
Schema Mappings and Agents’ Actions in P2P Data

Integration System 1

Grażyna Brzykcy
(Poznań University of Technology, Poland

grazyna.brzykcy@put.poznan.pl)

Jerzy Bartoszek
(Poznań University of Technology, Poland

jerzy.bartoszek@put.poznan.pl)

Tadeusz Pankowski
(Poznań University of Technology,

Adam Mickiewicz University, Poznań, Poland
tadeusz.pankowski@put.poznan.pl)

Abstract: We propose specification of schema mappings and agents’ actions in XML
data integration task. We discuss the problem in a highly-dynamic environment con-
sisting of a community of peer-to-peer cooperating partners (agents). Peers decide how
to describe their local data, when to join and when to leave the system, how to com-
municate and share their information with partners. An agent responds to the query
by asking its partners (friends), which are able to partly answer the query. All the
answers are merged and final result is constructed. A peer propagates a query along
semantic paths existing in the system. Semantic paths are determined by schema map-
pings defined between partners. We propose a method for specifying schema mappings
and to translate them to XQuery expressions. Mappings are represented by means of
logical formulas. We also propose a declarative specification of semantic-driven com-
munication in the system. The specification is made in a peer-oriented extension of
Prolog.

Key Words: agent system, data integration, Prolog-like computations

Category: H.3.5, H.2,5, I.2.1

1 Introduction

Information integration plays the central role in building of large scale systems
of P2P databases and a new generation of internet applications, where data
comes from many different sources with different schemas [Bernstein et al. 2002,
Calvanese et al. 2004, Tatarinov et al. 2004, Shvaiko et al. 2006].

In this paper we address the following issues that are crucial for seman-
tic data integration in P2P environment: (1) Schema mappings between peer’s

1 The work was supported in part by the Polish Ministry of Science and Higher
Education under Grant N516 015 31/1553.

Journal of Universal Computer Science, vol. 14, no. 7 (2008), 1048-1060
submitted: 1/10/07, accepted: 21/1/08, appeared: 1/4/08 © J.UCS

schemas of local data repositories. Schema mappings are specifications describ-
ing how data structured under one schema (the source schema) is to be trans-
formed into data structured under another schema (the target schema). Schema
mappings can be used in data exchange and query reformulation tasks. In the
former, the data is to be restructured using the mappings between schemas
[Fagin et al. 2005, Areas et al. 2005, Pankowski 2006]. In the latter, a query for-
mulated under the target schema is to be translated (reformulated) into a query
under the source schema [Lenzerini 2002, Yu et al. 2004]. In both cases the se-
mantics of the data should be preserved that enables semantic interoperability
between peers [Bouquet et al. 2004]. (2) Semantic communication between peers
and between peers and the broker. Semantic communication is the problem of
carrying out the communication based on the agreed meaning of the task that
is to be performed by cooperating peers (partners). In this paper, such tasks are
queries that should be answered by a community of cooperating peers (agents).

The novel scientific contributions of this paper are as follows:

1. We propose a method for specifying schema mappings by means of tree-
pattern formulas and show that such mappings can be translated into XQuery
queries producing an instance of the target schema for a given instance of
the source schema. The method extends ideas described in [Areas et al. 2005,
Yu et al. 2004] and in our previous work [Pankowski et al. 2007].

2. We develop a consistent set of rules modeling semantic communication in
the system of semantic data integration in P2P environment. We propose
a declarative high-level notation to describe cooperation between agents
(peers and the broker) involved in the process of data integration. The no-
tation is based on a simple extension of Prolog, called LogicPeer proposed
in [Loke 2006].

From the practical point of view, the logical representation of mappings may
be used to check formal properties of them and to determine implied map-
pings (mappings compositions) that are not explicitly represented in the system
[Meilicke et al. 2006]. The model of semantic communication supports a rapid
prototyping of the system.

In Section 2 schema mappings are discussed. The agent-based architecture of
the P2P semantic data integration system is proposed in Section 3. In Section 4 a
declarative specification of semantic communication between agents is described.
Section 5 concludes the paper.

2 Schema mappings

In Fig. 1 there are sample XML schema trees, S1 and S2, as well as their in-
stances, where I1 is an instance of S1; I2 and I ′2 are two instances of S2. The

1049Brzykcy G., Bartoszek J., Pankowski T.: Schema Mappings ...

S2

A*

N P+

T Y?

U?

S2:S1

P*

T A+

N U?

S1:

S1

P

A

N U
a1 u1

A

N U
a2 u2

P

T
t2

A

N
a1

T
t1

I1 : S2

A

N PU

A

N U
a1 u1 a2 u2

P

T
t1

YT
t1

Y

P

T
t2

Y
⊥

I2:

⊥ ⊥ Y
⊥

S2

A

N PU
a1 u1

T
t1

Y
⊥

A

N PU
a1 u1

T
t2

Y
⊥

A

N PU
a2 u2

T
t1

I2’:

Figure 1: Sample XML schema trees and their instances

data represents the bibliographical data, where node labels are as follows: paper
(P) and title (T) of the paper; author (A), name (N) and the affiliation (U) of
the author; year (Y) of publication of the paper.

To establish correspondence between S1 and S2, we can specify the following
schema mapping (1) from S1 to S2:

M1,2 := /S1/P [T = xT ∧ A[N = xN ∧ U = xU]]
⇒ /S2/A[N = xN ∧ U = xU ∧ P [T = xT]]

(1)

In general, schema mappings are specified by means of expressions of the
form

∀x(π(x) ⇒ /top/σ(x)), (2)

where: (a) x is a tuple of text-valued source variables; (b) π and /top/σ are
tree-pattern formulas [Areas et al. 2005, Pankowski et al. 2007] conforming to
the following syntax (L is a set of labels, l ∈ L, top is the outermost label):

π ::= /σ; σ ::= P [E]; E ::= x | P = x | σ | E ∧ E; P ::= l | P/l

Transformation of a schema mapping expressed by the formula (2) into a
query in XQuery ([W3C 2002]) can be described by the following rules:

Tr(π ⇒ /top/σ) := <top>{τπ(π) return κσ(σ)}</top>

where:

1050 Brzykcy G., Bartoszek J., Pankowski T.: Schema Mappings ...

1. τπ(/P [E], var1) = for $var1 in /P ,
τE(var1, E),

2. τσ(var1, P [E], var2) = $var2 in $var1/P ,
τE(var2, E),

3. τE(var1, x) = x in $var1/text(),
4. τE(var1, P = x) = x in if (var1[P]) then var1/P/text() else ”null”,
5. τE(var1, σ) = τσ(var1, σ, var2),
6. τE(var1, E1 ∧ E2) = τE(var1, E1),

τE(var1, E2),
1. κσ(l[E]) = <l>κE(E)</l>

2. κσ(l/P [E]) = <l>κσ(P [E])</l>

3. κE(x) = {$x}
4. κE(l = x) = <l>{$x}</l>

5. κE(l/P = x) = <l>κE(P = x)</l>

6. κE(σ) = κσ(σ)
7. κE(E1 ∧ E2) = κE(E1)

κE(E2)
Using these rules to the mapping M1,2 we obtain the following query in

XQuery language:

<S2> {
for $v1 in doc("i1.xml")/S1/P,

$t in if ($v1[T]) then $v1/T/text() else "null",
$v2 in if ($v1[A]) then $v1/A else "null",
$n in if ($v2[N]) then $v2/N/text() else "null",
$u in if ($v2[U]) then $v2/U/text() else "null"

return
<A>

<N>{ $n }</N>
<U>{ $u }</U>
<P>
<T>{ $t }</T>

</P>
 }

</S2>

For the input XML document I1, the query produces the result document
I ′2 (see Fig. 1) - the canonical solution to I1 under the mapping M1,2. Unknown
values of Y ale replaced with null values denoted by ⊥. In order to specify
which of possible instances of the target schema should be produced, we can
apply automappings over the schema. The automapping is a key-pattern formula
and captures keys defined in the schema. Automappings and their applications
to management of schema mappings, we have investigated in [Pankowski 2006,
Pankowski et al. 2007].

Specification of schema mappings is a crucial problem in data integration
systems. They are usually defined manually or using quasi-automating methods
[Rahm et al. 2001]. Once introduced into the system, mappings can be used for

1051Brzykcy G., Bartoszek J., Pankowski T.: Schema Mappings ...

many purposes. The most important application is data exchange and query
reformulation in semantic data integration.

3 Overview of the peer-to-peer system for semantic data
integration

We discuss a system built of autonomous agents (peers) each of which can in-
dependently decide how to structure its local data. The system, SIX-P2P, for
semantic integration of XML data, is currently under development in Pozna
University of Technology. Possibly heterogeneous semantic models that are de-
veloped by different peers are reflected by means of a peers’ local schemas.

An agent in SIX-P2P system sees a set of another agents, its partners (peers),
and may ask queries only to these partners. However, a query may be propa-
gated to partners of each peer inducing a significant extension of the set of pos-
sible ”knowledge sources”. So, cooperative query evaluation is performed also by
agents indirectly connected to the enquirer.

We make the following assumptions about agents in SIX-P2P system:

1. Each peer is identified by a unique name and represents some user. We do not
impose any particular format for agent identifiers, but assume that system
has its own namespace and name mapping mechanism.

2. An agent does not know all the agents of the system. A group of its partners
(friends) is a subset of peers and their identifiers are known to the agent.

3. To join the system an agent has to introduce itself to a special agent - the
broker. Process of registration consists in checking agent reliability (certifi-
cation) and conveying to it a list of its partners.

4. To abandon the system an agent ought to let the broker know its action.
This information is then passed by the broker to the adequate set of agents.
Due to the system openness agents can join the system and abandon it, the
appropriate partner lists should then be modified accordingly.

5. Each agent has a local collection of data and a schema of this data.

6. To posses new information an agent can generate queries to its partners.
Conversely, asked by trustworthy peer an agent tries to answer the query,
also by means of asking its own friends.

7. In the system agents can communicate by sending messages among each
other and by using peer identifiers.

1052 Brzykcy G., Bartoszek J., Pankowski T.: Schema Mappings ...

QI LDSLDM

Query
reformulation

Merging
partial results

Distributed Query Manager (DQM)

Planning &
optimization

Domain
ontologies

Mappings

Metadata Manager (MDM)

Local
schemas

Partners
Reconciliation

rules

Semantic Integration Manager (SIM)

Integration
rules

P

Figure 2: Architecture of a peer in SIX-P2P

In figure 2 the general architecture of a peer (P) in the system is depicted.
Each peer has its own local data store (LDS) managed by a local management
system (LDM). There is a query interface (QI) for accepting queries and return-
ing answers during interactions with other peers. An important component of
data integration system, a distributed query manager (DQM) is responsible for
planning execution of a received query using P’s own LDS and propagating the
query to its partners. Partial results are merged and returned to the enquiring
user. The metadata necessary to understand the query and to plan its execution
are managed by metadata manager (MDM). Information about partners as well
as rules defining integration strategy and reconciliation actions are managed by
semantic integration manager (SIM).

There is a distinguished agent - broker in the SIX-P2P system (Fig 3). The
broker is responsible for registration and certifications of the peers (R&C). This
agent fulfils also some operations over all metadata existing in the system. The
global metadata manager (GMM) can reason over schema mappings inferring
compositions of mappings, inversions, or inconsistencies. It can map local on-
tologies and/or supports creation of the global ontology. For this aim global
repositories of schemas, mappings and ontologies may be maintained.

The scenario of semantic data exchange between peers in P2P environment
is shown in figure 4:

– Agent A wants to send query to B, so asks B for the schema SB of its source
data.

1053Brzykcy G., Bartoszek J., Pankowski T.: Schema Mappings ...

��������	
 �����

��������	������ �����	�������

���	��

�����	�
 �	
����	

�	�	
�����������	����������� �����

�	������

 ��!	�

Figure 3: Architecture of the broker in SIX-P2P

�� �� ��
��

�����	
��
�������������
�
�������
��

��

�
�������

���
	�	�	�� ���

�������
�
�����
���

��� � ����

�� ����
���

�����������

����������

����������
���

Figure 4: Sending and answering queries in P2P environments

– A creates (possibly with the help of the user) schema mapping MB,A to
establish correspondences between schema SB of an agent B and its own
schema SA. The user U can formulate a query q in terms of schema SA (the
target schema). Partial answer to q is obtained from local data stored in the
peer of A, and some answer is also expected from B, so the query must be
sent on to B.

– Because q is formulated in terms of SA, it must be reformulated to a query
q′ over SB. After reformulation, q′ is sent to B.

1054 Brzykcy G., Bartoszek J., Pankowski T.: Schema Mappings ...

– Similarly, agent B reformulates q′ into q′1, ..., q
′
n and propagates them to its

partners C1, ..., Cn, respectively.

– After receiving the answers from its partners, B merges them into data
structured under SB, and then answers query q′. The answer d′ = ans(q′) is
built on local data of an agent B and on replies of all its partners.

– In the last step d′ and partial answers of other partners extend data of an
agent A and the final reply d′′ = ans(q) is constructed.

4 Specification of data integration tasks

To specify the SIX-P2P system we apply the declarative programming paradigm
and logic programming language Prolog because it provides a high level of ab-
straction for knowledge representation and processing. Prolog is used not only as
a specification notation but is also aimed at development of expressive models.
Moreover, Prolog is a rapid prototyping language with metaprogramming tech-
niques, pattern matching and backtracking search. All the features are suitable
to tackle the querying of integrated data and reasoning with semantics, problems
that are the main objective of the Web and peer-to-peer systems.

In the paper we take advantage of a simple extension of Prolog, so called
LogicPeer, which is presented in [Loke 2006], which is aimed at declarative pro-
gramming of integrated peer-to-peer and Web based systems. In this compu-
tation model it is possible for an agent to direct a query (Prolog goal) to be
evaluated at a specific peer. We can use goals: PeerID * goal where PeerID is
an agent identifier. The special name self is reserved for a local peer.

We also employ the underlying protocol Gnutella as the mechanism for propa-
gating Prolog goals among peers. Together with special control tags the protocol
prevents loops between peers and supports optimization techniques of goal eval-
uation. It is worth to notice that a peer working as a propagator can convert a
query into another query. With relation to replies, they are directed back along
the same path as the query.

An agent’s local data are represented as a collection of Prolog facts and
rules. Some facts store details of architecture (e.g., partners, mappings) and
rules define evaluation of locally initiated goals or queries received from other
peers. So agents’ actions are specified by rules.

There are two types of agents in SIX-P2P system: peers (Fig. 2) and brokers
(Fig. 3). In terms of multi-agent systems an environment of each peer consists
of its partners (with their schemas and data), requesting peers and a broker,
whereas the broker sees all the peers (their identifiers). Each peer can perform
at least three actions directed to a broker, namely introduction of an agent
into the system (introduce/3), leaving the system by an agent (leave/2) and

1055Brzykcy G., Bartoszek J., Pankowski T.: Schema Mappings ...

letting a broker know that an agent has modified its schema (modify schema/1).
Introduction of the Agent to the Broker consists of registration, which is an
action executed by the Broker. In the specification a broker identifier prefixes
the goal register(Agent, Parts), and the action results in replying by the
Broker a list of Agent’s partners. The list is stored by the Agent as a part of its
metadata (see architecture in figure 2).

introduce(Agent, Broker, Parts) :-
Broker * register(Agent, Parts), % registration is done by the broker
assert(partners(Parts)). % list of partners is stored as a fact

The broker remembers in Prolog-like database all registered agents in the sys-
tem (fact agents/1)and all partners of these agents (broker’s facts partners/2).
It uses its own internal criteria to select partners of the new agent (action
choose/3).

register(Agent, Partners):-
agents(Agents),
append(Agents, [Agent], Agents1), % a new agent is added
retract(agents(Agents)), % the old set of agents is deleted
assert(agents(Agents1)), % the new set of agents is stored
choose(Agent, Agents, Partners), % partners are selected
assert(partners(Agent, Partners)). % partners of an agent are stored

An action of leaving the system by the Agent is very simple and contains
only a message to the Broker.

leave(Agent, Broker) :-
Broker * log_out(Agent). % log_out is done by the broker

If an agent wants to log out, the broker informs about it all agents which may
cooperate with this agent. Internal broker’s data (i.e. the list of all registered
agents, the list of agent’s partners) is also updated.

log_out(Agent):-
agents(Agents),
remove(Agent, Agents, Agents1), % the logged out agent is deleted
retract(agents(Agents)), % the old set of agents is deleted
assert(agents(Agents1)), % the new set of agents is stored
set_of(A, (partners(A, Partners), % agents which cooperate with
member(Agent, Partners)), Agents2), % the deleted agent are selected
l_inform_all(Agents2, Agent), % and informed
retract(partners(Agent, _)), % the logged out agent is deleted
p_remove(Agent). % from partners facts

The broker checks all lists of partners and sends messages logged out/1 to
all agents cooperating with the removed one.

l_inform_all([], _).
l_inform_all([A | As], Agent):-
A * logged_out(Agent), % a message is sent to the agent A
l_inform_all(As, Agent).

The logged out agent has to be also deleted from broker’s database. To per-
form this action all the partners facts are scanned and updated by the Broker.

1056 Brzykcy G., Bartoszek J., Pankowski T.: Schema Mappings ...

p_remove(Agent):-
partners(A, Partners),
member(Agent, Partners), % cooperators of an agent are selected
remove(Agent, Partners, Partners1),
retract(partners(A, Partners)), % partners facts of the logged out
assert(partners(A, Partners1)), % agent are updated
fail.

p_remove(_).

When the Agent determines to restructure its data it has to modify its local
schema (modify schema/3) locally and to inform via Broker other peers to
which the Agent is a partner. The local modification done by itself (modify/2)
completes when a new schema replaces the old one in a store (Local schemas in
Fig. 2) and new mappings (create maps/1) would be defined.

modify_schema(Agent, Broker, Snew) :-
modify(Snew), % agent modifies schema locally
Broker * modified_schema(Agent). % broker is informed about modification

modify(Snew) :-
retract(schema(self, Sold), % the old schema is removed
assert(schema(self, Snew), % the new schema is stored
create_maps(Maps). % new mappings are created

In the system there is an action initiated by a broker and executed as a con-
sequence of receiving an agent’s message about schema modification. The action
modified schema depends on updating of broker’s data and sending appropriate
messages to all the interested agents in the system.

modified_schema(Agent) :-
set_of(A, (partners(A, Parts), % agents which cooperate with
member(Agent, Parts)), Agents2), % the agent are selected
m_inform_all(Agents2, Agent), % and informed

The Broker informs about schema modification reported by the Agent pass-
ing modified schema message to cooperators of the Agent.

m_inform_all([], _).
m_inform_all([A | As], Agent):-
A * modified_schema (Agent), % a message is sent to the agent A
m_inform_all(As, Agent).

To completely describe interactions between broker and other peers in the
system we need to specify peers’ reactions on broker’s messages logged out and
modified schema. The action (logged out/1), performed by a peer, consists in
updating the list of partners,if one of the partners, the Agent, has just logged
out from the system.

logged_out(Agent):-
partners(Partners),
remove(Agent, Partners, Partners1), % the agent is removed
retract(partners(Partners)), % the partners facts are updated
assert(partners(Partners1)).

1057Brzykcy G., Bartoszek J., Pankowski T.: Schema Mappings ...

When a peer receives the message modified schema, in which broker informs
about schema modification reported by the Agent, then the old schema facts and
the old mappings are removed from the Agent’s metadata. At the same time the
Agent is asked about its new schema and a new mapping is created.

modified_schema(Partner):-
retract(schema(Partner, _)), % the old schema is removed
retract(mapping(Partner, _)), % the old mappings are removed
Partner * schema(self, Schemap), % partner is asked about schema
assert(schema(Partner, Schemap)), % the new schema is stored
schema(self, Schemaa),
map(Schemap, Schemaa, Mpa), % the new mapping is created
assert(mapping(Partner, Mpa)). % mapping is stored as a fact

Before asking any partner an agent has to prepare suitable mappings between
schemas. The Agent tries to build mappings for all the partners (create map/3).
Since it is not assured that such a mapping exists (is constructed) the special
value null is chosen to depict the situation. A mapping from the Partner is
denoted as Mpa.

create_maps(Maps) :-
partners(Partners), % agent’s partners
create_pmaps(Partners, Maps). % mappings from the partners

create_pmaps([], _). % all mappings are created
create_pmaps([P|Partners],[Mpa|Maps]):-
create_map(P, Mpa), % mapping from P is created
create_pmaps(Partners,Maps).

create_map(Partner, Mpa) :-
schema(self, Schemaa), % agent’s schema
Partner * schema(self, Schemap), % schema is taken from the partner
map(Schemap, Schemaa, Mpa), % the new mapping is created
assert(mapping(Partner, Mpa)). % mapping is stored as a fact

A process of passing queries and receiving answers (see Fig. 4) is specified as
an action (ask/2). It has the following steps: asking partners (ask partners/2),
merging their answers (merge/3) with the local data and answering the query
locally (query/2).

ask(Query, Answer) :-
ask_partners(Query, Answers), % partners are queried
merge(Answers), % answers are merging
query(Query, Answer). % query is answered locally

An action of asking the Agent’s partners is proceeded by selection (select/1)
of qualified partners - those for which mappings are constructed.

ask_partners(Query, Answers) :-
select(QPartners), % qualified partners are chosen
ask_qpartners(Query, QPartners, Answers).

% subset of qualified partners is queried
select(Qpartners) :-
set_of(Partner,(mapping(Partner, Mpa), Mpa ? null), QPartners).

% only not null mappings are considered
ask_qpartners(_, [], _). % all the partners are asked
ask_qpartners(Query, [P|Ps], [A|As]) :-
ask_qpartner(Query, P, A), % partner P is queried
ask_qpartners(Query, Ps, As).

1058 Brzykcy G., Bartoszek J., Pankowski T.: Schema Mappings ...

To use partner’s data in a process of query answering an agent has to rewrite
(rewrite/3) the original Query into more specialized query Qp, directed to the
suitable partner P.

ask_qpartner(Query, Partner, Answer) :-
mapping(Partner, Mpa),
rewrite(Query, Mpa, Qp), % query is rewritten due to the mapping
Partner * ask(Qp, Answer). % partner answers the query

5 Conclusions

We discuss some theoretical problems related to semantic data integration in
peer-to-peer systems. We focus ourselves on (1) logical specification of schema
mappings between local data repositories managed by a particular peer (agent)
and (2) declarative specification of semantic-driven communication in the data
integration processes, particularly between agents and between agents and the
broker. The considerations are based on the implementation of the SIX-P2P
system, currently under development in Poznań University of Technology, where
the discussed methods are under verification and evaluation.

References

[Areas et al. 2005] Arenas, M., Libkin, L.: XML Data Exchange: Consistency and
Query Answering, PODS Conference, 2005, 13–24.

[Bernstein et al. 2002] Bernstein, P. A., Giunchiglia, F., Kementsietsidis, A., Mylopou-
los, J., Serafini, L., Zaihrayeu, I.: Data Management for Peer-to-Peer Computing :
A Vision, WebDB , 2002, 89–94.

[Bouquet et al. 2004] Bouquet, P., Serafini, L., Zanobini, S.: Peer-to-peer semantic co-
ordination, Journal of Web Semantics, 2(1), 2004, 81–97.

[Calvanese et al. 2004] Calvanese, D., Giacomo, G. D., Lenzerini, M., Rosati, R.: Logi-
cal Foundations of Peer-To-Peer Data Integration, Proc. of the 23rd ACM SIGMOD
Symposium on Principles of Database Systems (PODS 2004), 2004, 241–251.

[Fagin et al. 2005] Fagin, R., Kolaitis, P. G., Popa, L.: Data exchange: getting to the
core, ACM Trans. Database Syst., 30(1), 2005, 174–210.

[Lenzerini 2002] Lenzerini, M.: Data Integration: A Theoretical Perspective, PODS ,
2002, 233–246.

[Loke 2006] Loke, S. W.: Declarative programming of integrated peer-to-peer and Web
based systems: the case of Prolog, J. of Systems and Software, 79(4), 2006, 523–536.

[Meilicke et al. 2006] Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Improving Auto-
matically Created Mappings Using Logical Reasoning, Proceedings of the 1st Inter-
national Workshop on Ontology Matching OM-2006 , CEUR Workshop Proceedings
Vol. 225, http://CEUR-WS.org/Vol-225.

[Pankowski 2006] Pankowski, T.: Management of executable schema mappings for
XML data exchange, Database Technologies for Handling XML Information on the
Web, EDBT 2006 Workshops, Lecture Notes in Computer Science 4254, Springer,
2006, 264–277.

[Pankowski et al. 2007] Pankowski, T., Cybulka, J., Meissner, A.: XML Schema Map-
pings in the Presence of Key Constraints and Value Dependencies, ICDT 2007
Workshop EROW’07 , CEUR Workshop Proceedings Vol. 229, CEUR-WS.org/Vol-
229, 2007, 1–15.

1059Brzykcy G., Bartoszek J., Pankowski T.: Schema Mappings ...

[Rahm et al. 2001] Rahm, E., Bernstein, P. A.: A survey of approaches to automatic
schema matching, The VLDB Journal , 10(4), 2001, 334–350.

[Shvaiko et al. 2006] Shvaiko, P., et al.: Dynamic Ontology Matching: A Sur-
vey, Techn. Report DIT-06-046, University of Trento, Available on:
http://eprints.biblio.unitn.it/ archive/00001040/, 2006.

[Tatarinov et al. 2004] Tatarinov, I., Halevy, A. Y.: Efficient Query Reformulation in
Peer-Data Management Systems, SIGMOD Conference, 2004, 539–550.

[W3C 2002] XQuery 1.0: An XML Query Language. W3C Working Draft: 2002.
www.w3.org/TR/ xquery

[Yu et al. 2004] Yu, C., Popa, L.: Constraint-Based XML Query Rewriting For Data
Integration, SIGMOD Conference, 2004, 371–382.

1060 Brzykcy G., Bartoszek J., Pankowski T.: Schema Mappings ...

