Journal of Universal Computer Science, vol. 14, no. 7 (2008), 1118-1135
submitted: 1/10/07, accepted: 21/1/08, appeared: 1/4/08 © J.UCS

Formalizing Agent-Based English Auctions Using Finite
State Process Algebra

Amelia Badica
(University of Craiova, Romania
ameliabd@yahoo.com)

Costin Badica
(University of Craiova, Romania
badica_ costin@software.ucv.ro)

Abstract: The vision of global agent-based e-commerce environments that enable dy-
namic trading between business partners requires the study and development of suitable
formal modeling frameworks. In particular, negotiation is a necessary and important
activity to allow engagement of business parties in non-trivial business relationships.
In this paper we propose a formal framework based on finite state process algebra for
modeling and analysis of interaction protocols in agent-based negotiations. The ap-
proach is demonstrated by applying the framework to model agent interactions in a
single-item English auction scenario.

Key Words: multi-agent system, formal specification, process algebra, English auc-
tion
Category: 1.2.11, K.4.4,1.24

1 Introduction

E-commerce is a key service of modern information society. Agent-based e-
commerce is a recent trend in e-commerce research. In this context, the abil-
ity of e-commerce software agents to discover remote markets and engage in
commercial transactions is of primary importance.

Negotiations (and auctions in particular) are complex activities frequently
encountered in modern e-commerce processes that are characterized by a tight
interaction of the business parties ([Laudon and Traver 2004]). Their analysis
and understanding, especially when negotiations are automatized using software
agents ([Lomuscio et al. 2002]), requires the study and development of suitable
formal modeling frameworks.

Moreover, sound development of intelligent software agent systems requires
the application of principled methodologies, as for example those proposed by
[Padgham and Winikoff 2004] and [Cervenka and Trencansky 2007]. It is our be-
lief that principled approaches should be based on formal representation lan-
guages and therefore formal methods will have to play a significant role in this
area.

Badica A., Badica C.: Formalizing Agent-Based English Auctions.... 1119

The development of formal frameworks for modeling agent interactions, in-
cluding those encountered in negotiations and auctions, generated a lot of inter-
est during the last years ([Bartolini et al. 2005], [van Eijk et al. 2003],
[Esterline and Rorie 2001], [Hillston and Kloul 2001], [Weiliang et al. 2002], and
[Rouff et al., 2006]). A similar interest has been manifested in formalizing busi-
ness process notations to describe socio-economic activities ([Badici et al. 2003],
[Dong and Sheng 2003|, [Feng et al. 2005], [Karamanolis et al. 2000], and
[Puhlmann 2006]).

Many of these approaches utilize process algebras as foundational formalisms.
Following the trend, this paper proposes a formal framework for modeling and
analysis of interaction protocols in agent-based negotiations using finite state
process algebra (FSP hereafter) ([Magee and Kramer 2006]). The approach is
applied to model an English auction — a non-trivial and well-known auction
mechanism, but it can be easily applied to other types of negotiations, like Dutch
auctions, iterative bargaining, a.o (see [Wurman et al. 2001] for more examples).
The benefits of our proposal are twofold: i) it allows formal verification of the
system against a set of qualitative properties (see subsection 5.2), and it can
be adapted to derive quantitative performance measures (like throughput, see
[Hillston and Kloul 2001]); ii) it allows the development of formal models that
can be used as a basis for the sound implementation of negotiation agents by
mapping local processes (see FSP models in section 4) to agent behaviors.

The paper is structured as follows. We start in section 2 with a brief review
of FSP and available modeling tool. In section 3 we introduce our negotiation
model and show how it can be instantiated for English auctions. Then in section 4
we present detailed FSP models of agents in the negotiation system: negotiation
host, buyer and seller. We follow in section 5 with an experimental evaluation
and verification of our model. The last part of the paper discusses concluding
remarks and future works.

2 Background on FSP

FSP is an algebraic specification technique of concurrent and cooperating com-
putational processes as finite state labeled transition systems (LTS hereafter).

Definition 1. (labeled transition system) Let S be the universal set of states, £
be the universal set of action labels and 7 be the internal unobservable action. A
finite LTS is a quadruple P = (S, A, A, q) s.t.: i) S C S is a finite set of states;
ii) A= aP U{r}, where aP C L denotes the alphabet of P;iii) AC Sx AxS
is the transition relation that maps a state and an action to another state; iv)
g € S is the initial state of P.

LTS models are suitable for specifying discrete-event systems. However, de-
scriptions, either visual or textual of LTS models as labeled directed graphs

1120 Badica A., Badica C.: Formalizing Agent-Based English Auctions....

are impractical for more than a few states. For this reason the FSP process
algebra has been proposed ([Magee and Kramer 2006]). FSP uses the following
constructs: prefix, choice, parallel composition, re-labeling and definition (see
[Magee and Kramer 2006] for more details).

i) Prefix. The process a — P performs the action a and then behaves like P.
The prefix operator specifies sequential execution of actions.

ii

~—

Choice. The process P | @ behaves either like P or like Q. If both are enabled
then the choice is non-deterministic.

iii) Parallel composition. The composite process P || @ specifies the interaction
between processes P and () on the common set of actions in their alphabets
aP and a@. This means that for actions outside set aP N a@, P and @
proceed independently, but for actions in aPNa@, P and ¢ must cooperate
and proceed together.

Re-labeling. Re-labeling functions applied to a process term change the names
of the action labels. The process P/L where L = {nli/ol1,...,nl;/ol}},
ol; € L, nl; C L, behaves like P excepting that any action ol; appears to an
external observer as any of the actions in the set nl;, for all 1 <14 < k.

iv

~—

v) Definition. A definition A = P4 associates the behavior of the process term
P4 with the name A. You can then use A in process terms to describe more
complex behaviors. Thus A is interpreted as the name of a re-usable process
component.

The syntax of FSP is introduced in two steps: i) definition of sequential
processes; ii) definition of composite processes. The key point is to not arbitrarily
mix choices and parallel compositions in order to preserve the finiteness of the
state space ([Magee and Kramer 2006]).

The set of process names is partitioned into the sets Pg of sequential process
names and P¢ of composite process names®. Let £ be the set of all action labels.

Definition 2. (sequential process) A sequential process term is defined accord-
ing to the following rules: a) END is a sequential process term denoting an
empty process that engages in no further actions; b) If SPN € Pg then SPN
is a sequential process term; c) If a; € £ and SP; are sequential process terms,
1 <i<k,then a; — SPilag — SPs|...|ay — SPyg is a sequential process term.

A sequence SPNy = SPy,...,SPN, = SP, s.t. SPN; € Pg and SP; are
sequential process terms, 1 < i < p, defines a sequential process with name
S PNi. Definitions of SPN;, 2 < i < p, are called local definitions.

3 Elements of Pc are distinguished from elements of Pgs by prefixing with || (see
appendix)

Badica A., Badica C.: Formalizing Agent-Based English Auctions.... 1121

Definition 3. (composite process) A composite process term is defined with the
following rules: a) If PN € Pc U Pg then PN is a composite process term; b)
If CP; are composite process terms, 1 < i < k, then CP, || CPy || ... || CPy
is a composite process term; c¢) If CP is a composite process term and L is a
re-labeling function then C'P/L is a composite process term.

If CPN € Pc and CP is a composite process term then CPN = C'P defines
a composite process with name CPN.

A FSP model consists of a finite set of sequential and/or composite process
definitions such that no process name occurring in the right-hand side of a com-
posite process definition was left undefined. FSP has an operational semantics
given via a LTS. The mapping of a FSP term to a LTS is described in detail in
[Magee and Kramer 2006] and it follows the intuitive meaning of FSP constructs
introduced in this section.

3 Agent Negotiation Model

We understand automated negotiations as a process by which a group of software
agents communicate with each other to reach a mutually acceptable agreement
on some matter ([Lomuscio et al. 2002]). In this paper we focus our attention on
auctions — a particular form of negotiation where resource allocations and prices
are determined by bids exchanged between participants according to a given set
of rules ([McAfee and McMillan 1987]).

In automated negotiations (including auctions) it is important to distinguish
between negotiation protocols (or mechanisms) and negotiation strategies. The
protocol comprises public “rules of encounter” between negotiation participants
by specifying the requirements that enable them to interact and negotiate. The
strategy defines the private behavior of participants aiming at achieving their
desired outcome ([Wooldridge 2002]).

Our negotiation model follows the generic software framework for automated
negotiation proposed by [Bartolini et al. 2005] and it is specialized for the par-
ticular case of English auctions following implementation details using JADE
[JADE] and JESS [JESS] that were reported in [Badica et al. 2006b],
[Badica 2007c]. So this work can also be seen as an attempt to formalize behavior
and interactions of negotiation agents, as defined by that implementation.

Authors of [Bartolini et al. 2005] sketched a software framework for imple-
menting agent negotiations that comprises: (1) negotiation infrastructure, (2)
generic negotiation protocol and (3) taxonomy of declarative rules. The negotia-
tion infrastructure defines roles of negotiation participants (eg. Buyer or Seller
in an auction) and of a negotiation host — a specialized arbitrator middle-agent
as described in [Badica 2007a]. According to the generic negotiation protocol

1122 Badica A., Badica C.: Formalizing Agent-Based English Auctions....

([Bartolini et al. 2005]), participants exchange proposals (or bids) via a com-
mon space (or market) that is governed by an authoritative entity — the nego-
tiation host (or market maker). Status information describing negotiation state
and intermediary information is automatically forwarded by the host to all enti-
tled participants according to the information revealing policy of that particular
negotiation ([Bartolini et al. 2005], [Badica 2007c]). Negotiation rules deal with
the semantic constraints of a particular negotiation mechanism (e.g. English
auctions). Rules are used for checking validity of proposals and sequences of
exchanged messages, updating of negotiation status and informing participants,
and controlling agreement formation and negotiation termination.

Formal modeling of an agent-based English auction requires a precise de-
scription of the generic negotiation protocol and of semantic constraints specific
to English auctions. In order to introduce the agent negotiation model, we follow
[Bartolini et al. 2005] by representing messages using FIPA ACL ([FIPA]).

The generic negotiation protocol controls how messages are exchanged by
the host and participants by facilitating the following negotiation activities: (1)
admission to negotiation, (2) proposal (or bid) submission, (3) informing partic-
ipants about the change of negotiation state, (4) agreement formation and (5)
negotiation termination.

Admission to negotiation. This activity starts when a new participant
requests admission by sending a PROPOSE message to the host. The host grants
(or not) participant admission responding with either an ACCEPT-PROPOSAL
or a REJECT-PROPOSAL message. In particular, the first admission request
(always submitted by a seller participant in an English auction) initiates the
negotiation.

Proposal submission. Participants may enter the phase of submitting bids
after they were admitted to the negotiation. The generic negotiation protocol
states that a participant will be notified by the host if his proposal was ei-
ther accepted (with an ACCEPT-PROPOSAL) or rejected (with an REJECT-
PROPOSAL).

Informing participants. The negotiation protocol requires that partici-
pants will always be notified (with INFORM messages) about any update of the
negotiation state that is visible to them according to the visibility rules.

Agreement formation can be triggered at any time during negotiation.
When agreement formation rules signal that an agreement was reached, the
protocol states that participants involved in the agreement will be notified by
the host with INFORM messages.

Negotiation termination can be triggered at any time during negotiation.
When negotiation termination rules signal that the negotiation process reached
its final state, the protocol states that all participants will be notified by the
host with INFORM messages.

Badica A., Badica C.: Formalizing Agent-Based English Auctions.... 1123

We now follow with a brief and concise description of English auctions. Tech-
nically, English auctions are single-item, first-price, open-cry, ascending auctions
([Laudon and Traver 2004],[Wooldridge 2002]). In an English auction there is a
single item sold by a single seller and many buyers bidding against one another
for buying the item until the auction terminates. Usually, there is a time limit
for ending the auction (either a total time limit or a certain inactivity period),
a seller reservation price that must be met by the winning bid for the item to be
sold and a minimum value of the bid increment. A new bid must be higher than
the currently highest bid plus the bid increment in order to be accepted. All the
bids are visible to all the auction participants, while seller reservation price is
private to the auction.

4 FSP Model of Agent Negotiation

4.1 Negotiation Structure

A negotiation structure defines a general framework that statically constraints
a given negotiation. It consists of a set of roles that contains a negotiation host
role and one or more negotiation participant roles.

The negotiation host role orchestrates the negotiation and coordinates nego-
tiators by employing the generic negotiation protocol.

A negotiation participant role describes the behavior of a negotiator that
plays an active role in the negotiation. Usually, two negotiation participant roles
are defined — buyer and seller. For example, in an English auction there is a
single seller participant and one or more buyer participants, while in an reverse
English auction there is a single participant with role buyer and one or more
participants with role seller.

A negotiation process is always initiated by a certain participant known as
negotiation initiator. Usually is required that the initiator has a given negotiation
role — negotiation initiator role. For example, in an English auction the initiator
has always role seller, while in a reverse English auction the initiator has always
role buyer.

Focusing our discussion on auctions for buying and selling goods, a negotia-
tion structure can be formally defined as follows:

Definition 4. (negotiation structure) A negotiation structure is a triple N =
(Host, Seller, Buyer, Initiator) such that: i) Host is the negotiation host role;
ii) Seller is the seller role that defines behavior of participants selling goods in
the auction; iii) Buyer is the buyer role that defines behavior of participants
buying goods in the auction; iv) Initiator is the role that is allowed to initiate
the auction — either buyer or seller, i.e. Initiator € { Buyer, Seller}.

1124 Badica A., Badica C.: Formalizing Agent-Based English Auctions....

In our formal modeling framework behaviors of negotiation roles are de-
scribed using FSP. Therefore we shall have FSP processes describing Host, Seller
and Buyer roles. A participant behavior is defined by instantiating his role. Fi-
nally, the behavior of the negotiation system is defined using parallel composition
of roles for each negotiation participant, including of course the negotiation host.

4.2 Negotiation Host

In what follows we shall assume that our negotiation host is able to handle a sin-
gle negotiation at a certain time. In other words, the negotiation host functions
as a one-at-a-time server. In order to handle multiple negotiations concurrently,
several negotiation host instances must be ran concurrently. However, as focus of
this paper is to formally describe a single negotiation, we do not explore further
this path.

Following the generic negotiation protocol described in the previous subsec-
tion, a negotiation will consist of a series of stages. In what follows these stages
are particularized for the case of an English auction:. Note that submissions of
FIPA ACL messages are modeled using suitable FSP actions, as follows:

i) initiation — the negotiation is initiated by the seller using the init action;
note that initiation acts also as a registration of the seller agent partici-
pant; initiation is either accepted (action accept init) or rejected (action
reject init) by the host;

ii) buyer registration — each buyer agent must register with the negotiation
using register action before she is allowed to submit bids; registration is
granted (action accept registration) or not (action reject registraton) by
the negotiation host;

iii) bids submission — each registered buyer agent is allowed to submit bids using
the bid action. Bids can be either accepted (action accept bid) or rejected
(action reject bid) by the host. When a certain bid is accepted, the other
registered buyer participants are notified accordingly by the host using action
inform. Additionally to the generic negotiation introduced in the previous
section, we have also chosen to model the event corresponding to the buyer
decision to cancel bidding — action cancel _bid.

iv) agreement formation — when the host observes a certain period of bidding
inactivity, it triggers negotiation termination via action stop. This event
subsequently triggers agreement formation. In this stage the host checks
if an agreement can be generated. If no buyer has registered before the
negotiation terminated then no agreement can be made and action no_win
with no parameter is executed. However, if at least one buyer has successfully

Badica A., Badica C.: Formalizing Agent-Based English Auctions.... 1125

Table 1: Server process that describes the negotiation host role.

Server = init — AnswerlInit,

AnswerInit = accept_init — ServerBid(L,)]
reject _init — Server,

Server Bid(chb, Bs) = bid(b € Bs) — AnswerBid(b, chb, Bs)|

stop — Server Agreement(chb)|

register(b’ € Bs) — AnswerReg(b’, chb, Bs),
AnswerReg (', chb, Bs) = accept _registration(b’) — ServerBid(chb, Bs U{b'})]|

reject registration(b’) — Server Bid(chb, Bs)|
Answer Bid(b, chb, Bs) = accept_bid(b) — InformBuyers(b, Bs)|

reject bid(b) — ServerBid(chb, Bs),
InformBuyers(b,Bs) = inform(bi) — inform(b2) — ... —

)

inform(by) — ServerBid(b, Bs),
Server Ageement(L) = no_win — Server,
Server Ageement(chb) = win(chb) — Server|
no_win(chb) — Server.

submitted an accepted bid then the host will have to decide if there is a
winner (action win) or not (action no_win with parameter) depending on
if the currently highest bid overbids or not the seller reservation price.

Note that message contents (i.e. bid value or submission time), with the
exception of buyer identities, are ignored in our model. Moreover, as the FSP
model deliberately ignores message contents, focusing only on the interaction
patterns between negotiation participants, the application of negotiation rules
is only assumed and implicitly incorporated in the model. For example, in the
FSP model: i) negotiation is always initiated by the seller, ii) seller only ini-
tiates the auction but she does not submit any other bids, iii) applications of
bid validity rules, negotiation termination rules and agreement formation rules
are not explicitly shown, while results of their applications are modeled as a
nondeterministic choices.

Negotiation host behavior is described as the Server process model shown in
table 1. Note that Server process has a cyclic behavior and thus it runs infinitely,
being able to handle an infinite sequence of negotiations, one negotiation at a
time.

In a real setting, participant agents (buyers and sellers) can be created and
destroyed dynamically. In our model we assume there is a given set of buyers
and a single seller that are created when the system is started. Buyers are able
to dynamically register to negotiations. Whenever a new negotiation finishes, a
new one can be immediately initiated by the seller agent and buyers are required
to register again in order to be able to participate and bid for buying the sold
product.

Assuming each buyer agent has a unique name, let B be the set of all names

1126 Badica A., Badica C.: Formalizing Agent-Based English Auctions....

of buyer agents that were created when the system was initiated and let be 1 a
name not in B. Definition of the Server process is using several indexed families
of local processes:

— ServerBid(b, B) such that b € BU {1}, B C B. Here b records the buyer
associated with currently highest bid and B denotes the set of registered
buyers. The condition b € B U {L} means that either no buyer agent has
submitted a bid in the current negotiation (b =1) or the buyer agent that
submitted the currently highest bid must have already registered with the
negotiation before the submission, i.e. b € B. Note that when the server
detects a certain period of bidding inactivity she will trigger negotiation
termination and agreement formation — action stop.

— AnswerBid(by, ba, B) such that by € B,by € BU{L},B C B. Here b;
denotes the buyer that submitted the most recent bid, b denotes the buyer
associated with currently highest bid and B denotes the set of registered
buyers. The fact that by € B means that the most recently submitted bid
comes from a registered buyer. The fact that by € B U {L} means that
either the currently highest bid has not been submitted yet (bo =L1) or it
was submitted by a registered buyer (by € B).

— AnswerReg(by, be, B) such that b; € B\ B,bo € BU{L}, B C B. Here b;
denotes the buyer that requested registration with the current negotiation,
by denotes the buyer associated with currently highest bid and B denotes the
set of registered buyers. The fact that by € B\ B means that the registration
request comes from a buyer that is not yet registered with the negotiation.
The fact that by € BU{_L} means that either the currently highest bid has
not been submitted yet (by =1) or it was submitted by a registered buyer
(bg € B)

— InformBuyers(b, B) such that b € B, B C B. Here b denotes the buyer that
submitted an accepted bid and B denotes the set of registered buyers. The
fact that b € B means that the bid that was accepted comes from a buyer
that has registered with the negotiation. This process is responsible with
notifying registered buyers that a new bid has been accepted by the host —
action in form(b). Note that in the FSP model of the negotiation host shown
in table 1, b;, 1 < ¢ < k are defined such that Bs\ {b} = {b1,b2,...,bi}.

— ServerAgreement(b) such that b € BU{L}. Here b denotes the buyer that
submitted the currently highest bid. Process ServerAgreement(b) is exe-
cuted when Server detected that negotiation can be terminated because
of bidding inactivity. This process checks if an agreement can be made. If
there is no buyer that submitted an accepted bid, i.e. b =1 then there is
no agreement — action no_win. Otherwise either there is an agreement —

Badica A., Badica C.: Formalizing Agent-Based English Auctions.... 1127

Table 2: Buyer and Seller processes.

Buyer = register — BuyerRegister|
inform — Buyer,
BuyerRegister = accept _registration — Buyer Bid|
reject _registration — Buyer,
BuyerBid = bid — WaitBid|
cancel _bid — Buyer|
inform — BuyerBid,
WaitBid = accept__bid — W ait|
reject _bid — BuyerBid|
inform — BuyerBid,
W ait = inform — BuyerBid|
end — Buyer.

Seller = init — WaitInit,
WaitInit = accept__init — Wait End|

reject _init — Seller,
WaitEnd = end — Seller.

action win(b) or the currently highest bid does not meet the requirements
for generating an agreement — action no_win(b).

4.3 Buyer Role

The Buyer role is defined as a cyclic FSP process. Note that a buyer agent must
first register to the negotiation before starting to submit bids. If registration
is granted, she can start bidding according to its private strategy — action bid.
Here we have chosen a very simple strategy: each buyer agent submits a first bid
immediately after it is granted admission to the negotiation and subsequently,
whenever it gets a notification that another participant issued a bid that was
accepted by the host. Additionally, each buyer participant has its own valuation
of the negotiated product. If the current value that the buyer decided to bid
exceeds her private valuation then the proposal submission is canceled — action
cancel _bid, i.e. product became “too expensive”. Note that after a buyer agent
submitted a bid that was accepted, she will enter a state waiting for a notification
that either another successful bid was submitted or that she eventually was the
last submitter of a successful bid in the current auction (i.e. a potentially winning
bid, depending on if the bid value was higher than the seller reservation price)
— see action end. Note that execution of the end action also means that the
negotiation was terminated by the server.

1128 Badica A., Badica C.: Formalizing Agent-Based English Auctions....

Table 3: System process as parallel composition of negotiation host, buyers and
seller processes.

Buyer Agent, = Buyer /{bid: /bid, reject bidi /reject bid,accept bidy/accept bid,
informy [inform, cancel _bidy /cancel _bid, {wini,no_win,}/end,
registery /register, accept _registration, /accept _registration,
reject _registration;/reject registration}.

Buyer Agents = Buyer /{bidz/bid, reject bids/reject bid,accept bida/accept bid,
inform2/inform, cancel _bids/cancel _bid, {winz,no_winz}/end,
registera/register, accept _registrations/accept _registration,
reject _registrations/reject registration}.

Seller Agent = Seller /{{no_win,wini,no_winy,winz,no_winz}/end}.

System = Server||Seller Agent||Buyer Agent:|| Buyer Agents.

4.4 Seller Role

The Seller role is also defined as a cyclic FSP process. The seller agent initiates
the auction — action init and then, assuming initiation was successful, she waits
for the auction to terminate — action end, before issuing a new initiation request.

4.5 Negotiation System

Let us assume that our system is initialized by creating 2 buyer agents, i.e. B =
{b1, b2}, and one seller agent. Buyer and seller agents are created by instantiating
Buyer and respectively Seller roles. Note that instantiation of Buyer roles as-
sumes also indexing of actions bid, reject bid, accept bid, in form, cancel _bid,
register, accept _registration, reject _registration with buyer’s name and also
renaming action end with an indexed set of actions {win,no_win}. Similarly,
instantiation of Seller role assumes renaming action end with a set of actions
denoting various ways the auction may terminate: without a winner assuming
no buyer submitted an accepted bid — no_win, with or without a winner as-
suming at least one buyer submitted an accepted bid — indexed set of actions
{win,no_win}. Finally, instantiation of Server role requires no renaming, as
the names of the buyer agents were supposed known in the definition of Server
process.

Negotiation system is defined as parallel composition of negotiation host,
seller agent and buyer agents processes — see table 3.

5 Experiments

We have conducted a series of experiments with the FSP models introduced in
section 4. The main goal was to check various qualitative properties of agent

Badica A., Badica C.: Formalizing Agent-Based English Auctions.... 1129

interactions in the negotiation system. As a side effect we have also recorded the
size of the model expressed as number of states and transitions, depending on
the number of negotiation participants.

5.1 Experimental Setup

Firstly we had to express the general models shown in tables 1, 2 and 3 using
the FSP language supported by the LTSA tool.

An initial mapping was proposed in [Badicd 2007b]. However it has the draw-
back that the mapping of the Server process is not scalable with respect to the
number of buyers. This problem is caused by the way we had chosen to map lo-
cal processes indexed with subsets. A subset index was mapped to a sequence of
integer indexes representing the subset elements; for example subset {1,3} was
represented as [1][3]. Using this approach the mapping would have to use at least
one local process definition for subsets with 1 element, at least one local process
definition for subsets with 2 elements, etc. This situation is not acceptable when
the number of participants is increasing.

Therefore we propose an improved mapping inspired by the solution we have
already explored in [Bidicd 2007a]. Assuming that we have n buyers and that
each buyer is represented by a unique integer from the set {1,2,...,n}, a subset
index is mapped to a sequence of n {0,1}-valued integer indexes; for example
subset {1, 3} is represented as [1][0][1]. L symbol is mapped to 0. We obtain the
mapping conventions:

— ServerBid(chb, Bs) is mapped to ServerBid[chb|[i1][ie]...[in] such that
chb € {0,1,2,...,n}, 4; = 01if j ¢ Bs and i; = 1 if j € Bs for all
je{l,2,...,n}

— AnswerReg(b, chb, Bs) is mapped to AnswerReg[b][chb][i1][i2] ... [in] such
that b € {1,2,...,n}, chb € {0,1,2,...,n},i; =01if j & Bs and i; = 1 if
j € Bsforall j € {1,2,...,n}; AnswerBid is mapped in a similar way;

— InformBuyers(b, Bs) is mapped to InformBuyers[b|[i1][iz]...[in] such
that b € {1,2,...,n}, 4, = 0if j ¢ Bs and i; = 1 if j € Bs for all
je{L1,2,...,n}.

— ServerAgreement(chb) is mapped to ServerAgreement[chb] such that
chb € {0,1,2,...,n}. Here

Following these conventions, for example if n = 3 then local process
AnswerBid(1,3,{1,3}) becomes AnswerBid[1][3][1][0][1]. The complete map-
ping of our FSP model of the English auction system for n = 3 buyers is shown
below.

1130 Badica A., Badica C.: Formalizing Agent-Based English Auctions....

const N = 3

Buyer =

(register -> BuyerRegister | inform -> Buyer),
BuyerRegister =

(accept_registration -> BuyerBid | reject_registration -> Buyer),
BuyerBid =

(bid -> WaitBid | cancel_bid -> Buyer | inform -> BuyerBid),
WaitBid =

(accept_bid -> Wait | reject_bid -> BuyerBid | inform -> BuyerBid),
Wait =

(inform -> BuyerBid | end -> Buyer).

Seller =

(init -> WaitInit),
WaitInit =

(accept_init -> WaitEnd | reject_init -> Seller),
WaitEnd =

(end -> Seller).

Server =

(init -> AnswerlInit),
AnswerInit =

(accept_init -> ServerBid[0][0]1[0][0] | reject_init -> Server),
ServerBid[chb:0..N]J[i1:0..1]1[i2:0..1]1[i3:0..1] = (

when il == 1 bid[1] -> AnswerBid[1][chb][i11[i2]1[i3] |
when il == 0 register[1] -> AnswerRegl[1][chbl[i11[i2]1[i3] |
when i2 == 1 bid[2] -> AnswerBid[2] [chb][i1]1[i2]1[i3] |
when i2 == 0 register[2] -> AnswerRegl[2] [chbl[i1]1[i2]1[i3] |
when i3 == 1 bid[3] -> AnswerBid[3][chb][i1]1[i2]1[i3] |
when i3 == 0 register[3] -> AnswerReg[3][chbl[i11[i2]1[i3] |

stop -> ServerAgreement[chbl),
AnswerReg[b:1..N]1[chb:0..N1[i1:0..1]1[i2:0..11[i3:0..1] = (

when b == 1 accept_registration[1] -> ServerBid[chbl[1]1[i2][i3] |

when b == 2 accept_registration[2] -> ServerBid[chbl[i11[11[i3] |

when b == 3 accept_registration[3] -> ServerBid[chbl[i11[i2]1[1] |

reject_registration[b] -> ServerBid[chbl[i11[i2]1[i3]),
AnswerBid[b:1..N][chb:0..N1[i1:0..11[i2:0..11[i3:0..1] = (

accept_bid[b] -> InformBuyers([b][i1][i2]1[i3] |

reject_bid[b] -> ServerBid[chb] [i1][i2][i3]),
InformBuyers[b:1..N][i1:0..1][i2:0..1][i3:0..1] =

InformBuyers[b][1][i1][i2] [i3],
InformBuyers[b:1..N]J[i:1..N]J[i1:0..1]J[i2:0..1]1[1i3:0..1] =

if (i==1 && i!'=b &% il==1) then (inform[1] -> InformBuyers[b][2][i1][i2][i3])

else if (i==1 && (i==b || i1==0)) then InformBuyers[b][2][i1][i2][i3]

else if (i==2 &% i!=b && i2==1) then (inform[2] -> InformBuyers[b][3][i1][i2][i3])

else if (i==2 &% (i==b || i2==0)) then InformBuyers[b][3][i1][i2][i3]

else if (i==3 && i!=b && i3==1) then (inform[3] -> ServerBid[b][i1][i2][i3])

else ServerBid[b][i1][i2][i3],
ServerAgreement [0] =

(no_win -> Server),
ServerAgreement [chb:1..N] =

(win[chb] -> Server | no_win[chb] -> Server).

| |IBuyerI(I=1) =
Buyer/{bid[I]/bid,reject_bid[I]/reject_bid,accept_bid[I]/accept_bid,inform[I]/inform,
cancel_bid[I]/cancel_bid,{win[I],no_win[I]}/end,register[I]/register,
accept_registration[I]/accept_registration,
reject_registration[I]/reject_registration}.

| 1System = (
Server || Seller/{{win[b:1..N],no_win[1..N], no_win}/end} ||
(forall [i:1..N] BuyerI(i))).

There are few interesting notes about this FSP model:

— The model is parameterized with the number of buyers — constant N;

Badica A., Badica C.: Formalizing Agent-Based English Auctions.... 1131

— Buyer and Seller processes are identical to our previous solution from
[Badica 2007b]; only the mapping of Server process has been updated,;

— Buyers are now defined as an indexed family of processes BuyerI(I), rather
than separately (as in [Badica 2007b]). This is further exploited by the def-
inition of the System process using forall construct.

5.2 Properties of the Negotiation System

Techniques discussed in [Karamanolis et al. 2000] for workflow analysis can be
also applied to analyze our negotiation system. These techniques include inter-
active step-by-step simulation and model verification against safety and liveness
properties.

Interactive simulation allows us to perform a manually controlled step-by-
step execution of the negotiation system. While this feature may give a “feel-
ing” about how the system would behave before actually being implemented, it
is quite limited for large applications. Additionally, the trace facility can only
eventually detect abnormal behaviors, failing to prove that the system behaves
correctly for all its possible executions.

LTSA tool supports a more powerful way of checking a target system using
safety and progress properties ([Magee and Kramer 2006]).

A safety property is defined as a deterministic process P asserting that any
of the system traces in the alphabet of P is correct, i.e. are accepted by P. If
an error state is reachable in the LTS of its composition with the target system
then the safety property is violated; additionally, LTSA provides one execution
trace that violates the property. This is useful for the modeler to correct the
model.

In what follows we consider some safety properties that we found useful to
check for our negotiation system.

The negotiation system is free of deadlocks — being deadlock free is a basic
property of a distributed system that is automatically checked by the LTSA tool.

When a new participant requests admission to negotiation, negotiation host
either grants or not participant admission, before the participant can request
again admission to negotiation.

property Admission = register(b) — CheckAdmission(b),

CheckAdmission(b) = accept_registration(b) — Admission|
reject _registration(b) — Admission.

A registered participant may submit bids, then cancel bidding, before she
can re-enter negotiation and start bidding again.

property Bid(b) = accept_registration(b) — ContinueBidding(b),
ContinueBidding(b) = bid(b) — ContinueBidding(b)|
cancel _bid(b) — Bid(b).

1132 Badica A., Badica C.: Formalizing Agent-Based English Auctions....

Table 4: Size of the LTS of the negotiation system

buyers|# states|# transitions
2 66 158

3 370 1053

4 2160 7056

5 12400 45712

6 68992 1283808

7 372032 |1690416

When a participant submits a new bid, the bid is either accepted or rejected
by the negotiation host before the participant can submit a new bid.
property Proposal = bid(b) — CheckBid(b),

CheckBid(b) = accept_bid(b) — Proposal|
reject _bid(b) — Proposal.

Whenever a negotiation is successfully started it must also safely terminate
with or without a winner, before a new negotiation can be started.

property SafeTermination = accept _init —
{win(b € B),no_win(b € B),no_win} —
SafeTermination.

A progress property is defined as a finite set of actions and it requires that
any infinite execution of the target system contains at least one of the actions
in this set infinitely often.

We have checked our negotiation system against the default progress property
that asserts each action in the process alphabet will be executed infinitely often
([Magee and Kramer 2006])".

We have also determined the LTS of a negotiation system with n =2,3,...,7
buyers using LTSA tool ([Magee and Kramer 2006]). The results are summarized
in table 4.

6 Conclusions and Future Work

In this paper we proposed a formal framework for modeling agent interactions
in agent-based English auctions using finite state process algebra. This works
bridges the gap between the sound analysis of agent interactions using formal
methods and the implementation of agent-based English auctions using available

! Note that progress properties are checked under the fair choice assumption
([Magee and Kramer 2006])

Badica A., Badica C.: Formalizing Agent-Based English Auctions.... 1133

agent platforms. As future work we plan to extend this approach by capturing
also the semantic aspects of the agent interaction protocols into a unified frame-
work. Furthermore we intend to apply this framework to model more complex
agent systems including: i) negotiation servers that are able to coordinate sev-
eral negotiations that are ran in parallel; ii) agent systems that incorporate also
middle-agents for carrying out for example matchmaking processes that are fre-
quently needed in e-commerce.

Acknowledgement

Work of Amelia Badicd and Costin Badica has been partially funded by the
following two CNCSIS? grants:

1. 94/2005: "HiperProc: Hypermedia Techniques for Knowledge-Based Repre-
sentation of Business Processes” and

2. 185/2006: "Technologies and Intelligent Software Tools for Automated Con-
struction of E-Catalogues of Products Using Knowledge Acquisition from
the Web”.

References

[Badica 2007a] Badica, C., Badita, A., Litoiu, V.: "Middle-Agents Interactions As Fi-
nite State Processes: Overview and Example”; Proceedings of 16" IEEE Interna-
tional Workshops on Enabling Technologies: Infrastructures for Collaborative En-
terprises, WETICE’2007, 2007, Paris, France. IEEE Computer Society Press (2007)
12-17.

[Badica 2007b] Badica, C., Badigd, A.: "Formal modeling of agent-based English auc-
tions using finite state process algebra”; Agent and Multi-Agent Systems: Technolo-
gies and Applications. Proceedings of KES-AMSTA-2007, Wroclaw, Poland. Lect.
Notes in Artif. Intel. 4496, Springer Verlag (April 2007) 248-257.

[Badica 2007¢c] Badic#, C., Ganzha, M., Paprzycki, M.: "Implementing Rule-Based Au-
tomated Price Negotiation in an Agent System”; Journal of Universal Computer
Science, vol. 13, no. 2, (2007) 244-266.

[Badica et al. 2006b] Badica, C., Badita, A., Ganzha, M., Iordache, A., Paprzycki, M:
“Implementing rule-based mechanisms for agent-based price negotiations”; Proceed-
ings of the 21°* Annual ACM Symposium on Applied Computing, SAC, Dijon,
France. ACM Press, New York, NY, (April 2006) 96-100.

[Badica et al. 2005d] Badici, C., Badita, A., Ganzha, M., Iordache, A., Paprzycki, M.:
"Rule-Based Framework for Automated Negotiation: Initial Implementation”; A.
Adi, S. Stoutenburg, S. Tabet (eds.): Proc. RuleML, Galway, Ireland. Lect. Notes
in Comp. Sci. 3791, Springer Verlag (November 2005) 193-198.

[Badica et al. 2003] Badica, C., Badicd, A., Litoiu, V.: "Role Activity Diagrams as
Finite State Processes”; Proceedings of the 2"¢ International Symposium on Parallel
Distributed Computing ISPDC’03, Ljubljana, Slovenia. IEEE Computer Society
Press, (October 2003) 15-22.

2 http://www.cncsis.ro

1134 Badica A., Badica C.: Formalizing Agent-Based English Auctions....

[Bartolini et al. 2005] Bartolini, C., Preist, C., Jennings, N.R.: ?A Software Framework
for Automated Negotiation”; Proc. of SELMAS. Lect. Notes in Comp. Sci. 3390,
Springer, Berlin (2005) 213-235.

[Cervenka and Trencansky 2007] Cervenka, R., Trencansky, I.: "The Agent Modeling
Language — AML. A Comprehensive Approach to Modeling Multi-Agent Systems
Series: Whitestein”; Series in Software Agent Technologies and Autonomic Comput-
ing, Springer, (2007).

[Dong and Sheng 2003] Dong, Y., Sheng, Z.: "Using pi-Calculus to Formalize UML
Activity Diagram”; Proceedings of the 10'" IEEE International Conference on En-
gineering of Computer-Based Systems ECBS 2003. IEEE Computer Society (2003)
47-54.

[van Eijk et al. 2003] van Eijk, R.M., de Boer, F.S., van der Hoek, W., Meyer, J.-J.Ch.:
"Process Algebra for Agent Communication: A General Semantic Approach”; Com-
munication in Multiagent Systems 2003. Lect. Notes in Comp. Sci. 1650, Springer
Verlag (2003) 113-128.

[Esterline and Rorie 2001] Esterline, A.C., Rorie, T.: "Using the pi-Calculus to Model
Multiagent Systems”; Formal Approaches to Agent-Based Systems, First Interna-
tional Workshop, FAABS’2000, Greenbelt, MD, USA. Lect. Notes in Comp. Sci.
1871, Springer Verlag (2001) 164-179.

[Feng et al. 2005] Feng, Z., Yin, J., Zhang, H., Dong, J.: "Inter-organizational busi-
ness process modeling for electronic commerce based on pi-calculus”; Proceedings
of the Intternational Conference on Services Systems and Services Management,
ICSSSM’2005, Chongging, China. IEEE Press vol.2 (2005) 966-970.

[FIPA] FIPA: Foundation for Physical Agents. See http://www.fipa.org.

[Hillston and Kloul 2001] Hillston, J., Kloul, L.: "Performance investigation of an on-
line auction system”; Concurrency and Computation: Practice and Experience, 13(1)
(2001) 23-41.

[Karamanolis et al. 2000] Karamanolis, C., Giannakapoulou, D., Magee, J., Wheater,
S.: "Model Checking of Workflow Schemas”; Proceedings of the 4th International
conference on Enterprise Distributed Object Computing, EDOC’00. IEEE Com-
puter Society (2000), 170-181.

[JADE] JADE: Java Agent Development Framework. See http://jade.cselt.it.

[JESS] JESS: Java Expert System Shell. See http://herzberg.ca.sandia.gov/jess/.

[Laudon and Traver 2004] Laudon, K.C., Traver, C.G.: "E-commerce. business. tech-
nology. society” (2"¢ ed.). Pearson Addison-Wesley, (2004).

[Lomuscio et al. 2002] Lomuscio, A.R., Wooldridge, M., Jennings, N.R.: "A classifica-
tion scheme for negotiation in electronic commerce”; F. Dignum, C. Sierra (Eds.):
Agent Mediated Electronic Commerce: The European AgentLink Perspective, Lect.
Notes in Comp. Sci. 1991, Springer, Berlin (2002) 19-33.

[Magee and Kramer 2006] Magee, J., Kramer, J.: "Concurrency. State Models and Java
Programs 2"? ed.”; John Wiley & Sons, (2006).

[McAfee and McMillan 1987] McAfee, R.P., McMillan, J.: ”Auctions and bidding”;
Journal of Economic Literature, 25(2) (1987) 699-738.

[Padgham and Winikoff 2004] Padgham, L., Winikoff, M.: "Developing Intelligent
Agent Systems. A practical guide”; John Wiley & Sons (2004).

[Puhlmann 2006] Puhlmann, F.: "Why Do We Actually Need the Pi-Calculus for Busi-
ness Process Management”; Proceedings of the 9" International Conference on Busi-
ness Information Systems, BIS’2006, Klagenfurt, Austria. Lecture Notes in Infor-
matics 85, GI (2006) 77-89.

[Rouff et al., 2006] Rouff, C.A., Hinchey, M., Rash, J., Truszkowski, W., and Gordon-
Spears, D. (Eds.): ”Agent Technology from a Formal Perspective”; NASA Mono-
graphs in Systems and Software Engineering, Springer (2006).

[Weiliang et al. 2002] Weiliang, M., Xiaodong, W., Huanye, S.: "A Configurable
Auction Framework for Open Agent Systems[[; Joint Workshop Agent Tech-

Badica A., Badica C.: Formalizing Agent-Based English Auctions.... 1135

nology and Software Engineering/Agent Infrastructure, Tools and Applications,

Net.ObjectDays 2002, Erfurt, Germany, (2002).
[Wooldridge 2002] Wooldridge, M.: "An Introduction to MultiAgent Systems”, John

Wiley & Sons, (2002).
[Wurman et al. 2001] Wurman, P.R., Wellman, M.P., Walsh, W.E.: A Parameteriza-

tion of the Auction Design Space”; Games and Economic Behavior, 35, 1/2, (2001)
271-303.

