.getClass(
 '<DEPENDENCY_NAME>','<DEPENDENCY_STEREOTYPE>'),'crosscut')
endif;

1337Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

In our example, the persistence aspect depends on the following elements: (i)
HWServer; (ii) Complaint; (iii) Employee; (iv) ValidateEmployee; and (v)
ValidateComplaint. For each element, the weaver performs the generation of a
dependency in the model. Figure 22 presents the transformation artifact for generating
the dependency between the class HWServer and the persistence aspect.

Figure 22: Artifact for generating an instance of dependency relationship

Upon generating the artifact of dependency the weaver tries to retrieve a new
information from the intermediary model and, according to the mapping realized in
Phase 2, there is no more mapping to be processed. Thus, the weaver starts the
process of merging the several transformation artifacts in a single transformation
program. After saving the final transformation program, it is compiled and executed
by the model transformation service. This is the final step of the CrossMDA process,
which generates the PSM shown in Figure 23.

<<aspect>>
HWPersistence

<<pointcut>>+persistElementsPC(){base=(call(Complaint+.new(..)) || call(Employee.new(..))) && (withincode(* ValidateComplaint.addAnimalComplaint(..))...)}
<<parents_implements>>+declare_Parents_Persist(){type=IPersist, pattern=Complaint, Employee}

<<pointcut>>+startMechanismPC(){base=call(HWServer.new(..))}

+getPm() : IPersistenceMechanism

<<aspect>>
AbstractPersistence
{privileged=false,
instantiation=perVM}

ValidateComplaint
...

ValidateEmployee
...

HWServer
...

Complaint
...

Employee
...

<<crosscut>> <<crosscut>> <<crosscut>>

<<crosscut>> <<crosscut>>

Figure 23: PSM model for persistence aspect

4 Related Work

There is ongoing research in the area of Aspect Oriented Software Development
(AOSD) aiming to integrate AOP concepts in the modeling of object oriented
systems. Such works use UML extension mechanisms to include new modeling
elements that represent AOP concepts. In [Aldawud, 03] the authors propose the
creation of an UML profile that provides developers a way for visually representing
AOP artifacts, thus creating an aspectual metamodel. Other similar approach, named

if thisModule.dependencyExists(thisModule.getClass(
'HWPersistence','aspect'),thisModule.getClass(
'HWServer',''),'','crosscut')
then ''
else thisModule.newDependency(thisModule.getClass(
'HWPersistence','aspect'), thisModule.getClass(
'HWServer',''),'crosscut') endif;

1338 Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

Aspect-Oriented Design Model (AODM), is presented [Stein, 02], in which UML
elements are extended to represent semantics of the AspectJ language elements
[AspectJ, 06]. Research on both AOSD and AODM areas have the advantage of using
only the UML extensibility mechanisms, thus being easily integrated to existent UML
modeling tools. CrossMDA relates to such approaches since it adopts UML profiles
for defining aspectual elements to compose the generated PSM models.

Chavez [Chavez, 04] proposes integrating AOP concepts in a unified framework,
thus creating an Aspect Theory. A language, aSideML, and a metamodel, aSide, were
built on such Aspect Theory. ASideML is a language for modeling aspect oriented
systems while aSide defines the semantics of both structural and behavioral models
represented in aSideML. The work in [Chavez, 04] represents a significant advance
since it defines a broad model that formalizes the semantics of elements related to the
aspect oriented modeling by using UML. As aSideML is based on a specific
metamodel, the built of specialized tools to support this new metamodel is needed.
Once such tools become available, CrossMDA could include transformers to generate
models that comply with aSideML. Therefore, our approach is complementary to the
work in [Chavez, 04].

A crucial property addressed in AODM is obliviousness [Filman and Friedman,
05], which states that base code should not to be explicitly prepared in order to be
affected by aspects. However, assuring such property rises problems regarding
software evolvability. Since pointcut definitions strongly rely on the structure of the
base program, whenever the base program evolves a maintenance effort is needed to
update all pointcuts of each aspect related to the evolved base code. This problem has
been coined the fragile pointcut problem [Koppen and Stoerzer, 04][Kellens et al.,
06]. Sullivan [Sullivan et al., 05] proposes constraining the obliviousness property in
order to improve software maintainability and evolvability in AOSD by applying an
approach based on design rules [Balswin and Clark, 00]. The idea in this work is to
decouple base and aspect design by defining interfaces between them thus
constraining their subsequent development. According to the authors [Sullivan et al.,
05]: “Design rules dictates how base code creates join points and how aspects use
them to ensure that specific join points are exposed in a way that enables the
integration of separately implemented aspect modules”. Since the process proposed in
CrossMDA does not enforce any specific rule for business modeling (it only requires
this model to be free of crosscutting concerns), the degree of obliviousness to be
achieved is a system architect decision. Therefore, approaches such as the one
proposed by [Sullivan et al., 05] can be integrated in the CrossMDA process to model
business objects without any further modification.

In the MDA research area works concentrate on building transformation models
to facilitate the integration of aspects with business models (known as primary
models). In [Chaves, 04] the authors present a set of aspect oriented UML extensions
named Libra which enables the specification of both structural and behavioral
models. The original class model is enhanced with the capability of representing
aspects along with their respective relationship to the primary model. In order to
define behavior, an action language is provided which is based on both XML and
UML action semantics, and includes reflexive capabilities. Libra uses the MDA
transformation approach for combining the aspect model with the primary model
elements. In spite of fact that this work indicates the feasibility of combining AOP

1339Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

and MDA approaches to augment the task of aspect integration, it neither proposes a
systematic and formal way of realizing such weaving nor addresses important issues
as the specification and management of composition models. Both of these issues are
addressed in CrossMDA and the formalization of the weaving process is
accomplished by a transformation program written in ATL [ATL, 07].

The work in [Reina and Torres, 05][Simmonds et al., 05] uses QVT language
[OMG-QVT, 06] to accomplish model transformations. In [Reina and Torres, 05] the
authors use MDA transformations to weave AspectJ aspects and basic elements in the
PSM level before code generation. CrossMDA adopts a similar approach but works
with models at a higher level of abstraction (PIM level), providing a more powerful
solution in terms of aspect reuse and alignment to the MDA approach. In [Simmonds
et al., 05] a framework is presented that performs transformations of aspect oriented
models from PIM to PSM models. Such framework takes as input a primary model
and a set of generic aspect models which are specified as UML interaction diagrams.
The composition of the new model as well as the bindings between primary and
aspect models are realized through QVT transformations based on metamodels. Such
QVT transformations are specified by the system designer. CrossMDA approach
follows the same pattern of separating the input models (primary or business related
model and aspect model). However, this work neither provides a full process for
aspect modeling and integration nor tools to support such process. Moreover, since in
CrossMDA individual aspects are modeled as UML classes [Stein, 02] its process is
aligning with existent transformation tools that adopt a model-text approach and, as a
consequence, the process can seamlessly proceed until the code generation.

5 Conclusion

In this paper, we presented CrossMDA, a framework that leverages the management
of crosscutting concerns in system development through a model centric approach. A
key idea of our approach is the employment of model-based transformations to
perform the weaving among aspects and their related business elements. Performing
the weaving process through model-based transformations allows the development of
completely independent business and aspect models. Three important advantages
arose from this approach. First, since crosscutting concerns are considered as first-
class elements represented at a high level of abstraction (PIM level), they can be
easily reused across different application scenarios. Second, since business PIM
models are completely free of computational requirements details (actually, they do
not even need to be decorated with stereotypes indicating the need of such
requirements), the development of these models is simplified. Moreover, a same
business model can be reused in different scenarios by simply applying to it a
transformation containing the aspects and related mappings according to the
requirements of the target scenario. Third, by providing a structured way of
representing and storing the mapping between aspect and business elements,
CrossMDA facilitates the system maintenance thus being a step forward towards a
solution to allow the evolution of both models without mutual interference.

CrossMDA further improves the reuse by using code templates based on ATL.
This approach, besides improving the degree of transformation reuse, facilitates the
evolution of existent transformations as well as allows the generation of

1340 Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

transformation programs for different language syntaxes, like QVT or MWDL
[Milewski and Roberts, 05]. Since CrossMDA generates PSMs according to current
MDA standards (XMI), such models can be integrated in any modeling or MDA tool
for further processing, such as model-to-text transformation for source code
generation.

In order to validate the ideas behind CrossMDA, we have developed a Java
prototype that includes the tools for automating all the activities encompassed by the
CrossMDA process. This prototype is public available in [CrossMDA, 07].

As future work we intend to investigate how CrossMDA mechanisms handle
system evolution. In order to tackle this issue we are researching in two directions.
First, we are investigating how to integrate the design rules approach [Sullivan et al.,
05] with the CrossMDA process. Second, we are analyzing how CrossMDA mapping
process can contribute to solve problems that rise from the independence between
models, such as the pointcut fragility [Kellens et al., 06].

References

[Aldawud, 03] Aldawud, O., Elrad, T. and Bader, A. UML Profile for Aspect-Oriented
Software Development. In: Third Workshop on Aspect-Oriented Modeling with UML,
AOSD'03. Boston, Massachussets, March, 2003.

[Aldrich, 05] Aldrich, J. Open Modules: Modular Reasoning about Advice. In: Proceedings of
the 19th European Conference on Object-Oriented Programming (ECOOP), Glasgow, UK,
2005, pp. 144-168.

[AOM, 06] AOM. Aspect-Oriented Modeling Workshop. Available at: http://www.aspect-
modeling.org. Last access: March, 2006.

[AOSD, 07] AOSD. Aspect-Oriented Software Development. Available at: http://aosd.net. Last
access: January, 2007.

[AspectJ, 06] AspectJ, a Java implementation of AOP. Available at:
http://www.eclipse.org/aspectj. Last access: April, 2006.

[ATL, 07] ATL Home Page. Available at: http://www.eclipse.org/m2m/atl/. Last access:
January, 2007.

[Balswin and Clark, 00] Baldwin, C. Y. and Clark, K. B. Design Rules: The Power of
Modularity. MIT Press, Cambridge, MA, 2000.

[Baniassad and Clarke, 04] Baniassad, E. and Clarke, S. Theme: An Approach for Aspect-
Oriented Analysis and Design. In: Proceedings of the 26th International Conference on
Software Engineering (ICSE), Edinburgh, Scotland, May, 2004, pp. 158-167.

[Camargo and Masiero, 04] Camargo, V.V., Masiero, P.C. UML-AOD - Um Perfil UML para o
Projeto de Sistemas Orientados a Aspectos. Technical Report of ICMC-USP, 21 pp, 2004.

[Chaves, 04] Chaves, R. Aspectos e MDA Criando modelos executáveis baseados em aspectos.
2004. 79p. Master thesis, Federal University of Santa Catarina, Florianópolis, Santa Catarina,
Brazil.

[Chavez, 04] Chavez, C. F. G. A Model-Driven Approach for Aspect-Oriented Design. Rio de
Janeiro, 2004. 304p. Phd Thesis. Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro (PUC-RIO), Rio de Janeiro, Brazil.

1341Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

[Clifton and Leavens, 03] Clifton, C. and Leavens, G.T. Obliviousness, Modular Reasoning,
and the Behavioral Subtyping Analogy. In: Software-engineering Properties of Languages for
Aspect Technologies (SPLAT), a workshop to be held in conjunction with the 2nd international
Conference on Aspect-Oriented Software Development (AOSD'03), Boston, Massachusetts,
USA, March, 2003.

[CrossMDA, 07] CrossMDA Home Page. http://labdist.dimap.ufrn.br/projetos/crossmda.

[Filman and Friedman, 05] Filman, R. E. and Friedman, D. P. Aspect-oriented programming is
quantification and obliviousness. In: Aspect-Oriented Software Development, Addison-Wesley,
2005, pp. 21-35.

[Gybels and Brichau, 03] Gybels, K. and Brichau, J. Arranging Language Features for More
Robust Pattern-based crosscuts. In: Proceedings of the 2nd international conference on Aspect-
oriented software development (AOSD’03), Boston, Massachusetts, March, 2003, pp. 60-69.

[Gradecki and Lesiecki, 03] Gradecki, D. J. and Lesiecki, N. Mastering AspectJ: Aspect-
Oriented Programming in Java. Wiley Publishing Inc. ISBN: 978-0-471-43104-6, Paperback,
456 pp, March, 2003.

[Graziadei, 05] Graziadei, T. R. Aspect-Oriented Model Weaver, 2005. 127p. Master thesis,
Fachhochschule Vorarlberg, Dornbirn, Austria.

[Kellens et al., 06] Kellens, A., Mens, K., Brichau, J. and Gybels, K. Managing the Evolution
of Aspect-Oriented Software with Model-based Pointcuts. In: Proceedings of the 20th European
Conference on Object-Oriented Programming (ECOOP'06), Nantes, France, July, 2006.

[Kiczales, 97] Kiczales, G. et al. Aspect-Oriented Programming. In: Proceedings of the
European Conference on Object-Oriented Programming (ECOOP), Finland, 1997. Springer-
Verlarg LNCS 1241.

[Koppen and Stoerzer, 04] Koppen, C. and Stoerzer, M. Pcdiff: Attacking the fragile pointcut
problem. In: First European Interactive Workshop on Aspects in Software (EIWAS), 2004.

[Kulesza et. al., 06] Kulesza, U., Sant’Anna, C., Garcia, A., Coelho, R., Staa, A., Lucena, C.:
Quantifying the Effects of AOP: A Maitenance Study. In: Proceedings of 9th Intl. Conference
on Software Maintenance (ICSM’06), Philadelphia, USA, September, 2006, pp. 223-233.

[JBossAOP, 06] JBossAOP. Framework for Organizing Cross Cutting Concerns. Available at:
http://labs.jboss.com/portal/jbossaop/index.html. Last access: May, 2006.

[Jouault and Kurtev, 05] Jouault, F. and Kurtev, I. Transforming Models with ATL. In:
Proceedings of the Model Transformations in Practice Workshop at MoDELS 2005. Montego
Bay, Jamaica, 2005, Springer-Verlarg LNCS, 3844, pp.128-138.

[Laddad, 03] Laddad, R.. AspectJ in Action, Pratical Aspect-Oriented Programming. Manning
Publications CO, 2003, ISBN 1930110936.

[McEachen and Alexander, 05] McEachen, M. and Alexander, R.T. Distributing Classes with
Woven Concerns–An Exploration of Potential Fault Scenarios. In: Proceedings of the 4th
international conference on Aspect-oriented software development (AOSD), Chicago, Illinois,
2005, pp.192-200.

[MDD, 03] IEEE Software. Special issue on Model-Driven Development. Vol. 20, number 5.
September/October 2003.

[NetBeans-MDR, 07] NetBeans-MDR. Metadata Repository (2007). Available at:
http://mdr.netbeans.org. Last access: January, 2007.

[OMG-MDA, 06] OMG MDA Guide version 1.0.1. Formal Doc.: 03-06-01. Available at:
http://www.omg.org/cgi-bin/apps/doc?omg/03-06-01.pdf. Last access: March, 2006.

1342 Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

[OMG-MOF, 06]. OMG Meta-Object Facility (MOF). Formal Doc.: 2002-04-03. Available at:
http://www.omg.org/technology/documents/formal/mof.htm. Last access: 11/04/2006.

[OMG-QVT, 06] OMG MOF QVT. Available at: http://www.omg.org/cgi-bin/doc?ptc/2005-
11-01. Last access: November/2006.

[Tekinerdogan, 04] Tekinerdogan, B., Moreira, A., Araújo, J. and Clements, P. Early Aspects:
Aspect-Oriented Requirements Engineering and Architecture Design. In: Workshop
Proceedings. University of Twente, TR-CTIT-04-44, October, 2004, 119 pp.

[Reina and Torres, 05] Reina, A.M. and Torres, J. Weaving AspectJ Aspects by means of
transformations. In: First Workshop on Models and Aspects - Handling Crosscutting Concerns
in MDSD at the 19th European Conference on Object-Oriented Programming (ECOOP 2005),
Glasgow, Scotland, 2005.

[Simmonds et. al., 05] Simmonds D., Solberg A., Reddy R., France R., Ghosh, S. An Aspect
Oriented Model Driven Framework. In: Ninth IEEE International Enterprise Computing
Conference (EDOC'05), Enschede, Netherlands, 19-23 September, 2005, pp. 119-130.

[Soares et al., 02] Soares, S.; Laureano, E. and Borba, P. Implementing distribution and
persistence aspects with AspectJ. In: 17th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications, OOPSLA’2002, Seattle, USA, 2002, pp.
174–190.

[Soares et al., 06] Soares, S.; Borba, P. and Laureano, E.: Distribution and Persistence as
Aspects. Software: Practice and Exprerience, 2006.

[Solberg et al., 05] Solberg, A.; Simmonds, D.; Reddy, R.; Ghosh, S. and France, R. Using
Aspect Oriented Techniques to Support Separation of Concerns in Model Driven Development.
In: 29th Annual International Computer Software and Applications Conference
(COMPSAC'05), Volume 1, 2005, pp. 121-126.

[Sullivan et al., 05] Sullivan, K., Griswold, W.G., Song, Y., Chai, Y., Shonle, M., Tewari, N.,
Rajan, H. On the criteria to be used in decomposing systems into aspects. In: Proceedings of
ACM SIGSOFT Symposium on the Foundations of Software Engineering joint with the
European Software Engineering Conference (ESEC/FSE 2005), ACM Press, 2005.

[Suzuki and Yamamotto, 99] Suzuki, J. and Yamamotto, Y. Extending UML with Aspects:
Aspect Support in the Design Phase. In: Proceedings of the 3rd Aspect-Oriented Programming
Workshop at the 13th European Conference on Object-Oriented Programming (ECOOP).
Lisbon, Portugal, June, 1999, pp. 299-300.

[Stein, 02] Stein, D. An Aspect-Oriented Design Model Based on AspectJ and UML. 2002.
186p. Master thesis, University of Essen, Germany.

[Stein et. al., 02] Stein, D.; Hanenberg, S.; Unland, R. Designing Aspect-Oriented Crosscutting
in UML. In: 1st International Workshop on Aspect-Oriented Modeling with UML, AOSD 2002,
Enschede, The Netherlands, April 22, 2002.

[Wampler, 05] Wampler, D. The Role of Aspect-Oriented Programming in OMG’s Model-
Driven Architecture, Aspect Programming, Inc. October, 2005,
http://aspectprogramming.com/papers/AOP%20and%20MDA.pdf.

[Winck and Junior, 06] Winck, D.V. e Junior, V.G. AspectJ: Programação Orientada a
Aspectos com Java. São Paulo, Novatec Editora, 2006. ISBN: 85-7522-087-X.

1343Alves M.P., Pires P.F., Delicato F.C., Campos M.L.M.: CrossMDA ...

