
The Bit-Complexity of Finding Nearly Optimal

Quadrature Rules for Weighted Integration

Volker Bosserhoff
(Universität der Bundeswehr, Munich, Germany

volker.bosserhoff@unibw.de)

Abstract: Given a probability measure ν and a positive integer n. How to choose n
knots and n weights such that the corresponding quadrature rule has the minimum
worst-case error when applied to approximate the ν-integral of Lipschitz functions?
This question has been considered by several authors. We study this question whithin
the framework of Turing machine-based real computability and complexity theory as
put forward by [Ko 1991] and others. After having defined the notion of a polynomial-
time computable probability measure on the unit interval, we will show that there are
measures of this type for which there is no computable optimal rule with two knots. We
furthermore characterize – in terms of difficult open questions in discrete complexity
theory – the complexity of computing rules whose worst-case error is arbitrarily close
to optimal.
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1 Introduction

Let ν be a probability measure on R. Fix an integer n ≥ 1. In numerical mathe-
matics, the functional Iν :=

∫
dν is often approximated by means of a quadrature

formula

Iν(f) =
∫
f dν ≈

n∑
i=1

aif(xi)

with certain (x,a) ∈ Dn, where

Dn := {(x,a) ∈ Rn × Rn : x1 ≤ . . . ≤ xn}.

Let us call a pair (x,a) ∈ Dn an integration rule.
For every c ≥ 0, let L(c) be the class of all Lipschitz continuous functions

with Lipschitz constant ≤ c. The worst-case error of the integration rule (x, a)
on L(1) is defined as

ewor(ν, n;x,a) := sup
f∈L(1)

∣∣Iν(f) −
n∑

i=1

aif(xi)
∣∣.

It is well-known (see e.g. [Rachev 1991, p. 73, eq. (4.3.11)]) that ewor(ν, n;x, a)
is equal to the L1-distance between the distribution function Fν of ν and the
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distribution function of the (signed) measure
∑n

i=1 aiδxi , where δxi is the Dirac
measure at xi. This means that if (x, c) is in Dn,

Sx,c :=
n−1∑
i=1

ciχ[xi,xi+1[ + cnχ[xn,∞),

a1 = c1, and ai = ci − ci−1 for i = 2, . . . , n, then ewor(ν, n;x, a) = E(ν, n;x, c),
where

E(ν, n;x, c) :=
∫

R

|Fν − Sx,c| dλ. (1)

The problem of finding good quadrature rules is hence equivalent to minimizing
E(ν, n; ., .) on Dn.

Using this equivalent formulation, the problem of finding good quadrature
rules for the weighted integration of Lipschitz functions has been studied by
[Curbera 1998] for ν being Gaussian, and then by [Mathé 1998] for measures
that fulfill more general analytic properties.1 Mathé gives formulas for knots and
weights that are asymptotically optimal for n → ∞. [Behrends 1997] considers
the “problem to derive conditions under which optimal quadrature rules can
explicitly and easily be found”. He gives analytic conditions which assure that
the optimal rule is unique, as well as an algorithm to approximate the optimal
knots and weights in this case.

The present work classifies the problem of finding good quadrature rules in
terms of real computational complexity theory as put forward by [Ko 1991]: If
the measure ν can be computed in polynomial time, can a minimum point of
(1) be computed in polynomial time? We refer to [Ko 1991] for the definition
of polynomial-time computability of real numbers and functions. We will call a
probability measure “polynomial-time computable” if it is supported on [0, 1]
and has a polynomial-time computable distribution function (see [Section 2] for
details); the class of all polynomial-time computable probability measures shall
be denoted by PM. If ν ∈ PM and n ≥ 1, then E(ν, n; ., .) always attains its
minimum

Eopt(ν, n) := inf
(x,c)∈Dn

E(ν, n;x, c),

as we will see below. We will, however, also see:

Theorem 1. There exists a measure ν ∈ PM such that E(ν, 2; ., .) does not
attain its minimum at any computable point.

In view of this result, it does not make sense to ask for the complexity of op-
timal integration rules in general. But in practical situations, one is in fact
not interested in integration rules whose knots and weights are close to opti-
mal knots and weights, but merely in rules whose worst-case error is close to
1 Mathé also considers more classes of integrands than just Lipschitz functions.
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the optimal error. Denote by D the set of dyadic rationals. Elements (x, c) of⋃
n≥1 ((Dn ∩ (Dn × Dn)) can be encoded by words 〈x, c〉 ∈ Σ∗ (where Σ :=

{0, 1}) in a canonical way. Let FP be the class of all word functions Σ∗ → Σ∗

computable by a deterministic Turing machine in polynomial time.2 For any
function complexity class C, let C1 denote the class {f |{0}∗ : f ∈ C}. We con-
sider the following statements:

Statement 2 (i) For every ν ∈ PM there exists a function φ ∈ FP1 such that
for all n ∈ N\{0} and k ∈ N one has that φ(〈0n, 0k〉) is an (encoded dyadic)
element (x, c) of Dn with

E(ν, n;x, c) − Eopt(ν, n) ≤ 2−k.

(ii) For every ν ∈ PM there exists a function φ ∈ FP1 such that for all k ∈ N

one has that φ(0k) is an (encoded dyadic) element (x, c) of D2 with

E(ν, 2;x, c) − Eopt(ν, 2) ≤ 2−k.

We will prove that Statements 2(i), 2(ii) and the following statement in discrete
complexity theory are equivalent: For every predicate R on Σ∗ and every v ∈ Σ∗

consider the expression

countR(v) := card{w ∈ Σ∗ : |w| = |v|, R(〈v, w〉)},

and for every m ∈ N the expression

maxcountR(m) := max{countR(v) : |v| = m}.

Statement 3 For every predicate R ∈ P there exists a polynomial-time com-
putable function φ : {0}∗ → Σ∗ such that

(∀m ∈ N) countR(φ(0m)) = maxcountR(m).

In order to establish this equivalence, we will first consider an auxiliary problem:
For every g ∈ C[0, 1], denote by g ∈ C[0, 1] the function

g(s) :=
∫ s

0

g(t) dt.

Statement 4 If g is in PC[0,1], then there exists a function γ ∈ FP1 such that
for all k ∈ N one has that γ(0k) is an (encoded dyadic) element t of [0, 1] with

max(g) − g(t) ≤ 2−k.

2 See [Ko 1991] for the exact definitions of the discrete complexity classes used in this
paper.
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Our main result is:

Theorem 5. Statements 2(i), 2(ii), 3 and 4 are equivalent.

Our proof relies on methods from [Ko 1991] in combination with new con-
structions. In fact, the problem of finding the maximum value of f given f is a
“concatenation” of problems treated in [Ko 1991], where the following is shown:

[g ∈ PC[0,1] ⇒ g ∈ PC[0,1]] ⇐⇒ FP = #P,

P1 = PNP
1 =⇒ [g ∈ PC[0,1] ⇒ max(g) ∈ PR] =⇒ P1 = NP1.

Here #P is the class of all functions that count the number of accepting paths
of a nondeterministic polynomial-time Turing machine.

How do the statements shown equivalent in Theorem 5 relate to better-known
open questions in discrete complexity theory? Unfortunately, the only result we
have in this direction is elementary and leaves a wide gap:

Proposition6. FP = #P =⇒ Statement 3 =⇒ P1 = NP1.

Proof. First implication: Let R, countR and maxcountR be as in Statement 3.
Assume FP = #P. Then countR is in FP. One also has P = NP, and hence
the predicate R1 with

R1(〈0m, w〉) :⇔ (∃ v) [|v| = m and countR(v) ≥ bin(w)]

is in P (where bin(w) ∈ N is usual binary interpretation of the word w). A binary
search algorithm using R1 yields maxcountR ∈ FP1. P = NP again yields that
the predicate R2 with

R2(〈0m, v〉) :⇔ (∃w) [|vw| = m and countR(vw) = maxcountR(m)]

is in P. A binary search algorithm using R2 yields that there is a function φ as
in Statement 3.

Second implication: Let A be a language in NP1. There is a predicate R′ in
P and a polynomial p (w.l.o.g. p(n) ≥ 1) such that

0m ∈ A ⇐⇒ (∃w) [|w| < p(m) ∧ R′(〈0m, w〉)].

Choose the following as the predicate R in Statement 3:

R(〈v, w〉) :⇐⇒ v, w ∈ {0}∗ or

⎡⎢⎢⎢⎢⎢⎢⎢⎣

v /∈ {0}∗ and there are m,n ∈ N and

b, c0, . . . , cn−1 ∈ {0, 1},
such that n < p(m) and

w = b0p(0)0p(1)0p(m−1)c0 · · · cn−1,

and R′(〈0m, c0 · · · cn−1〉)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.
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R is designed such that

0m ∈ A ⇐⇒
p(m)−1∨

n=0

[countR(11p(0) · · · 1p(m−1)1n) ≥ 2]

⇐⇒
p(m)−1∨

n=0

[φ(00p(0) · · · 0p(m−1)0n) /∈ {0}∗],

where φ is as in Statement 3. Hence, if φ ∈ FP1, then A ∈ P1. ��

2 Polynomial-time computable probability measures

We assume that the reader is familiar with the basic definitions found in [Ko 1991]
concerning the computability and complexity of real numbers and functions. In
this section, we motivate and define a notion of polynomial-time computability
for probability measures on R.

Following a definition by [Weihrauch 1999] (which has been generalization
by [Schröder 2007]) one calls a probability measure ν on R computable if the set

{(r, s, t) ∈ Q3 : r < s, ν(]r, s[) > t}

is computably enumerable. This definition is motivated by topological considera-
tions on the space of probability measures (see [Weihrauch 1999, Schröder 2007]),
but it does not induce a notion of a measure’s computational complexity. A mea-
sure ν is diffuse if ν({s}) = 0 for every s ∈ R. It is easy to see that a diffuse
probability measure is computable in the above sense if, and only if, the function

{(r, s) ∈ R × R : r < s} → R, (r, s) �→ ν(]r, s[)

is computable. This is again equivalent to the computability of the measure’s
distribution function Fν : R → [0, 1], defined by

Fν(s) := ν(] −∞, s]).

In [Ko 1991], polynomial-time computability is only defined for functions with
compact domains. We will hence restrict ourselves to diffuse probability mea-
sures with ν([0, 1]) = 1. These measures correspond one-to-one to continuous
distribution functions Fν with Fν(0) = 0 and Fν(1) = 1.

Definition 7. A probability measure ν on the Borel subsets of R is polynomial-
time computable if it has a distribution function Fν such that Fν(0) = 0,
Fν(1) = 1 and Fν |[0,1] ∈ PC[0,1]. Denote by PM the class of all polynomial-
time computable probability measures.
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3 An auxiliary problem

We define the following condition on a function g:

g ∈ PC[0,1] ∩ L(1), g(0) = g(1) = 0,
∫ 1

0

g(s) ds = 0. (2)

The following proposition is merely a variation of Ko’s generalization of a
well-known example going back to Specker (see [Ko 1991, Corollary 3.3]). It will
be needed in the proof of Theorem 1 below.

Proposition8. There is a function g such that (2) is fulfilled and the maximum
of g is not attained at any computable point.

Proof. For all 0 ≤ s < t ≤ 3, let hs,t : [0, 3] → R be the polygon function that is
zero outside [s, t], ∧-shaped with height (t−s)/48 on [s, (s+ t)/2], and ∨-shaped
with height −(t−s)/48 on [(s+ t)/2, t]. Clearly, all functions hs,t are in L(1/12).
It is well-known (see e.g. the proof of [Ko 1991, Corollary 3.3]) that there is a
computable function φ : N → D such that S =

⋃
i∈N

]φ(2i), φ(2i+1)[ is contained
in [0.5, 2.5], and [1, 2] \ S �= ∅, and S contains all computable points of [1, 2].
Define

(∀n ∈ N) gn := hφ(2n),φ(2n+1).

Let M be a TM computing φ, and let t(n) be the total number of moves for M
to run on inputs 0, 1, . . . , 2n+1; w.l.o.g. t(n) ≥ n. Define f :=

∑
n∈N

2−t(n)gn. It
can be shown (similarly as in the proof of [Ko 1991, Theorem 3.1, “(a)→(c)”])
that f ∈ PC[0,3]. It is furthermore easy to see that f is in L(1/6), f(0) = f(3) =

0, the minimum of f is 0, and f
−1{0} ∩ [1, 2] is nonempty and contains only

uncomputable points. Let u : [0, 3] → R be the polygon function that is ∧-
shaped with height 1/12 on [0, 1], constantly zero on [1, 2], and ∨-shaped with
height −1/12 on [2, 3]. Consider v := u− f . v clearly is in PC[0,3] ∩ L(1/3), and
we have v(0) = v(3) = 0. Note that u attains its maximum 1/24 exactly on [1, 2],
and hence v = u− f attains this same maximum exactly at the minimum points
of f that lie in [1, 2]; recall that these are all uncomputable. Finally, define g by
g(x) := v(3x) for all x ∈ [0, 1]. Then g has the asserted properties. ��

It will be technically convenient to consider the following weaker version of
Statement 4:

Statement 9 If g fulfills (2), then there exists a function γ ∈ FP1 such that
for all k ∈ N one has that γ(0k) is an (encoded dyadic) element t of [0, 1] with

max(g) − g(t) ≤ 2−k. (3)

The proof of the next proposition is similar to parts of the proofs of Theorems
3.11 and 5.32 in [Ko 1991].
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Proposition10. Statement 9 implies Statement 3.

Proof. For every word w ∈ Σ∗, denote by Iw ⊆ [0, 1] the closed interval of all real
numbers that have a binary expansion of the form 0.w . . .. For every m ∈ N\{0}
define

Vm := {(v1, . . . , vm) ∈ (Σ∗)m : |vi| = i},
Wm := {((v1, . . . , vm), w) ∈ Vm ×Σ∗ : |w| = m}.

With each v = (v1, . . . , vm) ∈ Vm we associate the interval

Iv := Iv1τ(v2)τ(v3)...τ(vm),

where τ : Σ∗ \ {ε} → Σ∗ is defined by

τ(a0a1 . . . an−1) :=

{
01a1 . . . an−1 if a0 = 0,

10a1 . . . an−1 else.

For all (v, w) ∈ Wm, define

I+
(v,w) := Iv1τ(v2)τ(v3)...τ(vm)00w and I−(v,w) := Iv1τ(v2)τ(v3)...τ(vm)11w.

Note that
|I+

(v,w)| = |I−(v,w)| = 2−(2m+m(m+1)/2+1) =: δm. (4)

For ± ∈ {+,−}, let h±v,w : [0, 1] → R be the polygon function that is 0 outside
I±(v,w), and ∧-shaped with height δm/2 on I±(v,w). Note that for all (v, w) ∈ Wm

and ± ∈ {+,−} we have ∫ 1

0

h±v,w(t) dt =
δ2m
4
. (5)

Now let R be a predicate as in Statement 3 and define for every n ∈ N

gn :=
n∑

m=1

∑
(v,w)∈Wm,

R(vm,w)

(h+
v,w − h−v,w) and g := lim

n→∞ gn

(see Figure 1).
It is not hard to verify that g fulfills (2). (To see that g ∈ PC[0,1], note

that it is sufficient to construct a polynomial-time computable mapping ψ :
(D ∩ [0, 1]) × N → D such that |ψ(d, k) − g(d)| ≤ 2−k for all d, k; cf. [Ko 1991,
Corollary 2.21]. |g− gk| ≤ δk+1/2 ≤ 2−k for all k ≥ 1, so it is sufficient to choose
ψ(d, k) := gk(d), which is easily seen to be computable in polynomial time.)

Under the assumption that Statement 9 holds true, we now construct a func-
tion φ as in Statement 3. It follows from (5) and the construction of g that

max(g) =
1
4

∞∑
m=1

maxcountR(m) · δ2m,
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Figure 1: The first two steps in the assembly of the graph of g as constructed in the
proof of Proposition 10. In this example R fulfills 〈0, 1〉, 〈1, 0〉, 〈1, 1〉 ∈ R, 〈1, 0〉 /∈ R,
and 〈00, 00〉, 〈00, 01〉, 〈00, 11〉, 〈01, 00〉, 〈01, 11〉, 〈10, 01〉, 〈10, 10〉, 〈10, 11〉, 〈11, 00〉,
〈11, 01〉, 〈11, 10〉, 〈11, 11〉 ∈ R, 〈00, 10〉, 〈01, 01〉, 〈01, 10〉, 〈10, 00〉 /∈ R.

and for every n ≥ 1, v ∈ Vn one has

sup g(Iv) =
1
4
( n∑

m=1

countR(vm) · δ2m +
∞∑

m=n+1

maxcountR(m) · δ2m
)

sup g
( ⋃
|w|=m

Iv,w

)
=

1
4

n∑
m=1

countR(vm)δ2m.

If Statement 9 is applied to the function g, this yields that there is a function
γ such that (3) holds. It is then clear from the above formulas that for every
m ≥ 1 with maxcountR(m) > 0 one has that there is a v ∈ Vm such that
γ(0−�log(δ2

m/4)	) ∈ Iv and countR(vi) = maxcountR(i) for i = 1, . . . ,m. A suit-
able φ can hence be computed as follows: On input ε, put out ε; on input 0m,
m ≥ 1, compute γ(0−�log(δ2

m/4)	) =: xm and search for a v ∈ Σ∗ such that xm

is in an interval of the form Iv ∈ Vm, vm = v. If such a v is found, put it out;
the above considerations show that this output is valid. If no such v exists, then
maxcountR(m) must be zero, i.e. any output of length m is valid. ��

4 Reduction from the auxiliary problem

4.1 Optimal integration rules

This subsection is based on ideas already used in [Curbera 1998, Behrends 1997,
Mathé 1998]. We fix a probability measure ν supported on [0, 1] whose distri-
bution function F is continuous and strictly increasing on [0, 1]; we also fix a
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positive integer n. We can hence omit ν and n in our notation and simply write
E(x, c), Eopt. A pair (x, c) ∈ Dn shall be called optimal if E(x, c) = Eopt.

4.1.1 Characterization and existence of optimal rules

For every (x, c) ∈ Dn, one can write E(x, c) as∫
]−∞,x1]

F (t)λ(dt)+
n−1∑
i=1

∫
[xi,xi+1]

|F (t)−ci|λ(dt)+
∫

[xn,∞[

|F (t)−cn|λ(dt). (6)

We first make the following observation:

E(x, c) <∞ ⇐⇒ cn = 1. (7)

Let us hence define D′
n := {(x, c) ∈ Dn : cn = 1}.

Lemma11. There exists an optimal (x, c) in Dn ∩ ([0, 1]n × [0, 1]n).

Proof. For any x ∈ Rn, put

τ(x) := (max(min(x1, 1), 0)), . . . ,max(min(xn, 1), 0))).

For (x, c) ∈ D, one clearly has from (6) and F (0) = 0 and F (1) = 1

E(x, c) ≥ E(τ(x), τ(c)). (8)

The claim now follows from the continuity of E (which is apparent from (6))
and the compactness of [0, 1]n × [0, 1]n.

4.1.2 The partial derivatives of E

For i = 1, . . . , n− 1, the partial derivative (∂/∂ci)E exists on D′
n.

∂

∂ci
E(x, c) = λ([xi, xi+1] ∩ [F < ci]) − λ([xi, xi+1] ∩ [F > ci]), (9)

and so

∂

∂ci
E(x, c) = 0 ⇐⇒ λ([xi, xi+1] ∩ [F < ci]) = λ([xi, xi+1] ∩ [F > ci]). (10)

Taking into account that F is strictly increasing on [0, 1], this can be written as

∂

∂ci
E(x, c) = 0 ⇐⇒

[
xi = xi+1 or ci = F

(
xi+1 + xi

2

)]
(11)

if 0 ≤ xi ≤ xi+1 ≤ 1.
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For i = 1, . . . , n, the partial derivative (∂/∂xi)E exists on the interior of D′
n;

taking into account that F is continuous, one has

∂

∂xi
E(x, c) =

{
F (x1) − |F (x1) − c1| if i = 1,

|F (xi) − ci−1| − |F (xi) − ci| if 2 ≤ i ≤ n.
(12)

This yields

∂

∂xi
E(x, c) = 0 ⇐⇒

{
c1 = 0 or F (x1) = c1

2 if i = 1,

ci = ci−1 or F (xi) = ci+ci−1
2 if 2 ≤ i ≤ n.

(13)

4.1.3 Properties of optimal and relatively optimal rules

In the following, we will also be interested in relative optima for fixed (maybe
subobtimal) xn-knots. For t ∈ R, put

Erelopt(t) := inf
x1≤...≤xn−1≤t

c1,...,cn−1

E((x1, . . . , xn−1, t), (c1, . . . , cn−1, 1)).

Let us call a pair (x, c) ∈ Dn−1 relatively optimal for t if

E((x1, . . . , xn−1, t), (c1, . . . , cn−1, 1)) = Erelopt(t).

For any step function with less than n steps, one can always construct a step
function with n steps whose L1-distance to F is strictly smaller; this is easy to
see. Hence, if (x, c) is an optimal pair, then it cannot be possible to write Sx,c

as a step function with less than n steps, i.e. (x, c) must fulfill

x1 < . . . < xn, (14)

c1 �= 0 and ci �= ci−1 for 2 ≤ i ≤ n, (15)

It is also obvious that an optimal pair (x, c) must fulfill

c1, . . . , cn ∈ [0, 1]. (16)

If t > 0, then any pair (x, c) ∈ Dn−1 which is relatively optimal for t must fulfill

x1 < . . . < xn−1 < t, (17)

c1 �= 0 and ci �= ci−1 for 2 ≤ i ≤ n− 1, (18)

which can be seen similarly as (14) and (15).
It follows from (14) that any optimal pair (x, c) must fulfill (∂/∂x1)E(x, c) =

(∂/∂xn)E(x, c) = 0. (7), (15) and (13) then yield

F (x1) =
c1
2

and F (xn) =
1 + cn−1

2
.
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This in combination with (15) and (16) implies

0 < x1 and xn < 1. (19)

We hence have
Eopt = inf

0<t<1
Erelopt(t). (20)

So fix some t ∈]0, 1[. It follows from (17) that any relatively optimal pair
(x, c) must fulfill

(∂/∂x1)E(x, c) = . . . = (∂/∂xn−1)E(x, c) = 0.

(18) and (13) then yield
F (x1) =

c1
2

(21)

and
F (xi) =

ci + ci−1

2
for i = 2, . . . , n− 1. (22)

(21) in combination with (18) implies x1 > 0. Any relatively optimal point must
also fulfill

(∂/∂c1)E(x, c) = . . . = (∂/∂cn−1)E(x, c) = 0.

Taking x1 > 0 and (17) into account, we have from (11):

cn−1 = F

(
t+ xn−1

2

)
and ci = F

(
xi+1 + xi

2

)
for 1 ≤ i ≤ n− 2. (23)

4.2 The reduction

We now consider a special ν0 ∈ PM which will serve as the substrate of the
further construction. Its distribution function F0 shall be zero on ] −∞, 0], one
on [1,∞[, and the polygon with nodes

(0, 0), (1/4, 1/2), (1/2, 3/4), (2/3, 5/6), (13/16, 7/8), (1, 1)

on [0, 1]. ν0 fulfills all the assumptions made in the previous subsection.
Let g be a function that fulfills (2). We define Fg : R → R by “implanting” the

graph of g/7 onto the segment of the graph of F0 over J := [A,B] := [2/3, 13/16]:
Put

g̃(t) :=

{
|J | · g((t−A)/|J |)/7 for t ∈ J ,

0 else,

and Fg(t) := F0(t)− g̃(t). As g̃ is in L(1/7) and F0 has slope 2/7 on J , we have
that Fg is still strictly increasing. So Fg is the distribution function of a measure
νg ∈ PM. Also note that∫ t

A

g̃(s) ds =
|J |2
7

∫ (t−A)/|J|

0

g(s) ds, t ∈ J, (24)
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Figure 2: The black polygon is the graph of Fg on [0, 1]. The green line is comprised
of all points (x1, c1) with Fg(x1) = c1/2. The blue polygon is then comprised of all
points (x2, c1) with (∃ x1)[Fg(x1) = c1/2∧c1 = Fg((x2+x1)/2)]. The relatively optimal
step functions for three different choices of x2 are depicted in yellow, turquoise and
magenta. The dashed red lines bound the stripe J × R.

so in particular ∫ B

A

g̃(s) ds = 0. (25)

In the following, we will be interested in optimal and relatively optimal rules
for n = 2. For abbreviation, we will omit n from our notation. Let us fix some
t ∈]0, 1[ and look for relatively optimal x1, c1. x1 and c1 must fulfill the conditions
(21) and (23). In fact, ν0 is constructed such that for every t ∈]0, 1[, these
equations have exactly one solution x1 = ξ(t), c1 = ζ(t) which does furthermore
not depend on g; this can be verified elementarily, but it is also apparent in
Figure 2. Taking (25) into account, it is not hard to verify that for every g and t

Erelopt(νg; t) =

{
Erelopt(ν0; t) − 2

∫ t

A
g̃(s) for t ∈ J,

Erelopt(ν0; t) else.
(26)

How to choose t such that Erelopt(νg; t) = Eopt(νg)? We already know that
the optimal t is in ]0, 1[, and that an optimal pair ((x1, t), (c1, 1)) must be rela-
tively optimal for t and additionally fulfill Fg(t) = (1 + c1)/2. These conditions
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Figure 3: The black, blue, and green polygons are the same as in in Figure 2. The red
polygon is comprised of all points (x2, c2) such that (∃x1)(∃ c1)[Fg(x1) = c1/2 ∧ c1 =
Fg((t+x1)/2∧Fg(x2) = (c2+c1)/2]. The remaining condition for optimality, i.e. c2 = 1,
is fulfilled by a point (x2, c2) on the red polygon if, and only if, x2 ∈ J and g̃(x2) = 0.

are fulfilled if, and only if, (see Figure 3)

x1 = ξ(t), c1 = ζ(t), t ∈ J, g̃(t) = 0.

Now consider the case g = 0. First note that the gradient

(∂/∂x1, ∂/∂x2, ∂/∂c1)E(ν0; (x1, x2), (c1, 1))

is continuous on {(x1, x2, c1) : 0 < x1 < x2 < 1}. (This is obvious for ∂/∂x1

and ∂/∂x2 by (12); for ∂/∂c1 it follows from (9) taking into account that F0

is strictly increasing on [0, 1].) We hence have that E(ν0; (., .), (., 1)) is totally
differentiable. It is elementary to verify (and becomes apparent when looking at
Figure 2) that ζ and ξ depend linearly and hence in particular differentiably on
t ∈ J . Furthermore, recall that ξ and ζ were chosen such that the above gradient
vanishes whenever x1 = ξ(t), x2 = t, c1 = ζ(t), t ∈ J . The chain rule now yields

(d/dt)Erelopt(ν0; t) = (d/dt)E(ν0; (ξ(t), t), (ζ(t), 1)) = 0

for all t ∈ J . So Erelopt(ν0, .) is constant on J , which means

E(ν0;x, c) = Eopt(ν0) ⇐⇒ (∃t ∈ J) (x, c) = ((ξ(t), t), (ζ(t), 1)). (27)
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For arbitrary g, we can now deduce from (26) and (27):

Erelopt(νg; t)

{
= Eopt(ν0) − 2

∫ t

A g̃(s) for t ∈ J,

> Eopt(ν0) else.
(28)

Proof of Theorem 1. Choose g to be the function from Proposition 8. By (28)
and (24), any optimal integration rule (x, a) for νg fulfills

g((x2 −A)/|J |) = max(g).

Hence x2 is not computable. ��

Proposition12. Statement 2(ii) implies Statement 9

Proof. Let g be a function that fulfills (2). If max(g) = 0, then Statement 9 of
course holds true for g. Hence assume that max(g) > 0. Assume that Statement
2(ii) holds true for ν = νg, and let φ be a function as therein. Then for all k ∈ N

φ(0k) = 〈x, c〉 =⇒ Erelopt(νg;x2) − Eopt(νg) ≤ 2−k.

By (28) and (24), we have Eopt(νg) < Eopt(ν0), i.e. there is a k0 such that
Eopt(ν0) − Eopt(νg) ≥ 2−k0 . (28) yields that

k ≥ k0 ∧ Erelopt(νg;x2) − Eopt(νg) ≤ 2−k =⇒ x2 ∈ J,

and hence again by (28)

k ≥ k0 ∧ φ(0k) = 〈x,a〉 =⇒ max
t∈J

∫ t

A

g̃(s) −
∫ x2

A

g̃(s) ≤ 2−(k+1)

=⇒ max(g) − g((x2 −A)/|J |) ≤ 2−(k+1) · 7/|J |2.

It is now obvious that a function γ as in Statement 9 exists. ��

5 Proof of Theorem 5

The following implications are obvious:

Statement 2(i) =⇒ Statement 2(ii),

Statement 4 =⇒ Statement 9,

And we have already shown

Statement 2(ii) =⇒ Statement 9,

Statement 9 =⇒ Statement 3.

951Bosserhoff V.: The Bit-Complexity of Finding Nearly Optimal Quadrature Rules ...



In order to prove Theorem 5, it is hence sufficient to prove

Statement 3 =⇒ Statement 2(i), (29)

Statement 3 =⇒ Statement 4. (30)

The proofs of (29) and (30) use standard techniques from [Ko 1991]. As they
are quite similar, we only give the proof of (29). The following lemma (whose
prove is an easy exercise) is preparatory:

Lemma13. Let f : [0, 1] → [0, 1] be measurable and non-decreasing. For given
k ∈ N let x1, . . . , x2k ∈ [0, 1] be numbers with |f(i2−k) − xi| ≤ 2−k for i =
1, . . . , 2k. Then

‖f −
2k∑
i=1

xiχ[(i−1)2−k,i2−k[‖L1([0,1]) ≤ 2−(k−1).

��

Proof of (29). Let ν be a measure as in Statement 2(i) and let F ∈ PC[0,1] be
its distribution function. It is clear that for every n ∈ N \ {0} and every (x, c) in

Tn := {(x, c) ∈ [0, 1]n × [0, 1]n : x1 ≤ . . . ≤ xn, cn = 1}

one has
E(ν, n;x, c) = ‖F − Sx,c‖L1[0,1];

we furthermore know from Section 4.1 that E(ν, n; ., .) attains its minimum on
Tn. For every k ∈ N put

Dk := {i2−k : i ∈ {1, . . . , 2k}}

and
Tn,k := Tn ∩ (Dn

k × Dn
k ).

It is not hard to see that for every n ∈ N \ {0} and (x, c) ∈ Tn there is an
(r, s) ∈ Tn,k such that

‖Sx,c − Sr,s‖L1([0,1]) ≤ n2−(k−1). (31)

As F ∈ PC[0,1], there is a polynomial-time computable ψ : (D ∩ [0, 1]) × N → D

such that

(∀ d ∈ D ∩ [0, 1])(∀ k ∈ N) [ψ(d, k) ∈ Dk and |ψ(d, k) − F (d)| ≤ 2−k].

It follows directly from the previous lemma that for every k ∈ N

‖F −Hk‖L1[0,1] ≤ 2−(k−1), (32)
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where Hk : [0, 1] → [0, 1] is defined as

Hk :=
2k∑
i=1

ψ(i2−k, k)χ[(i−1)2−k,i2−k[.

So, if � := k + �log(2 + n)� + 1 and (x, c) ∈ Tn,� is chosen such that

‖H� − Sx,c‖L1[0,1] = min
(r,s)∈Tn,�

‖H� − Sr,s‖L1[0,1], (33)

then

E(ν, n;x, c) − Eopt(ν, n)

= ‖F − Sx,c‖L1[0,1] − min
(r,s)∈Tn

‖F − Sr,s‖L1[0,1]

≤ ‖F − Sx,c‖L1[0,1] − min
(r,s)∈Tn,�

‖F − Sr,s‖L1[0,1] + n2−(�−1) [by (31)]

≤ ‖H� − Sx,c‖L1[0,1] − min
(r,s)∈Tn,�

‖H� − Sr,s‖L1[0,1]

+ 2 · 2−(�−1) + n2−(�−1)
[by (32)]

= 2 · 2−(�−1) + n2−(�−1) [by (33)]

≤ 2−k.

In order to prove that there is a function φ as in Statement 2(i), it is now
clearly sufficient to show that there is a function γ ∈ FP such that

(∀n ∈ N \ {0})(∀ k ∈ N) [ γ(〈0n, 0k〉) = 〈x, c〉 =⇒
‖Hk − Sx,c‖L1[0,1] = min

(r,s)∈Tn,k

‖Hk − Sr,s‖L1[0,1] ].

For every (r, s) ∈ Tn,k, one has that both Hk and Sr,s are step functions such
that the width and the height of each step are positive multiples of 2−k. The L1-
distance of the two functions can hence by computed by partitioning [0, 1]× [0, 1]
into 2−k × 2−k-rectangles and counting how many of these are covered by none
or both of the two graphs:

‖Hk − Sr,s‖L1[0,1] = 1 − 2−2kcardA(k, r, s),

where
A(k, r, s) := {(x, y) ∈ D2

k : R̃(k, r, s, x, y)}
and R̃ is the predicate given by

R̃(k, r, s, x, y) :⇐⇒ [min(ψ(x, k), Sr,s(x)) ≥ y or max(ψ(x, k), Sr,s(x)) < y] .
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Let θ : N×N → N be a bijective function with θ(i, j) ≥ 2ij and such that θ and
θ−1 are polynomial-time computable.3 Let [.] : {0, 1}∗ → D be defined by the
condition

(∀ k ∈ N)(∀ p ∈ {0, 1}k) [p] − 2−k is the number represented by 0.p.

Now define the predicate R ⊆ {0, 1}∗ by

R := {〈v, w〉 : if n, k ∈ N are such that θ(n, k) = |v|, then

v = p1 . . . pnq1 . . . qn0
|v|−2nk,

for suitable p1, . . . , pn, q1, . . . , qn ∈ Σk

with (([p1], . . . , [pn]), ([q1], . . . , [qn])) ∈ Tn,k

and w = ικ0|v|−2k for suitable ι, κ ∈ {0, 1}k and

R̃(k, ([p1], . . . , [pn]), ([q1], . . . , [qn]), [ι], [κ])}.

R is designed such that for all n ∈ N \ {0}, k ∈ N, (r, s) ∈ Tn,k

countR([r1]−1 . . . [rn]−1[s1]−1 . . . [sn]−10θ(n,k)−2nk) = card(A(k, r, s)).

Furthermore, for all n ∈ N \ {0}, k ∈ N and v ∈ Σθ(n,k):

countR(v) = maxcountR(θ(n, k))

⇐⇒ the first 2nk bits of v encode an (x, c) ∈ Tn,k with

‖Hk − Sx,c‖L1[0,1] = min
(r,s)∈Tn,r

‖Hk − Sr,s‖L1[0,1].

Under the assumption that Statement 3 is true and noting that R is in P, it is
now clear that a function γ as above exists. ��
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