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Abstract: We define and compare several probabilistic notions of computability for
mappings from represented spaces (that are equipped with a measure or outer mea-
sure) into computable metric spaces. We thereby generalize definitions by [Ko 1991]
and Parker (see [Parker 2003, Parker 2005, Parker 2006]), and furthermore introduce
the new notion of computability in the mean. Some results employ a notion of com-
putable measure that originates in definitions by [Weihrauch 1999] and [Schröder 2007].
In the spirit of the well-known Representation Theorem (see [Weihrauch 2000]), we
establish dependencies between the probabilistic computability notions and classical
properties of mappings. We furthermore present various results on the computability
of vector-valued integration, composition of mappings, and images of measures. Finally,
we discuss certain measurability issues arising in connection with our definitions.
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1 Introduction

1.1 Motivation

The considerations in this article are inspired by real-world situations like the
following: An agent (i.e. a person, a machine or a combination of such) has
the task to perform a measurement ξ of a physical magnitude. Then a 2−k-
approximation to the value f(ξ) shall be computed, where k ∈ N is a given
precision parameter and f : X → Y is a given function that maps the state space
X of the magnitude into a metric space (Y, d). When it comes to computations,
the abilities of the agent shall be modeled by a Turing machine; so the results of
the measurement must be available in machine readable form, i.e. encoded as a
string over some finite alphabet Σ. The space X will typically not be countable,
so the value ξ must be encoded as an infinite string. We assume that there is a
surjective partial mapping δ :⊆ Σω → X , a so-called representation of X , and
that the measuring device puts out a δ-name p ∈ dom(δ) of ξ, i.e. δ(p) = ξ.1 We
do not model the details of this process, so we can make no assumptions about
what particular δ-name of ξ will finally be extracted from the measurement. The
1 One should note here that the requirement of producing a δ-name from the outcome

of the measurement might be problematic in practice because the magnitude might
change over time.
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δ-name is progressively written onto the input tape of a Turing machine.2 The
codomain Y of f is typically not countable either, but we assume that Y has a
countable dense subset A, and that there is a partial mapping α :⊆ Σ∗ → A,
a so called notation of A. The question is: Is there a TM that takes a δ-name
p of some measured ξ as well as a precision parameter k as inputs and halts
(after a finite number of steps) with a word w on its output tape such that
d(f(ξ), α(w)) ≤ 2−k?

There are functions f for which there does not exist any Turing machine
that could perform the above task. This is the case, for example, if there is a
name p ∈ dom(δ) and a precision parameter k ∈ N such that no prefix of p

already determines f(δ(p)) up to precision 2−k. But even for functions for which
such a discontinuity does not occur, there is possibly no Turing machine for the
above task, simply because there are “too many functions” and “too few Turing
machines”; so far, however, no one has given an example of a function of the
latter kind, that comes up naturally in an application.

Now, additionally, assume that there is a σ-algebra S and a probability mea-
sure P such that (X,S, P ) is a probability space, and that the observed mag-
nitude is distributed according to P . The presence of a probability distribution
allows us to weaken the demands on the Turing machine above in several mean-
ingful ways; in particular, we might only ask for a TM that

(I) behaves correctly on P -almost every value of ξ, or

(II) behaves correctly, except on a set whose probability is at most 2−k

for any desired k, or

(III) produces an approximation whose expected error is at most 2−k for
any desired k.

In the following, it will be our aim to develop the foundations of a representation-
based computability theory for these three settings. Although probability mea-
sures are most interesting for applications, we will also consider more general
measures and outer measures whenever meaningful.

The general theory of Turing machine computability via representations is
developed in the textbook [Weihrauch 2000]; the present work is formulated to fit
into this framework. We will recall some basic notions from computable analysis
below, but refer to [Weihrauch 2000] for some more technical definitions.

We assume that the reader has a basic background on measure theory and
descriptive set theory. All facts we use can be found in any introductory textbook;
we occasionally refer to [Kallenberg 2002, Kechris 1995].

2 Each character of the name is extracted from the measurement before or just when
the TM queries the corresponding tape cell for the first time.
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1.2 Overview of the present work

In Section 2, we recall some definitions and results about continuity and com-
putability via representations. We recall the definitions of effective/computable
topological spaces (and what it means for them to be computably regular and
computably quasi-compact) and computable metric spaces. We introduce several
(multi-)representations of Borel measures and prove a result on computable mea-
sures on computable metric spaces. We finally recall some less common notions
from measure theory.

Section 3 contains precise definitions of the three weakened concepts of com-
putability corresponding to items (I), (II) and (III) above; by considering mixed
settings, we arrive at a total of five concepts. Each of these computability con-
cepts is accompanied by a corresponding relative continuity concept; multi-
representations of mappings that are relatively continuous in the respective sense
will be introduced.

The focus of Section 4 is on working out relations between the just men-
tioned probabilistic forms of relative continuity and classical properties of the
representations, spaces, measures and mappings.

In Section 5, we study the pairwise relations between the five concepts: we
either give a strong counter-example showing that one concept does not imply
the other, show that one concept always implies the other, or show that one
concept implies the other under mild additional assumptions.

Section 6 contains some positive results on the computability of integration of
probabilistically computable mappings. As the proofs are essentially the same,
we will not restrict ourselves to real-valued integrands, but we will prove the
results for vector-valued integrands.

In the final section, we take up three more or less unrelated natural questions.
The first two are: “Is the composition of probabilistically computable mappings
again probabilistically computable?” and “Is the image of a computable measure
under a probabilistically computable mapping again computable?” The third
question is about the measurability of a certain “local error function” and comes
up naturally in Section 3.

1.3 Related work

The book [Ko 1991] deals with computability and complexity of real functions in
a way that is consistent with [Weihrauch 2000]. For functions f : [0, 1] → R and
the Lebesgue measure λ, a weakened notion of computability, that corresponds
to item (II) above, is defined and studied in Chapter 5 of that book. Building on
Ko’s definitions, probabilistic computability notions for characteristic functions
of subsets of Rn have been studied by Parker in [Parker 2003, Parker 2005,
Parker 2006]; Parker’s definitions correspond to concepts (I) and (II). The works
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of Ko and Parker can be said to have taken a “bottom-up” approach by paying
most attention to Euclidean spaces; we are attempting to go “top-down” and
consider very general definitions.

The (multi-)representations of Borel-measures to be introduced below gen-
eralize/modify definitions by [Weihrauch 1999] and [Schröder 2007]. The reader
might also find the articles [Müller 1999] and [Schröder and Simpson 2006] of
interest. Furthermore, we would also like to mention the article [Gács 2005],
whose definition of a computable probability measure is equivalent to Schröder’s
for the special case of metric spaces.

[Wu and Weihrauch 2006] introduce computable measure spaces ; this notion
is further studied in e.g. [Wu and Ding 2005, Wu and Ding 2006]. The focus of
those works, however, is on representations (and the induced computability)
of measurable sets and measurable functions, while we are interested in com-
putability on points in a represented space that is in addition equipped with a
measure.

Furthermore, measure and integration have been treated from the viewpoints
of constructive mathematics (see [Bishop and Bridges 1985]), domain theory (see
[Edalat 1993, Edalat 1995]), and digital topology (see [Webster 2006]). It is be-
yond the scope of this article to work out the relations between these approaches
and the present one.

The main motivation for the present work was to establish weakened com-
putability notions that correspond to weakened notions of solvability (more
precisely the “probabilistic setting” and the “average-case setting”) studied in
information-based complexity (see [Traub et al. 1988]). IBC is mainly concerned
with numerical problems on function spaces and uses an algebraic (aka “real
number”-) model of computation. We hope that our definitions and results will
be useful for studying numerical problems in the Turing machine model. A first
application in this direction is given in [Bosserhoff], where the author answer a
question posed by [Traub and Werschulz 1999].

2 Preliminaries

2.1 Computable analysis via representations

Let Σ be a finite alphabet containing at least two symbols, and W ∈ {Σ∗, Σω}.
A naming system for a non-empty set X is a surjective partial mapping δ :⊆
W → X . If W = Σ∗, a naming system is called a notation; if W = Σω, a naming
system is called a representation. If X1 and X2 are sets with naming systems
δ1 :⊆ W1 → X1, δ2 ⊆: W2 → X2, and f is a mapping X1 → X2 , then a mapping
h :⊆ W1 → W2 is called a (δ1, δ2)-realization for f , if for every p ∈ dom(δ1), one
has h(p) ∈ dom(δ2) and (δ2 ◦ h)(p) = (f ◦ δ1)(p). f is called (δ1, δ2)-continuous
(-computable), if there exists a continuous (computable) (δ1, δ2)-realization for
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f , where the latter continuity is evaluated relative to the discrete topology on
Σ∗ and the Cantor topology on Σω.

A naming system δ of some set X is said to be continuously (computably)
reducible to another naming system δ′ of X , if the identity on X is (δ, δ′)-
continuous (-computable); we write δ ≤t δ′ (δ ≤ δ′). We write δ ≡t δ′ for
δ ≤t δ′ ∧ δ′ ≤t δ (and δ ≡ δ′ for δ ≤ δ′ ∧ δ′ ≤ δ).

It is sometimes convenient to represent the elements of X by names that do
not necessarily contain enough information to identify the elements uniquely.
One calls such a surjective multi-valued mapping δ :⊆ W ⇒ X a multi-notation
or multi-representation, respectively. The notions defined above for single-valued
naming systems have natural extensions for multi-valued naming systems; see
e.g. [Schröder 2002a].

Below, we will frequently use canonical notations νN of N and νQ of Q,
as well as the representations ρ, ρC , ρ<, ρ> of R, and ρ< of R ∪ {−∞,∞}
just as defined in [Weihrauch 2000]. We will work with the wrapping function
ι : Σ∗ → Σ∗, ι(a1a2 . . . an) := 110a10a20 . . . an011. We will also use standard
devices to construct new naming systems from given ones; these are described in
[Weihrauch 2000, Section 3.3]. For example, if δ is a naming system of X then
[δ]n shall be a representation of Xn, and [δ]ω shall be a representation of the set
Xω of sequences in X ; if Y ⊆ X , then δ|Y shall be the representation of Y that
is obtained by restricting δ to δ−1(Y ). We additionally use the convention: If X

is a set with a naming system δ, then put

[δ]<ω := [δ]1 ∨ [δ]2 ∨ [δ]3 ∨ · · · ,
(cf. [Weihrauch 2000, Definition 3.3.11.2]), i.e. [δ]<ω is a naming system of the
disjoint union

⋃
n≥1 Xn.

If X is a set with a representation δ, we shall write

W (δ, w) := δ(wΣω ∩ dom(δ))

for every w ∈ Σ∗. We denote by σ(δ−1) the smallest σ-algebra on X which
contains all sets W (δ, w), w ∈ Σ∗.

We finally note that any topological space that allows a continuous represen-
tation is hereditarily Lindelöf, i.e. every open cover of any subspace contains a
countable subcover.

2.2 Computable topological spaces

Below, we will frequently work with the notion of an effective/computable topo-
logical space and its standard representation (cf. [Weihrauch 2000, Section 3.2]):

Definition 2.1 (Effective/computable topological space). An effective to-
pological space is a tuple (X, β, ϑ), where X is a nonempty set, β is a countable
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subbase of a T0-topology on X , and ϑ is a notation of β. The standard repre-
sentation δ associated with (X, β, ϑ) is defined by

(p ∈ dom(δ) and ι(w)  p) ⇒ w ∈ dom(ϑ)

δ(p) = x :⇐⇒ {U ∈ β : x ∈ U} = {ϑ(w) : ι(w)  p}

for all w ∈ Σ∗, x ∈ X and p ∈ Σω. ( denotes the subword relation.) (X, β, ϑ)
is a computable topological space if dom(ϑ) is computably enumerable (c.e.).3

Definition 2.2. Let (X, β, ϑ) be an effective topological space. In a canonical
way, one can define

– a notation ϑ∩ of the set β∩ of all finite intersections of elements of β plus
the empty set.

– a notation ϑalg of the algebra A(β) generated by β.

A representation ϑ< of the hyperspace O(X) of open subsets of X shall then be
defined by

ϑ<(p) =
⋃
i

Ui :⇐⇒ [ϑ∩]ω(p) = (Ui)i.

The following two lemmas can be shown easily:

Lemma2.3. Let (X, β, ϑ) be an effective topological space. Then the following
mappings are computable w.r.t. the canonical representations given in Definition
2.2: Finite intersection on β∩; complementation, finite union and finite inter-
section on A(β); finite and countable union and finite intersection on O(X); the
embeddings β ↪→ β∩, β∩ ↪→ A(β), β∩ ↪→ O(X). ��

Lemma2.4. Let (X, β, ϑ) be a computable topological space with standard rep-
resentation δ. Put

D := {w ∈ Σ∗ : ι(v)  w ⇒ v ∈ dom(ϑ)}.

Then D is c.e., and for every w ∈ D one has W (δ, w) =
⋂

ι(v)�w ϑ(v). The
mapping D → β∩, w �→ W (δ, w), is (idΣ∗ |D, ϑ∩)-computable. ��

Computably regular topological spaces have been defined in [Schröder 1998];
we use the characterization given in [Schröder 1998, Lemma 4.2] as a definition:

3 This is a sightly weaker definition then the one found in [Weihrauch 2000]. We chose
this definition because it allows a simpler formulation of Lemma 2.8(ii) (as compared
to [Weihrauch 2000, Theorem 8.1.4.2]).
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Definition 2.5 (Computably regular space). An effective topological space
(X, β, ϑ) is computably regular if from every ϑ-name of every V ∈ β one can
[ϑ∩, ϑ<]ω-compute a sequence (Vn, Un)n in β∩ ×O(X) such that

V =
⋃
n

Vn and (∀n) [X \ V ⊆ Un and Vn ∩ Un = ∅].

Definition 2.6 (Computably quasi-compact space). Let (X, β, ϑ) be an ef-
fective topological space. Put

C := {(Un)n ∈ (β∩)ω :
⋃
n

Un = X}.

(X, β, ϑ) is computably quasi-compact if from every [ϑ∩]ω-name of every (Un)n ∈
C one can compute an m ∈ N such that

⋃
n≤m Un = X .

2.3 Computable metric spaces

Definition 2.7. A triple (X, d, α) is a computable metric space, if (X, d) is a
metric space and α :⊆ Σ∗ → A is a notation of a dense subset A of X , such
that dom(α) is c.e. and the restriction of d to A×A is (α, α, ρ)-computable. The
Cauchy representation δX :⊆ Σω → X associated with a computable metric
space is defined by

δX(p) = x :⇐⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
there are words w0, w1, . . . ∈ dom(α)

such that p = ι(w0)ι(w1) . . . ,

(α(wi)) converges to x, and

d(α(wi), α(wj)) ≤ 2−i for i < j.

For more information on computable metric spaces see [Weihrauch 2000, Sec-
tion 8.1].

For any metric space (X, d) define

(∀x0 ∈ X, ε > 0) B(x0, ε) := {x ∈ X : d(x0, x) < ε}
and

(∀x0 ∈ X, ε ≥ 0) B(x0, ε) := {x ∈ X : d(x0, x) ≤ ε}
The following is shown easily:

Lemma2.8. Let (X, d, α) be a computable metric space. A computable topolog-
ical space (X, β, ϑ) can be defined by putting

β := {B(a, r) : a ∈ range(α), r ∈ Q∩]0,∞[}
and

ϑ〈u, v〉 := B(α(u), νQ(v)).

If δ is the corresponding standard representation, then δX ≡ δ. (X, β, ϑ) is com-
putably regular. ��
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2.4 Computable measures

[Weihrauch 1999] considers a representation of probability measures on the unit
interval. [Schröder 2007] generalizes this definition to Borel probability measures
on arbitrary admissibly represented topological spaces. On the one hand, we will
only consider this definition for the special case of effective topological spaces
with standard representation. On the other hand, we will extend the represen-
tation to unbounded measures. The latter can be done in a straight-forward
manner, but then the representation will not be single-valued anymore. 4

Assumption 2.9 In this subsection, we assume that (X, β, ϑ) is an effective
topological space.

Definition 2.10. A multi-representation ϑM< of the class M(X) of Borel mea-
sures on X is given by

ν ∈ ϑM<(p) :⇐⇒ [ϑ< → ρ<](p) = ν|O(X).

Lemma2.11. The restriction of ϑM<(p) to locally finite measures is single-
valued.

Proof. Let ν1 and ν2 be locally finite Borel measures on X with ν1|O(X) =
ν2|O(X). O(X) is a ∩-stable generator of B(X), and – by the local finiteness of
ν1, ν2 and the Lindelöf property of X – contains an ascending sequence (On)n

with
⋃

n On = X and ν1(On) = ν2(On) < ∞ for all n. It is well-known that this
implies ν1 = ν2. ��

By including information on the value ν([0, 1]), [Weihrauch 1999] also defines
a representation of bounded Borel measures on [0, 1]. We generalize this idea:

Definition 2.12. A representation of the class M0(X) of finite Borel measures
on X is given by

ϑ0
M<〈p, q〉 = ν :⇐⇒ ϑM<(p) = ν and ρ>(q) = ν(X).

We will furthermore need the following strong representation:

Definition 2.13. A representation of the class M0(X) of finite Borel measures
on X is given by

ϑM=(p) = ν :⇐⇒ [ϑalg → ρ](p) = ν|A(β).

4 This is because the representation only contains information on the values of the
measure on open sets. Unbounded measures, however, are not necessarily defined
uniquely by these values.
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It is easy to see that ϑM= ≤ ϑ0
M<. It has been pointed out by Weihrauch (for

the case X = [0, 1]), however, that ϑM= has a number of undesirable properties
(see [Weihrauch 1999, Theorem 2.7]). We will work with this representation any-
way, because we do not see how to do without such strong information when it
comes to computing the integration operator on non-metric spaces (see Theorem
6.2 below).

There are ϑ0
M<-computable measures that are not ϑM=-computable5. From

a ϑ0
M<-name of a measure ν on a metric space, however, one can effectively find

a basis (Un)n of open sets and a sequence (Ũn)n of open sets such that X \ Un

and Ũn are ν-equivalent, as we shall now demonstrate. (A similar idea already
appears in [Weihrauch 1999, Proof of Theorem 3.6].) This will be useful in the
proofs of Theorems 5.11 and 6.3 below.

Assumption 2.14 We additionally assume that (X, β, ϑ) is the computable
topological space derived from a computable metric space (X, d, α) (see Lemma
2.8).

Lemma2.15. Put

Q := {(a, s, t) ∈ range(α) × Q × Q : 0 < s < t}.

Then from every ϑ0
M<-name of every ν ∈ M0(X) one can [[α, νQ, νQ]|Q → ρ]-

compute a mapping g : Q → R such that

(∀ (a, s, t) ∈ Q)
[
s ≤ g(a, s, t) ≤ t and ν

(
B(a, g(a, s, t)) \ B(a, g(a, s, t))

)
= 0
]
.

Proof. Let ν be a ϑ0
M<-encoded input measure. We demonstrate how to compute

a suitable g. Let (a, s, t) ∈ Q be an [α, νQ, νQ]-encoded input tuple to g. Put

Q′ := {(s′, t′) ∈ Q × Q : 0 < s′ < t′}

and
(∀ (s′, t′) ∈ Q′) R(s′, t′) := B(a, t′) \ B(a, s′).

From any (s′, t′) ∈ Q′ we can ϑ<-compute X \ R(s′, t′), and hence we can ρ>-
compute ν(X) − ν(X \ R(s′, t′)) = ν(R(s′, t′)). For all (s′, t′) ∈ Q′, we have

inf{ν(R(s′′, t′′)) : s′′, t′′ ∈ Q, s′ ≤ s′′ < t′′ ≤ t′} = 0

(because otherwise there would be a number c > 0 and a sequence

R(s′′0 , t′′0), R(s′′1 , t′′1), . . .

5 For example: Let (xn)n be a computable sequence of non-negative rationals such
that c :=

∑
n xn < 1 is not computable from the right. Now consider the measure ν

defined by ν(A) := (1 − c)χA(0) +
∑

n xnχA((n + 1)−1).
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of pairwise disjoint subsets of R(s′, t′) with ν(R(s′′i , t′′i )) > c for all i ∈ N, which
implies ν(R(s′, t′)) = ∞.) We can compute a mapping h : Q′ ×N → Q×Q such
that

h((s′, t′), k) = (s′′, t′′) =⇒ [s′ < s′′ < t′′ ≤ t′ and ν(R(s′′, t′′)) ≤ 2−k].

By repeated use of h, we can compute a sequence (sk, tk)k in Q × Q such that
s ≤ s0 < t0 ≤ t and

sk ≤ sk+1 < tk+1 ≤ tk, tk − sk ≤ 2−k, ν(R(sk, tk)) ≤ 2−k

for all k ∈ N. We can hence ρ-compute limk→∞ rk = limk→∞ sk =: g(a, s, t).
One has s ≤ g(a, s, t) ≤ t and

ν
(
B(a, g(a, s, t)) \ B(a, g(a, s, t))

)
= ν

(⋂
k

R(sk, tk)
)

= 0.

��

Corollary 2.16. From every [ϑ0
M<, [ϑ∩]ω]-name of every (ν, (Vn)n) ∈ M0(X)×

(β∩)ω one can [ϑ<, ϑ<, νN]ω-compute a sequence (Um, Ũm, nm)m in O(X) ×
O(X) × N such that⋃

m

Um =
⋃
n

Vn and Um ⊆ Vnm and ν((X \ Um)� Ũm) = 0.

Proof. Let ν ∈ M0(X) and (Vn)n ∈ (β∩)ω be given in the specified representa-
tions. It is easy to see that the computable metric structure of the space allows us
to [ϑ]ω×ω-compute a double-sequence (Ṽn,m)n,m ∈ βω×ω such that

⋃
m Ṽn,m =

Vn. We can hence reduce the algorithm to a procedure that takes as input a
ϑ-encoded element B(a, r) of β and puts out a sequence (Um, Ũm)m ∈ (O(X)×
O(X))ω such that

⋃
m Um = B(a, r), Um∩ Ũm = ∅, and ν(Um)+ν(Ũm) = ν(X).

So suppose we are given an [α, νQ]-name of some (a, r). Apply the algorithm
from Lemma 2.15 to ν; let g be the result. Put rn := g(a, r(1 − 2−(n+1)), r)
and choose Un = B(a, rn) and Ũn = X \ B(a, rn) (these sets can clearly be
ϑ<-computed). ��

Corollary 2.17. Fix a ϑ0
M<-computable measure ν. Then there exists a com-

putable topological space (X, βν , ϑν) such that

1. ν is ϑν
M=-computable,

2. δ ≡ δν , where δ and δν are the standard representations of (X, β, ϑ) and
(X, βν , ϑν), respectively.

3. (X, βν , ϑν) is computably regular.
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Proof. Apply the algorithm from Lemma 2.15 to ν; let g be the result. Let Q be
as in Lemma 2.15 and choose

βν := {B(a, g(a, r, s)) : (a, r, s) ∈ Q},
ϑν(w) = B(a, g(a, r, s)) :⇐⇒ [α, νQ, νQ](w) = (a, r, s).

It is not hard to verify items 2. and 3. It remains to show that ν|A(βν) is (ϑν
alg, ρ)-

computable.
We consider the correspondence G on A(βν) × (O(X) ×O(X)) with

(V, (U1, U2)) ∈ G :⇐⇒ ν(V �U1) = ν((X \ V )�U2) = 0.

We can compute a h : dom(ϑν) → dom([ϑ<, ϑ<]) such that

(∀ (a, r, s) ∈ Q)
[
[α, νQ, νQ](w) = (a, r, s)

=⇒ [ϑ<, ϑ<](h(w)) = (B(a, g(a, r, s)), X \ B(a, g(a, r, s)))
]
.

Note that
(∀w ∈ dom(ϑν)) (ϑν(w), [ϑ<, ϑ<](h(w))) ∈ G.

The correspondence G has the following properties:

(V, (U1, U2)) ∈ G ⇒ (X \ V, (U2, U1)) ∈ G,

(V, (U1, U2)), (V ′, (U ′
1, U

′
2)) ∈ G ⇒ (V ∪ V ′, (U1 ∪ U ′

1, U2 ∩ U ′
2)) ∈ G,

(V, (U1, U2)), (V ′, (U ′
1, U

′
2)) ∈ G ⇒ (V ∩ V ′, (U1 ∩ U ′

1, U2 ∪ U ′
2)) ∈ G.

In view of these properties and Lemma 2.3, one can extend h to a computable
h′ : dom(ϑν

alg) → dom([ϑ<, ϑ<]) with

(∀w ∈ dom(ϑν
alg)) (ϑν

alg(w), [ϑ<, ϑ<](h′(w))) ∈ G.

Let a ϑν
alg-input V ∈ A(βν) be given. Using h′, we can ϑ<-compute sets

U1, U2 ∈ O(X) such that (V, (U1, U2)) ∈ G. We can ρ<-compute ν(U1) and
ν(U2) by assumption. Because ν(U1) = ν(X) − ν(U2), we can also ρ>-compute
ν(U1). Finally note that ν(V ) = ν(U1) because ν(V �U1) = 0. ��

2.5 From measure theory

2.5.1 Completion of a measure space

Let (X,S, ν) be a measure space. A set N ⊆ X is called ν-null if there is a set
B ∈ S with ν(B) = 0 and N ⊆ B. A property P ⊆ X is said to hold ν-almost
everywhere (ν-a.e.) if X \ P is ν-null. The σ-algebra Sν generated by S and all
ν-null sets is called the completion of S w.r.t. ν. Sν contains exactly the sets
of the form A ∪ N with A ∈ S and N ν-null. We call the elements of Sν the
ν-measurable sets. The measure ν extends to a measure ν on Sν by putting
ν(A ∪ N) = ν(A). A measure space that is identical to its completion is called
complete.
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Lemma2.18. Let (X,S, ν) be a complete measure space and (Y,S′) a measur-
able space. Let f : X → Y be a mapping such that f |X\N is (S ∩ (X \ N),S′)-
measurable for some ν-null set N . Then f is (S,S′)-measurable. ��

2.5.2 Outer measures

An outer measure on a set X is a set function μ∗ : 2X → [0,∞] such that

μ∗(∅) = 0, A ⊆ B ⇒ μ∗(A) ≤ μ∗(B), μ∗(
⋃
n

An) ≤
∑

n

μ∗(An).

A set A ⊆ X is called μ∗-measurable if

(∀E ⊆ X) μ∗(E) = μ∗(E ∩ A) + μ∗(E \ A).

The μ∗-measurable sets form a σ-algebra MEASμ∗ . Restricting μ∗ to MEASμ∗

yields a complete measure space.
Let (X,S, ν) be a measure space. The measure ν induces an outer measure

ν∗ via
ν∗(A) := inf{ν(B) : B ∈ S, A ⊆ B}.

If ν is σ-finite, it turns out that MEASν∗ = Sν , and that ν and ν∗ coincide
on this σ-algebra. It is known that not every outer measure is induced by a
measure.

The following two results are actually well-known but usually not stated for
outer measures. We will use the second one in the proof of Proposition 4.2.

Lemma2.19 (Cantelli Theorem). Let X be a set with an outer measure μ∗.
Then for every sequence (An)n∈N of subsets of X with

∑
n μ∗(An) < ∞, we have

μ∗( lim supn An

)
= 0, where lim supn An :=

⋂
n

⋃
k≥n Ak.

Proof. One has μ∗(⋂
n

⋃
k≥n Ak

) ≤ μ∗(⋃
k≥m Ak

) ≤ ∑
k≥m μ∗(Ak) for every

m ∈ N. ��

For a topological space Y , let B(Y ) denote the Borel σ-algebra on Y , i.e. the
σ-algebra generated by the topology.

Lemma2.20. Let X be a set with an outer measure μ∗. If (fn)n∈N is a sequence
of (MEASμ∗ ,B(Y ))-measurable mappings from X into a metric space (Y, d), and
f : X → Y is an arbitrary mapping with

(∀n ∈ N) μ∗([d(fn, f) > 2−n]) ≤ 2−n, (1)

then6 f is (MEASμ∗ ,B(Y ))-measurable.

6 [d(fn, f) > 2−n] denotes the set {x ∈ X : d(fn(x), f(x)) > 2−n}. In the following,
similar expressions are to be interpreted accordingly.
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Proof. Define G := {x ∈ X : fn(x) → f(x)}. By Cantelli’s Theorem and (1),
we have

μ∗(X \ G) ≤ μ∗([(∀n)(∃k ≥ n) d(fk, f) > 2−k]) = 0.

From the completeness of (X, MEASμ∗ , μ∗), we especially have that G is μ∗-
measurable. [Kallenberg 2002, Lemma 1.10(ii)] implies that f |G = lim fn|G is
(MEASμ∗ ∩G,B(Y ))-measurable. The claim now follows from Lemma 2.18. ��

2.5.3 Outer integrals

Let (X,S, ν) be a measure space, and let h : X → [0,∞] be an arbitrary function.
We define the outer integral of h w.r.t. ν as∫ ∗

h dν := inf
{∫

g dν : g is (S,B(R))-measurable, h ≤ g

}
.

One easily verifies:

Lemma2.21. 1. The outer integral is monotone, i.e. h1 ≤ h2 ⇒ ∫ ∗
h1 dν ≤∫ ∗

h2 dν.

2. The outer integral is sublinear, i.e.
∫ ∗(h1 +h2) dν ≤ ∫ ∗

h1 dν +
∫ ∗

h2 dν and∫ ∗
th dν = t

∫ ∗
h dν for all t ∈ [0,∞).

3. For every A ⊆ X, one has ν∗(A) =
∫ ∗

χA dν.
��

2.5.4 Outer regularity

Let X be a topological space and let S be a σ-algebra on X that includes B(X).
A measure μ on S is called outer-regular if7

(∀A ∈ S) inf{μ(G \ A) : G ⊇ A, G open} = 0.

We will call an outer measure μ∗ on 2X outer-regular if

(∀A ∈ MEASμ∗) inf{μ∗(G \ A) : G ⊇ A, G open} = 0.

It is well known that on metric spaces all finite Borel measures are outer-
regular (see [Kallenberg 2002, Lemma 1.34]).

The following lemma will be needed in the proof of Theorem 4.8 below:
7 In many textbooks, a measure μ is called outer-regular if it fulfills the weaker con-

dition that μ(A) = inf{μ(G) : G ⊇ A, G open} for all A ∈ S . It will be crucial for
some of the results below that outer regularity is understood in the strong sense!
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Lemma2.22. Let X be a topological space, and let S be a σ-algebra on X that
includes B(X). Let μ be an outer-regular measure on S and let f : X → [0,∞]
be a μ-integrable function. Then the measure ν on S defined by ν(A) :=

∫
A f dμ

is outer-regular.

Proof. Let A ∈ S be arbitrary and consider a descending sequence (Gn)n∈N of
open sets such that Gn ⊇ A and μ(Gn \ A) → 0. The set C :=

⋂
n Gn \ A has

measure 0 and so
∫

C f dμ = 0. Dominated Convergence now yields
∫

Gn\A f dμ →
0. ��

3 Three probabilistic concepts of computability

Assumption 3.1 Throughout the remaining of this article, we denote by

– X, X1 nonempty sets,

– δ, δ1 naming systems of X, X1, respectively,

– (Y, d, α) a computable metric space with Cauchy representation δY ,

– μ∗ an outer measure on 2X ,

– S a σ-algebra on X ,

– ν a measure on (X,S),

– ν∗ the outer measure induced by ν.

3.1 The local error

Definition 3.2. For any mapping f : X → Y and any φ : dom(δ) → dom(α)
define the local error

e(f, δ, φ, ·) : X → [0,∞],

e(f, δ, φ, x) := sup
p∈δ−1{x}

d((α ◦ φ)(p), f(x)).

The following observation will be useful below:

Lemma3.3. Consider the assumptions of Definition 3.2, and additionally, let
g :⊆ W → dom(δ) (W ∈ {Σ∗, Σω}) be a mapping such that δ ◦ g is a naming
system of X. Then

(∀x ∈ X) e(f, δ ◦ g, φ ◦ g, x) ≤ e(f, δ, φ, x)

��
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3.2 Concept (I): Computability almost everywhere

Parker (see [Parker 2003, Parker 2005, Parker 2006]) introduces the concept of
“decidability up to measure zero”. The following is a rather straight-forward
generalization:

Definition 3.4. 1. A mapping f : X → X1 is (δ, δ1)ν
AE-continuous (-comput-

able) if there is ν-null set N ⊆ X such that f |X\N is (δ|X\N , δ1)-continuous
(-computable).

2. A multi-representation of the class AEδ,δ1,ν of all (δ, δ1)ν
AE-continuous map-

pings is given by

f ∈ [δ → δ1]νAE(p) :⇐⇒ there is a ν-null set N such that

[δ → δ1]X\N (p) = f |X\N ,

where [δ → δ1]X\N is defined in [Weihrauch 2000, Definition 3.3.13].

3.3 Concept (II): Computable approximation

The definitions in this subsection generalize a definition of Ko (cf. [Ko 1991,
Definition 5.10]).

For any mapping φ :⊆ N × A → B (for sets A, B) and any n ∈ N, we shall
denote by φn :⊆ A → B the mapping given by

dom(φn) := {a ∈ A : (n, a) ∈ dom(φ)} and φn(a) := φ(n, a).

Definition 3.5. Let f : X → Y be a mapping.

1. A mapping φ : N × dom(δ) → dom(α) is a (δ, α)μ∗
APP-realization of f if

(∀n ∈ N) μ∗([e(f, δ, φn, ·) > 2−n]) ≤ 2−n.

f is (δ, α)μ∗
APP-continuous (-computable) if it has a continuous (computable)

(δ, α)μ∗
APP-realization.

2. A multi-representation of the class APPδ,α,μ∗ of all (δ, α)μ∗
APP-continuous

mappings is given by

f ∈ [δ → α]μ
∗

APP(p) :⇐⇒ [[νN, iddom(δ)] → iddom(α)](p) is a

(δ, α)μ∗
APP-realization of f.

3. f is (δ, α)ν
APP-continuous (-computable) if f is (δ, α)ν∗

APP-continuous (-com-
putable). Define [δ → α]νAPP := [δ → α]ν

∗
APP.
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The definition just given requires (δ, α)μ∗
APP-realizations to be defined on all

of N × dom(δ), i.e. a Turing machine that implements such a realization must
halt on every (properly encoded) input from N×dom(δ) and put out an element
of dom(α). Concerning this definition, we assent to the following statement of
Parker (see [Parker 2003, p. 8]):

“Why require a machine that always halts? Assuming we have a ma-
chine that sometimes gives incorrect output, the epistemological situa-
tion would seem no worse if in principle that machine could also fail to
halt, but with probability zero.”

This leads to a combination of concepts (I) and (II):

Definition 3.6. Let f : X → Y be a mapping.

1. f is (δ, α)μ∗
APP/AE-continuous (-computable) if there is a μ∗-null set N ⊆ X

such that f |X\N is (δ|X\N , α)μ∗
APP-continuous (-computable).

2. A multi-representation of the class APP/AEδ,α,μ∗ of all (δ, α)μ∗
APP/AE-contin-

uous mappings is given by

f ∈ [δ → α]μ
∗

APP/AE(p) :⇐⇒ there is a μ∗-null set N such that

f |X\N ∈ [δ|X\N → α]μ
∗

APP(p).

3. f is (δ, α)ν
APP/AE-continuous (-computable) if f is (δ, α)ν∗

APP/AE-continuous (-
computable). Define [δ → α]νAPP/AE := [δ → α]ν

∗
APP/AE.

3.4 Concept (III): Computability in the mean

We now come to a notion that has been proposed in a talk by [Hertling 2005],
but has apparently not been treated in the literature so far. We would like to call
f “computable in the mean w.r.t. ν” if there is a computable Φ : N× dom(δ) →
dom(α) such that

(∀n ∈ N)
∫

e(f, δ, Φn, x) ν(dx) ≤ 2−n. (2)

But this is not a definition unless the integral is well-defined, i.e. unless we
impose additional conditions on X , δ, f , Φ, and S which ensure that e(f, δ, Φn, ·)
is (S,B(R))-measurable. We will discuss such conditions in Section 7.3. It is
possible, however, to give a reasonable definition of “computable in the mean”
that does not assume measurability of the local error. This is achieved in a
natural way by replacing the integral in (2) by an outer integral:

Definition 3.7. Let f : X → Y be a mapping.
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1. A mapping Φ : N × dom(δ) → dom(α) is a (δ, α)ν
MEAN-realization of f if

(∀n ∈ N)
∫ ∗

e(f, δ, Φn, x) ν(dx) ≤ 2−n.

f is (δ, α)ν
MEAN-continuous (-computable) if it has a continuous (computable)

(δ, α)ν
MEAN-realization.

2. A multi-representation of the class MEANδ,α,ν of all (δ, α)ν
MEAN-continuous

mappings is given by

f ∈ [δ → α]νMEAN(p) :⇐⇒ [[νN, iddom(δ)] → iddom(α)](p)

is a (δ, α)ν
MEAN-realization of f.

3. f is (δ, α)ν
MEAN/AE-continuous (-computable) if there is a ν-null set N ⊆ X

such that f |X\N is (δ|X\N , α)ν
MEAN-continuous (-computable).

4. A multi-representation of the class MEAN/AEδ,α,ν of all (δ, α)ν
MEAN/AE-con-

tinuous mappings is given by

f ∈ [δ → α]νMEAN/AE(p) :⇐⇒ there is a ν-null set N such that

f |X\N ∈ [δ|X\N → α]νMEAN(p).

The notion of MEAN-computability just defined has a property that one
would expect any reasonable notion of “computability in the mean” to have:
Recall the setting described in the introduction and suppose now that our agent
is supplied with a sequence of independent identically distributed measurements
of the physical magnitude and has the task to compute an approximation to f

on each of them. If f is “computable in the mean”, then there should be an
approximation algorithm whose error is small if one considers the arithmetic
mean over “a large number” of inputs.

Proposition3.8. Suppose that ν is a probability measure. Let (Ω,A, P ) be a
probability space and let (wi)i be a sequence of mappings wi : Ω → dom(δ) such
that the mappings δ ◦ wi are independent ν-distributed random variables. Let
f : X → Y be a mapping which has a (δ, α)ν

MEAN-realization Φ. Then for every
n ∈ N one has

lim sup
m→∞

1
m

∑
i<m

ei ≤ 2−n P -almost surely

where ei := d((α ◦ Φn)(wi), (f ◦ δ)(wi)).

Proof. For all i, we have ei ≤ e(f, δ, Φn, δ(wi)). It follows from Definition 3.7 and
the definition of the outer integral that there is a sequence (gk)k of measurable
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functions gk : X → [0,∞] such that e(f, δ, Φn, ·) ≤ gk and
∫

gk dν ≤ 2−n + 2−k

for every k. The Strong Law of Large Numbers (see [Kallenberg 2002, Theorem
4.23]) now yields that for every k

lim sup
m→∞

1
m

∑
i<m

ei ≤ lim
m→∞

1
m

∑
i<m

gk(δ(wi)) =
∫

gk dν ≤ 2−n + 2−k P -a.s.

Intersecting over k yields the claim. ��

We close this section with the following lemma which is a simple conse-
quence of Lemma 3.3. Its analogue for plain computability can be found in
[Weihrauch 2000, Exercise 3.3.13].

Lemma3.9. Suppose that δ′ is another naming system of X, and (∼,�) is one
of (APP, μ∗), (APP/AE, μ∗), (MEAN, ν), (MEAN/AE, ν).

1. If δ′ ≤t δ, then every (δ, α)�∼-continuous mapping is (δ′, α)�∼-continuous and
[δ → α]�∼ ≤t [δ′ → α]�∼.

2. If δ′ ≤ δ, then [δ → α]�∼ ≤ [δ′ → α]�∼.

3. If δ′ ≡ δ, then [δ → α]�∼ ≡ [δ′ → α]�∼.
��

4 Representation theorems

An important topic in TTE is the relation between (δ, δ1)-continuity and classi-
cal continuity of a mapping f : X → X1. A key result is the Kreitz-Weihrauch
Representation Theorem (see [Weihrauch 2000, Theorem 3.2.11]) which has later
been generalized by [Schröder 2002b]: A representation of a topological space is
called admissible, if it is continuous and every continuous representation of the
same space is continuously reducible to it. If both δ and δ1 are admissible, then
the (δ, δ1)-continuous mappings are exactly the sequentially continuous map-
pings. (Note that in most applications the topology of X is countably based,
and then sequential continuity is equivalent to plain continuity.)

In the spirit of the Representation Theorem (RT), we now seek for connec-
tions between classical properties of a mapping and its probabilistic relative
continuity as defined in the preceding section.

Proposition4.1 (RT for AE-Continuity). Assume that X and X1 are en-
dowed with topologies w.r.t. which δ and δ1 are admissible. Then a mapping
f : X → Y is (δ, δ1)ν

AE-continuous iff there is a ν-null set N such that f |X\N is
sequentially continuous.
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Proof. By [Schröder 2002b, Subsection 4.1], δ|X\N is an admissible representa-
tion of X \ N for any subset N of X . The claim hence follows from the Repre-
sentation Theorem. ��
Proposition4.2. Assume that σ(δ−1) ⊆ MEASμ∗ . Then every (δ, α)μ∗

APP/AE-
continuous f : X → Y is (MEASμ∗ ,B(Y ))-measurable.

Proof. It follows from Lemma 2.18 that it is sufficient to prove the claim for
(δ, α)μ∗

APP-continuous f . Let φ be a continuous (δ, α)μ∗
APP-realization of f , and

let (am)m∈N be an enumeration of dom(α). For every n, m ∈ N put An,m :=
φ−1

n {am}. Then every An,m is open in dom(δ), and dom(δ) ⊆ ⋃
m An,m. The

assumption σ(δ−1) ⊆ MEASμ∗ implies that all sets Dn,m := δ(An,m) are μ∗-
measurable. Define

c(n, x) := min{m ∈ N : x ∈ Dn,m},
fn(x) := α(ac(n,x)).

Then f−1
n {am} = Dn,m \⋃k<m Dn,k for every m, which yields that the fn are

(MEASμ∗ ,B(Y ))-measurable. fn(x) is the output of φn on a certain name of
x; it hence follows from the definition of the local error that d(fn(x), f(x)) ≤
e(f, δ, φn, x) for all x ∈ X , so μ∗([d(f, fn) > 2−n]) ≤ 2−n for every n ∈ N. The
claim now follows with Lemma 2.20. ��
Proposition4.3. Suppose X is endowed with a topology w.r.t. which δ is con-
tinuous and μ∗ is outer-regular. Then every (MEASμ∗ ,B(Y ))-measurable f :
X → Y is (δ, α)μ∗

APP-continuous.

Proof. Let (am)m∈N be an enumeration of dom(α). For all m, n ∈ N, put

Am,n := f−1(B(α(am), 2−n)).

Note that X =
⋃

m Am,n. By the outer regularity of μ∗, there are open sets Gm,n

with Am,n ⊆ Gm,n and μ∗(Gm,n \ Am,n) ≤ 2−(n+m+1). Now for every n ∈ N,
there is a continuous “selector” cn : dom(δ) → N such that δ(p) ∈ Gcn(p),n for
every p ∈ dom(δ). Put φ(n, p) := acn(p). It is easy to see that

[e(f, δ, φn, ·) > 2−n] ⊆
⋃

m∈N

(Gm,n \ Am,n)

and that the set on the right hand side has μ∗-content at most 2−n. ��
Combining the last two propositions yields the following corollary, which

should apply in most situations of practical interest:

Corollary 4.4 (RT for APP-Continuity). Suppose that X is topological, δ

is continuous, μ∗ is outer-regular, and σ(δ−1) ⊆ MEASμ∗ . Then for every map-
ping f : X → Y , the following statements are equivalent:
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1. f is (δ, α)μ∗
APP-continuous.

2. f is (δ, α)μ∗
APP/AE-continuous.

3. f is (MEASμ∗ ,B(Y ))-measurable.
��

The next result follows as simple combination of Proposition 4.2 and Propo-
sition 5.1; although the latter will be proved only below, we think that the
corollary should be stated already here:

Corollary 4.5. Assume that σ(δ−1) ⊆ MEASν∗ . If f : X → Y is (δ, α)ν
MEAN/AE-

continuous, then f is (MEASν∗ ,B(Y ))-measurable. ��
We will see below (Proposition 5.4.2) that conditions such as those of Propo-

sition 4.3 (δ continuous, ν outer-regular, f measurable) are not sufficient to
ensure MEAN-continuity. The next natural step is to consider integrable f . This
makes sense only if Y is a normed space.

Assumption 4.6 Throughout the remaining of this section, we additionally
assume that

– Y is a normed space with norm ‖ · ‖, and d is the metric induced by the
norm.

– 0 ∈ range(α).

– X is endowed with a topology.

Proposition4.7. Suppose that δ is open and ν∗ is locally finite. If a mapping
f : X → Y is (δ, α)ν

MEAN-continuous, then ‖f‖ is locally outer-integrable w.r.t.
ν, i.e. for every x ∈ X there is an open neighbourhood G ⊆ X of x such that∫ ∗

G
‖f‖ dν < ∞.

Proof. Let Φ be a continuous (δ, α)ν
MEAN-realization of f . Let x0 ∈ X be arbitrary,

and let p be an arbitrary δ-name of x0. Φn is constantly equal to Φn(p) on an
open (in dom(δ)) neighbourhood U ⊆ dom(δ) of p. Put a := (α ◦Φ0)(p). By the
definition of the local error, we have

(∀x ∈ δ(U)) e(f, δ, Φ0, x) ≥ ‖a − f(x)‖.
δ(U) is open, and by the local finiteness of ν∗, we can find an open neighbourhood
G ⊆ δ(U) of x0 such that ν∗(G) < ∞. We finally have

1 ≥
∫ ∗

e(f, δ, Φ0, x) ν(dx) ≥
∫ ∗

G

e(f, δ, Φ0, x) ν(dx) ≥
∫ ∗

G

‖a − f(x)‖ ν(dx)

≥
∫ ∗

G

‖f‖ dν −
∫ ∗

G

‖a‖ dν ≥
∫ ∗

G

‖f‖ dν − ν∗(G)‖a‖.

��
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Theorem 4.8 Suppose that δ is continuous, B(X) ⊆ S, ν is outer-regular, f

is (S,B(Y ))-measurable, and ‖f‖ is locally ν-integrable. Then f is (δ, α)ν
MEAN-

continuous.

Proof. We first assume that ‖f‖ is integrable over the whole space. Let (am)m∈N

be an enumeration of dom(α). For all m, n ∈ N put

Am,n :=

{
f−1( B(α(am), min{2−n, ‖α(am)‖/2}) ) if α(am) �= 0

f−1{0} else.

Note that X =
⋃

m Am,n. Put Cm,n := Am,n \⋃k<m Ak,n and

gn :=
∑
m

α(am)χCm,n ,

and note that (gn) converges to f pointwise and that ‖f − gn‖ ≤ ‖f‖. So (gn)
converges to f in L1(ν) by Dominated Convergence. By transition to a subse-
quence, we can assume that

∫ ‖f −gn‖ dν < 2−(n+1) for all n ∈ N. The measures
νn on S defined by

νn(A) :=
∫

A

‖gn‖ dν

are outer-regular by Lemma 2.22. So there are open sets Gm,n with Gm,n ⊇ Cm,n

and ν(Gm,n \ Cm,n) ≤ (2n+m+3 · max{1, ‖α(am)‖})−1 and νn(Gm,n \ Cm,n) ≤
2−(n+m+3). Now for every n ∈ N there is a continuous mn : dom(δ) → N such
that δ(p) ∈ Cmn(p),n for every p ∈ dom(δ). Put Φn(p) = amn(p). We have∫ ∗

e(f, δ, Φn, x) ν(dx)

≤
∫

‖f − gn‖ dν +
∫ ∗

e(gn, δ, Φn, x) ν(dx)

≤ 2−(n+1) +
∑
m

∫
Gm,n\Cm,n

‖α(am) − gn(x)‖ν(dx)

≤ 2−(n+1) +
∑
m

ν(Gm,n \ Cm,n)‖α(am)‖ +
∑
m

νn(Gm,n \ Cm,n)

≤ 2−n.

We have hence shown that f is (δ, α)ν
MEAN-continuous.

Now assume that ‖f‖ is only locally integrable. Remember that X is Lindelöf
(because it allows a continuous representation). There hence is a countable open
cover (G
)
 of X , such that ‖f‖ is integrable on each G
. By the first part
of the proof, each mapping f |G�

is (δ|G� , α)ν
MEAN-continuous; let Φ(
) be the

corresponding realization. Let c : dom(δ) → N be a continuous selector such that
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δ(p) ∈ Gc(p) for every p ∈ dom(δ). Now put Φ(n, p) := Φ(c(p))(n + c(p) + 1, p).
One then has the estimate:∫ ∗

e(f, δ, Φn, x) ν(dx) ≤
∫ ∗

sup



χG�
(x)e(f, δ, Φ

(
)
n+
+1, x) ν(dx)

≤
∑




∫ ∗

G�

e(f, δ, Φ
(
)
n+
+1, x) ν(dx)

≤ 2−n.

��

The following corollary should apply in most situations of practical interest:

Corollary 4.9 (RT for MEAN-Continuity). Suppose that the topology of X

is countably-based T0, δ is admissible, B(X) ⊆ S, ν is locally finite and outer-
regular, and f : X → Y is (S,B(Y ))-measurable. Then f is (δ, α)ν

MEAN-continuous
iff ‖f‖ is locally integrable w.r.t. ν.

Proof. The “if” direction follows directly by Theorem 4.8. For the “only if”
direction, first recall that an admissible representation of a countably-based T0-
space is continuously equivalent to an open standard representation of that space
(see [Schröder 2002b, Section 2.2]). By Lemma 3.9, it is hence sufficient to prove
the assertion for open δ. It then follows directly from Proposition 4.7. ��

5 Mutual relations between the probabilistic computability
notions

5.1 Simple reductions and strong counter-examples

We will now clarify the mutual relations between the concepts defined above.
The first proposition sums up the cases in which there is a computable reduction
of one multi-representation to the other. Then we give some strong counter-
examples – i.e. examples involving functions from [0, 1] to R and the Lebesgue
measure – for other cases. The remaining cases are treated in the next subsection.

Proposition5.1. 1. [δ → δ1] ≤ [δ → δ1]νAE.

2. [δ → δY ]νAE ≤ [δ → α]νAPP/AE.

3. [δ → α]νMEAN ≤ [δ → α]νAPP.

4. [δ → α]νMEAN/AE ≤ [δ → α]νAPP/AE.
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Proof. 1. and 2. are obvious. 4. is a corollary of 3. We prove 3.: Lemma 2.21
yields that for every h : X → [0,∞] and every ε > 0, one has∫ ∗

h dν ≥
∫ ∗

ε · χ[h>ε]dν = ε · ν∗([h > ε]).

From this it immediately follows: If Φ is a (δ, α)ν
MEAN-realization of some f , then

a (δ, α)ν
APP-realization φ of the same f is given by φ(n, p) := Φ(2n, p); this yields

a computable reduction. ��

Lemma5.2. Suppose that Y is a normed space, the mapping a �→ ‖a‖ is (α, ρ)-
computable, and ν is finite. Consider the set

B := {(f, N) : f : X → Y is (δ, α)ν
APP-continuous, N ∈ N, and ‖f‖ ≤ N}.

The mapping (f, N) �→ f is ([[δ → α]νAPP, νN]|B , [δ → α]νMEAN)-computable.

Proof. We need to demonstrate how to compute a (δ, α)ν
MEAN-realization Φ of

some f from a (δ, α)ν
APP-realization φ of f and an integer bound N ≥ ‖f‖. We

can assume N > 0. Fix an a0 ∈ dom(α) such that ‖α(a0)‖ ≤ N . We can compute
a φ′ : dom(φ) → dom(α) such that for all (n, p) ∈ dom(φ), one has

φ′(n, p) ∈ {φ(n, p), a0},
‖(α ◦ φ)(n, p)‖ ≥ 3N + 1 =⇒ φ′(n, p) = a0,

‖(α ◦ φ)(n, p)‖ ≤ 3N =⇒ φ′(n, p) = φ(n, p).

By distinguishing the cases

(i) ‖(α ◦ φ)(n, p)‖ ≤ 3N, (ii) 3N < ‖(α ◦ φ)(n, p)‖ < 3N + 1,

(iii) 3N + 1 ≤ ‖(α ◦ φ)(n, p)‖,

one finds that

(∀ a ∈ B(0, N)) ‖(α ◦ φ′)(n, p) − a‖ ≤ min{‖(α ◦ φ)(n, p) − a‖, 4N + 1};

hence one has e(f, δ, φ′
n, ·) ≤ min{e(f, δ, φn, ·), 4N + 1}. This yields∫ ∗

e(f, δ, φ′
n, ·) dν ≤ ν∗([e(f, δ, φn, ·) > 2−n])(4N + 1) + 2−nν(X)

≤ 2−n(4N + 1 + ν(X))

for all n ∈ N. A suitable Φ is hence given by

Φ(n, p) := φ′(n + �log(4N + 1 + ν(X))�, p).

��
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Proposition5.3. There is a set S ⊆ [0, 1] such that χS is (ρ, νQ)λ
MEAN-comput-

able but not (ρ, ρ)λ
AE-continuous.

Proof. Parker (see [Parker 2003, Theorem IV]) considers a positive-measure Can-
tor set S ⊆ [0, 1] and proves that χS is (ρ, νQ)λ

APP-computable but not (ρ, ρ)λ
AE-

continuous (although he does not use these terms). By the previous lemma, χS

is even (ρ, νQ)λ
MEAN-computable. ��

Proposition5.4. 1. There is a function f : [0, 1] → R which is (ρ|[0,1], ρ)λ
AE-

and (ρ|[0,1], νQ)λ
MEAN/AE-computable but not (ρ|[0,1], νQ)λ

MEAN-continuous.

2. There is a function f : [0, 1] → R which is (ρ|[0,1], νQ)λ
APP-computable but not

(ρ|[0,1], νQ)λ
MEAN/AE-continuous.

Proof. Recall that ρ|[0,1] is an open representation of [0, 1]. We can hence apply
Proposition 4.7.

For item 1., simply consider f(x) := x−1 · χ(0,1](x), which clearly is com-
putable and MEAN-computable on (0, 1], but not locally integrable in 0.

For item 2., we need a more elaborate example: For every a ∈ [0, 1], n ∈ N,
define

fa,n(x) := (x − a)−1χ(a,a+2−n]∩[0,1](x).

Let (an)n∈N be a computable dense sequence of rationals in [0, 1]. Choose f̃ :=
supn∈N fan,n. f̃ is a measurable function into R, that is not integrable on any
open subset of [0, 1], because any such open subset must contain an interval of the
form [an, an +ε] =: I and one already has

∫
I fan,n dλ = ∞. Obviously, f̃(x) = ∞

implies that x is contained in infinitely many of the (a, a + 2−n], and hence
Cantelli’s Theorem yields λ([f̃ = ∞]) = 0. So, the function f := f̃ ·χ[f̃ �=∞] is into
R and is still measurable and nowhere integrable. Clearly, f |X\N is still nowhere
integrable for any ν-null set N . So f is not (ρ|[0,1], νQ)λ

MEAN/AE-continuous. On
the other hand, it is not hard to see that f is (ρ|[0,1], νQ)λ

APP-computable. ��

5.2 Reductions that require certain effectivity assumptions

Only the following relations have not been covered yet: AE�MEAN/AE, AE�
APP, APP/AE � APP, MEAN/AE � APP. For these, computable reductions
do not exist in general, but under a number of additional assumptions, which
should, however, be fulfilled in most situations of practical interest.

The question whether AE-computability implies MEAN/AE-computability
leads to the question whether plain computability implies MEAN-computability.
Note that if ν is a measure on [0, 1] which is not locally finite, c ∈ R \ Q is
computable, and f(x) := c for all x ∈ [0, 1], then f is (ρ, ρ)-computable but
not (ρ, νQ)ν

MEAN-continuous. Buf if ν is locally finite (in an effective sense), a
reduction can be proved:
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AE

APP/AE

MEAN/AE

APP

MEAN

Figure 1: The graphic subsumes the results of Section 5.1. A solid arrow indicates
computable reduction, a dashed arrow indicates a strong counter-example.

Definition 5.5. Suppose that X is topological and θ is a representation of the
hyperspace O(X) of open subsets of X . Then μ∗ is effectively locally finite w.r.t.
θ if there is a [θ, νN]ω-computable sequence (Ur, Mr)r in O(X) × N such that
X =

⋃
r Ur and μ∗(Ur) ≤ Mr for all r ∈ N.

Definition 5.6. Suppose that X is topological, δ is continuous, and θ is a rep-
resentation of the hyperspace O(X) of open subsets of X . δ and θ are said to be
compatible, if the relation {(x, U) ∈ X ×O(X) : x ∈ U} is (δ, θ)-c.e.

Proposition5.7. Suppose that X is topological, δ is continuous, and θ is a
compatible representation of O(X). Further suppose that ν∗ is effectively locally
finite w.r.t. θ. Then

1. [δ → δY ] ≤ [δ → α]νMEAN.

2. [δ → δY ]νAE ≤ [δ → α]νMEAN/AE.

Proof. Item 2. follows from item 1. We prove 1.: We need to demonstrate how to
compute a (δ, α)ν

MEAN-realization Φ of some f from a mapping φ : N×dom(δ) →
dom(α) with e(f, δ, φn, x) ≤ 2−n for all x ∈ X , n ∈ N. So let an input pair
(n, p) ∈ N×dom(δ) be given. As ν∗ is effectively locally finite, there is a sequence
(Ur, Mr)r as in Definition 5.5. As δ and θ are compatible, we can effectively
determine a c(p) ∈ N such that δ(p) ∈ Uc(p). Put

Φ(n, p) := φ(n + �log Mc(p)� + 1, p).
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The correctness of this procedure follows from the estimate∫ ∗
e(f, δ, Φn, x) ν(dx) ≤

∫ ∗
sup

r
χUr (x)e(f, δ, φn+�log Mr+1, x) ν(dx)

≤
∑

r

Mr2−(n+�log Mr+1) ≤ 2−n.

��

We will next look for assumptions that imply computable reducibility from
APP/AE to APP (and hence from AE to APP and from MEAN/AE to APP).
The next lemma is intended as preparation for the proof of Theorem 5.9.8

Lemma5.8. Suppose that X is topological, δ is continuous, and θ is a compat-
ible representation of O(X). Furthermore, suppose that

(i) there is a [θ]ω-computable sequence (Ur)r in O(X) such that X =
⋃

r Ur and

(ii) from any prefix-free sequence (w
)
 in Σ∗ with

μ∗
(

X \
⋃



W (δ, w
)

)
= 0

and any r, k ∈ N, one can [θ]ω-compute a sequence (V
)
 in O(X) and θ-
compute a set Ṽ ∈ O(X), such that

Ur ⊆
⋃



V
 ∪ Ṽ

and μ∗(L) ≤ 2−k where

L := Ur ∩
(

Ṽ ∪
⋃



(V
 \ W (δ, w
))

)
.

Then [δ → α]μ
∗

APP/AE ≤ [δ → α]μ
∗

APP.

Proof. We need to demonstrate how to compute a [δ → α]μ
∗

APP-realization φ of
some f from a [δ → α]μ

∗
APP/AE-realization φ′ of f . So suppose we are given an

input pair (n, p) ∈ N×dom(δ). We simulate φ′ on all (m, q) ∈ N×Σω; whenever
φ′ converges, we check whether the output is in dom(α). This way we compute
a double-sequence (wm,
, am,
)m,
 in Σ∗ × dom(α) such that the following holds
for all m: the sequence (wm,
)
 is prefix-free,

⋃

 wm,
Σ

ω ⊇ δ−1(X \N) (where N

is as in Definition 3.6), and φ′(m, q) = am,
 whenever δ(q) ∈ X \N , q ∈ wm,
Σ
ω.

8 But Lemma 5.8 might also be interesting in its own right, because the assumptions
it makes are somewhat weaker than needed for the proof of Theorem 5.9.
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As φ′ is a [δ → α]μ
∗

APP/AE-realization of f , we have μ∗(Hm) ≤ 2−m for every m

where
Hm :=

⋃



([d(f, α(am,
)) > 2−m] ∩ W (δ, wm,
)).

We can now apply assumption (ii) to each sequence (wm,
)
 and compute se-
quences (Vm,
,r,k)m,
,r,k and (Ṽm,r,k)m,r,k such that

Ur ⊆
⋃



Vm,
,r,k ∪ Ṽm,r,k

and μ∗(Lm,r,k) ≤ 2−k, where

Lm,r,k := Ur ∩
(

Ṽm,r,k ∪
⋃



(Vm,
,r,k \ W (δ, wm,
))

)
.

Now first find an r0 such that δ(p) ∈ Ur0 , then put m0 := n+1, k0 := n+ r0 +2
and effectively determine a set

A ∈ {Vm0,
,r0,k0}
 ∪ {Ṽm0,r0,k0}
with δ(p) ∈ A. In case that A is Ṽm0,r0,k0 , put out an arbitrary a ∈ dom(α); in
case that A is Vm0,
,r0,k0 for some �, put out am0,
.

We have to verify that the φ computed by this algorithm is correct. From
the construction it follows that if d((α ◦ φ)(p, n), (f ◦ δ)(p)) > 2−n for some
p ∈ dom(δ), n ∈ N, then this must be because of one of the following:

– δ(p) ∈ N ,

– δ(p) ∈ Hn+1 \ N (i.e. δ(p) is in the set where φ′
n+1 does not work well),

– there is an r ∈ N such that δ(p) ∈ Ln+1,r,n+r+2 \ (N ∪ Hn+1) (i.e. φ′
n+1

would work well on p, but φn+1 possibly differs from it here).

We can hence estimate:

μ∗([e(f, δ, φn, ·)] > 2−n) ≤ μ∗(Hn+1) +
∑

r

μ∗(Ln+1,r,n+r+2)

≤ 2−(n+1) +
∑

r

2−(n+r+2) = 2−n.

��
Theorem 5.9 Let (X, β, ϑ) be a computably regular computable topological space
with standard representation δ. Let ν be a ϑM<-computable Borel measure on X

with the additional property:

ν|β takes only finite values and is (ϑ, ρ>)-computable. (3)

Then [δ → α]νAPP/AE ≤ [δ → α]νAPP.
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We start with an auxiliary lemma:

Lemma5.10. Under the assumptions of Theorem 5.9, we can ϑ<-compute from
every [ϑ, νN]-name of every (V, k) ∈ β × N a U ∈ O(X) such that X \ V ⊆ U

and ν(V ∩ U) ≤ 2−k.

Proof. From the ϑ-input V one can [ϑ∩, ϑ<]ω-compute a sequence (Vn, Un)n as
in Definition 2.5. As the number ν(V ) can be ρ>-computed and the numbers
ν(V0 ∪ . . . ∪ Vm) can be ρ<-computed for every m, we can effectively find some
m such that

ν(V ∩U0 ∩ · · · ∩Um) ≤ ν(V \ (V0 ∪ . . .∪ Vm)) = ν(V )− ν(V0 ∪ . . .∪ Vm) ≤ 2−k.

So put out U0 ∩ · · · ∩ Um. ��

Proof of Theorem 5.9. It is sufficient to check that assumptions of Lemma 5.8
are fulfilled for μ∗ = ν∗ and θ = ϑ<. It is easy to check that that δ and ϑ< are
compatible. Let us turn to assumptions (i) and (ii) from the lemma: Let (ur)r be
a computable enumeration of dom(ϑ); choose Ur := ϑ(ur). Now suppose we are
given a sequence (w
)
 and r, k as in assumption (ii). If D is defined as in Lemma
2.4, we can compute a sequence (w′


)
 such that {w′

}
 = {w
}
 ∩D. For w /∈ D,

one has W (δ, w) = ∅, so (w′

)
 still has the property ν (X \⋃
 W (δ, w′


)) = 0. Let
us w.l.o.g. assume that {w
}
 ⊆ D. By the second assertion of Lemma 2.4, we
can [ϑ∩]ω-compute the sequence (W (δ, w
))
. We have ν (Ur \

⋃

 W (δ, w′


)) = 0,
and hence, in view of the computability of ν and (3), we can effectively find a
number s ∈ N such that

ν
(
Ur \

⋃

≤s

W (δ, w
)
)

= ν(Ur) − ν
(
Ur ∩

⋃

≤s

W (δ, w
)
) ≤ 2−(k+1).

Choose

V
 :=

{
W (δ, w
) for � ≤ s

∅ for � > s.

Resolving the definition of ϑ∩, we have a [[ϑ]<ω]s-computable tuple

((V1,1, . . . , V1,t(1)), . . . , (Vs,1, . . . , Vs,t(s)))

such that W (δ, w
) = V
,1 ∩ · · · ∩ V
,t(
) for all � ≤ s. For all � ≤ s and i ≤ t(�),
apply the auxiliary lemma to the pair (V
,i, �log s + log t(�)� + k + 1) and let

((Ṽ1,1, . . . , Ṽ1,t(1)), . . . , (Ṽs,1, . . . , Ṽs,t(s)))

be the tuple [[ϑ<]<ω]s-computed that way. Choose

Ṽ :=
⋂

≤s

⋃
i≤t(
)

Ṽ
,i
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and note that we can ϑ<-compute Ṽ . One easily verifies that X ⊆ ⋃

 V
 ∪ Ṽ ,

and hence the first part of assumption (iv) is fulfilled. The second part is fulfilled
because

Ur ∩
(
Ṽ ∪

⋃



(V
 \ W (δ, w
))
)

= Ur ∩ Ṽ

and

ν(Ur ∩ Ṽ ) ≤ ν
( ( ⋃


≤s

W (δ, w
)
) ∩ Ṽ

)
+ 2−k+1

= ν
( ( ⋃


≤s

⋂
i≤t(
)

V
,i

) ∩ ( ⋂

≤s

⋃
i≤t(
)

Ṽ
,i

) )
+ 2−k+1

≤
∑

≤s

ν
( ( ⋂

i≤t(
)

V
,i

) ∩ ( ⋃
i≤t(
)

Ṽ
,i

) )
+ 2−k+1

≤
∑

≤s

∑
i≤t(
)

ν(V
,i ∩ Ṽ
,i) + 2−k+1

≤ 2−k.

��

Theorem 5.9 is in fact a generalization of result of Parker (cf. [Parker 2003,
Theorem II]), who proves that the characteristic function of a subset of Eu-
clidean space is APP-computable if it is AE-computable with respect to Lebesgue
measure. Parker’s proof already contains the central ideas of our the proof of
Theorem 5.9.

We have the following corollary for finite measures on metric spaces:

Theorem 5.11 Suppose that (X, β, ϑ) is the computable topological space de-
rived from a computable metric space (see Lemma 2.8), and let δ be its stan-
dard representation. Also suppose that ν is a ϑ0

M<-computable measure. Then
[δ → α]νAPP/AE ≤ [δ → α]νAPP.

Proof. Apply Corollary 2.17 to (X, β, ϑ), and note that the resulting computable
topological space (X, βν , ϑν) (with standard representation δν) fulfills the as-
sumptions of Theorem 5.9, hence [δν → α]νAPP/AE ≤ [δν → α]νAPP. δ and δν are
equivalent, hence Lemma 3.9 yields the claim. ��

6 Computability of vector-valued integration

Assumption 6.1 Throughout this section we assume that

– ν is finite,

– Y is a normed space over R,
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– the norm on Y is (δY , ρ)-computable,

– vector addition is (δY , δY , δY )-computable,

– scalar multiplication is (ρ, δY , δY )-computable.

The following definitions and basic facts are taken from [Vakhania et al. 1987,
Section II.3.1]: Let Y ∗ denote the topological dual of Y , and let C(Y ) be the
cylindrical σ-algebra on Y , i.e. the coarsest σ-algebra w.r.t. which all elements
of Y ∗ are measurable. Suppose that f : X → Y is an (S, C(Y ))-measurable
mapping. We say that f is of weak order p (for 0 < p < ∞) if

∫ |g ◦ f |p dν < ∞
for every g ∈ Y ∗. If f is of weak order one, then we call an element yf of Y

(Pettis) integral of f w.r.t. ν if

(∀ g ∈ Y ∗)
∫

g ◦ f dν = g(yf ).

If there is an integral of f , then it is unique and we denote it by E(f ; ν). The
mappings for which the integral exists form a vector space on which E(·; ν)
is linear. For real-valued mappings, the Pettis integral is equal to the usual
integral. Now suppose that f : X → Y is (S,B(Y ))-measurable. We say that f

is of strong order p (for 0 < p < ∞) if
∫ ‖f‖p dν < ∞. Every mapping of strong

order p is of weak order p. If f is of strong order one and E(f ; ν) exists, then
‖E(f ; ν)‖ ≤ E(‖f‖; ν). For the existence of E(f ; ν), it is sufficient that f is of
strong order one and Y is complete.

Under what circumstances and from what input is E(f ; ν) δY -computable?
Consider for example ν = γ with γ being the standard Gaussian distribution
on R. It is an easy exercise to make up a γ-integrable (ρ, νQ)γ

MEAN-computable
function f : R → R such that E(f ; γ) is not ρ>-computable and hence not a
computable real.

This example makes clear that integrals cannot be computed from MEAN-
names in general, not even for computable probability measures on the real line.
The next theorem, however, shows that integration becomes computable under
the additional assumption of the computable quasi-compactness of X , or if cer-
tain stronger information on the input mapping is provided. The corresponding
integration algorithms will be uniform in both the mapping and the measure.

Theorem 6.2 Let (X, β, ϑ) be a computable topological space, and let δ be its
standard representation. Put

L := {(ν, f) : ν ∈ M0(X), f is (δ, α)ν
MEAN-continuous and

(S,B(Y ))-measurable, E(f ; ν) exists}.
Let Λ be the multi-representation of L defined by

(ν, f) ∈ Λ〈p, q〉 :⇐⇒ ϑM=(p) = ν and f ∈ [δ → α]νMEAN(q).
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1. If X is computably quasi-compact, then (ν, f) �→ E(f ; ν) is (Λ, δY )-comput-
able.

2. Define the set
B := {((ν, f), b) ∈ L × N : ‖f‖ ≤ b}.

Then ((ν, f), b) �→ E(f ; ν) is ([Λ, νN]|B, δY )-computable.

3. Define the set

I := {((ν, f), c) ∈ L × R : E(‖f‖; ν) = c}.

Then ((ν, f), c) �→ E(f ; ν) is ([Λ, ρ>]|I , δY )-computable.

Proof. The proofs for item 1., 2. and 3. start the same: Let ν be the ϑM=-encoded
input measure, and let f be a [δ → α]νMEAN-encoded input mapping, i.e. we are
given a (δ, α)ν

MEAN-realization Φ of f . It is sufficient to demonstrate how to δY -
compute a 2−k-approximation to E(f ; ν) for k = 0, 1, 2, . . .. So fix an arbitrary
k (it will be clear that the construction is uniform in k). By simulation of Φk+2,
we can compute a sequence (w
, a
)
 in Σ∗ × Σ∗ such that (w
)
 is prefix free
and

(∀ p ∈ dom(δ))(∀ a ∈ dom(α))[
Φk+2(p) = a ⇐⇒ (∃ � ∈ N)

(
p ∈ w
Σ

ω and a = a


)]
. (4)

Let D be as in Lemma 2.4. We can compute a sequence (w′

, a

′

)
 such that

{(w′

, a

′

)}
 = {(w
, a
)}
 ∩ (D× dom(α)); this sequence still fulfills (4). We shall

w.l.o.g. assume {(w
, a
)}
 ⊆ D × dom(α). Put A
 := W (δ, w
) \
⋃

j<
 W (δ, wj).
Note that (A
)
 can be [ϑalg]ω-computed, and hence we can [ρ]ω-compute the
sequence (ν(A
))
. Put v
 := α(a
) for all � ∈ N, and

s(x) :=
∑




χA�
(x) · v
.

For convenience, we set E(·) := E(·; ν). One has

E(‖f − s‖) =
∫ ∥∥f(x) −

∑



χA�
(x) · v


∥∥ ν(dx)

=
∫

sup



χA�
(x)‖f(x) − v
‖ ν(dx)

≤
∫

sup



χW (δ,w�)(x) · ‖f(x) − α(a
)‖ ν(dx)

=
∫ ∗

e(f, δ, Φk+2, x) ν(dx)

≤ 2−(k+2).

(5)
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For every m ∈ N put Bm :=
⋃


≤m A
 =
⋃


≤m W (δ, w
) and

ym :=
∑

≤m

ν(A
)v
, sm(x) := χBm(x) · s(x) =
∑

≤m

χA�
(x) · v
.

One immediately verifies that the sequence (ym)m can be [δY ]ω-computed, and
that E(sm) = ym. Combining this with (5) yields:

‖E(f) − ym‖ ≤ E(‖f − sm‖) = E(χX\Bm
· ‖f‖) + E(χBm · ‖f − s‖)

≤ E(χX\Bm
· ‖f‖) + 2−(k+2).

So it is sufficient to compute an m such that E(χX\Bm
·‖f‖) ≤ 2−(k+1)+2−(k+2).

For item 1.: By the computable quasi-compactness of X , we can compute an
m such that Bm = X .

For item 2.: We can effectively find an m such that ν(X\Bm) ≤ b−1(2−(k+1)+
2−(k+2)).

For item 3.: From (5), it follows that

2−(k+2) ≥ E(‖f‖) − E(‖s‖) = E(‖f‖) − lim
m→∞ E(χBm · ‖s‖),

where limm→∞ E(χBm · ‖s‖) = E(‖s‖) holds by Monotone Convergence. The
sequence (E(χBm · ‖s‖))m can be [ρ]ω-computed, because

E(χBm · ‖s‖) = E(‖sm‖) =
∑

≤m

ν(A
)‖v
‖.

As we are given a ρ>-name of E(‖f‖), we can effectively find an m such that
2−(k+1) ≥ E(‖f‖) − E(‖sm‖). This estimate and (5) finally yield

E(χX\Bm
· ‖f‖) =

(
E(‖f‖) − E(χBm · ‖s‖))+

(
E(χBm · ‖s‖) − E(χBm · ‖f‖))

≤ 2−(k+1) + 2−(k+2).

��

Corollary 6.3. If the space (X, β, ϑ) from the previous theorem is derived from
a computable metric space as in Lemma 2.8, then the theorem still holds true if
Λ is defined in the following (weaker) way:

(ν, f) ∈ Λ〈p, q〉 :⇐⇒ ϑ0
M<(p) = ν and f ∈ [δ → α]νMEAN(q).

Proof. The proof of the previous theorem still goes through if the definitions
of the sequences (A
)
 and (v
)
 are changed in the following way: First apply
the algorithm from Corollary 2.16 to (ν, (W (δ, w
))
); let (Um, Ũm, �m)m be the
result. Define Am := Um ∩⋂j<m Ũj , and define vm := α(a
m). Essentially two
things have to be noted: (i) all estimates in (5) still hold true, and (ii) (ν(A
))
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can be [ρ]ω-computed, because it can obviously be [ρ<]ω-computed, and it can
be [ρ>]ω-computed by the identity

ν(Am) = ν
(
Um ∩

⋂
j<m

Ũj

)
= ν(X) − ν

(
(X \ Um) ∪

⋃
j<m

(X \ Ũj)
)

= ν(X) − ν
(
Ũm ∪

⋃
j<m

Uj

)
.

��

7 Miscellaneous

7.1 Composition

We will now prove two theorems on APP-computability of compositions of map-
pings. The first result is a partial answer to the natural question whether the
composition of two APP-computable mappings is still APP-computable. The
second result is (a uniform version of) the observation that APP-computability
is preserved under composition with computable mappings with a computable
modulus of uniform continuity; this will be useful in the following subsection.

Assumption 7.1 In this subsection we assume that (Z, d′, α′) is a computable
metric space with Cauchy representation δZ .

Theorem 7.2 Let f : X → Y and g : Y → Z be mappings. If f is (δ, α)μ∗
APP-

computable and g is (δY , α′)μ∗◦f−1

APP -computable, then g ◦ f is (δ, α′)μ∗
APP/AE-com-

putable.

Proof. Let φ be a (δ, α)μ∗
APP-realization of f . Consider the mapping

a : N × dom(δ) → Σω, a(n, p) := ι(φ(n + 1, p))ι(φ(n + 2, p))ι(φ(n + 3, p)) · · · .

For all n ∈ N, put

Rn := {x ∈ X : (∃ p ∈ δ−1{x}) a(n, p) /∈ δ−1
Y {f(x)}},

and note that μ∗(Rn) ≤ 2−n, because

Rn ⊆
⋃
k

[e(f, δ, φn+k+1, ·) > 2−(k+1)] ⊆
⋃
k

[e(f, δ, φn+k+1, ·) > 2−(n+k+1)],

and the set on the right hand side has μ∗-content at most
∑

k 2−(n+k+1) = 2−n

by assumption.
Now let φ′ be a (δY , α′)μ∗◦f−1

APP -realization of g. Consider the following pro-
cedure: “On input (n, p) ∈ N × dom(δ), run a dovetailed process that simulates
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the computation of a machine for φ′ on all inputs (n+1, a(n+m+2, p)), m ≥ 0.
Each time one of these threads of simulation halts, try to verify that its out-
put is in the domain of α′, and once this succeeds, halt and put it out.” Put
N :=

⋃
n

⋂
m Rn+m+2 and note that μ∗(N) = 0. For given (n, p), the procedure

just described will surely halt, if a(n + m + 2, p) ∈ dom(δY ) for at least one m.
Hence, if the procedure does not halt, then δ(p) ∈ ⋂m Rn+m+2. So the procedure
defines a computable mapping φ̃ : N × dom(δ|X\N ) → dom(α′). It is sufficient
to show that φ̃ is a (δ|X\N , α′)μ∗◦f−1

APP -realization of g ◦ f |X\N .
If for some n ∈ N, x ∈ X , we have that both the conditions

(∀ p ∈ δ−1{x})(∀m ∈ N) a(n + m + 2, p) ∈ δ−1
Y (f(x))

and
(∀ q ∈ δ−1

Y {f(x)}) d((α′ ◦ φ′)(n + 1, q), (g ◦ f)(x)) ≤ 2−(n+1)

are fufilled, then it follows from the construction of our procedure for φ̃ that

(∀ p ∈ δ−1{x}) d((α′ ◦ φ̃)(n, p), (g ◦ f)(x)) ≤ 2−(n+1) ≤ 2−n.

This implies

[e(g◦f |X\N , δ|X\N , φ̃n, ·) > 2−n] ⊆
⋃
m

Rn+m+2∪f−1[e(g, δY , φ′
n+1, ·) > 2−(n+1)].

Now note that μ∗ (
⋃

m Rn+m+2) ≤ 2−(n+1) by construction, and

(μ∗ ◦ f−1)[e(g, δY , φ′
n+1, ·) > 2−(n+1)] ≤ 2−(n+1)

by assumption. ��
Definition 7.3. A representation [δY → δZ ]uni of the space C(Y, Z)uni of all
uniformly continuous mappings from Y to Z is given by

[δY → δZ ]uni〈p, q〉 = f :⇐⇒ [δY → δZ ](p) = f and [νN → νN](q)

is a modulus of continuity of f on X

(cf. [Weihrauch 2000, Definition 6.2.6.2]).

Proposition7.4. The mapping

APPδ,α,μ∗ × C(Y, Z)uni → APPδ,α′,μ∗ (f, g) �→ g ◦ f,

is ([δ → α]μ
∗

APP, [δY → δZ ]uni, [δ → α′]μ
∗

APP)-computable.

Proof. Let φ be the given (δ, α)μ∗
APP-realization of f , and let m : N → N be the

given modulus of uniform continuity of g. On input (n, p) ∈ N×dom(δ), compute
and put out an α′-name of a 2−(n+1)-approximation of g(φ(max{n, m(n+1)}, p)).
It is easy to see that the mapping φ′ : N × dom(δ) → dom(α′) computed this
way is a (δ, α′)μ∗

APP-realization of g ◦ f . ��
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7.2 Images of measures

Is the image of a computable measure under an APP-computable mapping again
computable? The next theorem gives sufficient conditions for a positive answer:

Theorem 7.5 Let (X, β, ϑ) be a computable topological space, and let δ be its
standard representation. Let (Y, β′, ϑ′) be the computable topological space derived
from (Y, d, α) as in Lemma 2.8. The mapping

APPδ,α,ν → M0(Y ), f �→ ν ◦ f−1,

is ([δ → α]νAPP, ϑ′0
M<)-computable if one of the following holds true:

(i) ν is ϑM=-computable.

(ii) (X, β, ϑ) is derived from a computable metric space and ν is ϑ0
M<-computable.

Proof. It follows from the definition of ϑ′0
M< that it is sufficient to demonstrate

how to uniformly ρ<-compute the ν ◦ f−1-content of any given set

V =
m⋃

i=1

k(i)⋂
j=1

B(ai,j , εi,j)

(with ai,j ∈ range(α), εi,j ∈ Q∩]0,∞[) from a [δ → α]νAPP-name on f . For all
1 ≤ i ≤ m, 1 ≤ j ≤ k(i), and n ∈ N, we can [δY → ρC ]uni-compute the function

gi,j,n(x) := max{0, min{1, 2n(εi,j − d(ai,j , x))}}.

The sequence (gi,j,n)n converges monotonously to the characteristic function of
B(ai,j , εi,j). For each n ∈ N we can [δY → ρC ]uni-compute the function

gn(x) := max
1≤i≤m

min
1≤j≤k(i)

gi,j,n(x).

We have 0 ≤ gn ≤ 1 and9 gn ↗ χV , and hence
∫

gn ◦ f dν =
∫

gn d(ν ◦ f−1) ↗
(ν ◦ f−1)(V ). It is sufficient to demonstrate how to [ρ]ω-compute the sequence
(
∫

gn◦f dν)n. It follows from Proposition 7.4 that we can [[δ → νQ]νAPP]ω-compute
the sequence (gn ◦ f)n. The sequence is uniformly bounded by 1, so we can even
[[δ → νQ]νMEAN]ω-compute it by Lemma 5.2. The sequence of integrals can now
be computed by Theorem 6.2 (in case item (i) above holds true) or Corollary
6.3 (in case item (ii) above holds true). ��
9 ↗ denotes the relation “converges pointwise monotonously from below to”.
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7.3 Measurability of the local error

In Definitions 3.5.3 and 3.7, we used the outer measure ν∗ and the outer inte-
gral

∫ ∗
dν, respectively. The reason for using those instead of ν itself and the

proper integral
∫

dν is, that one cannot be sure that the local error is always
(S,B(R))-measurable. Although we were able to develop the theory of APP- and
MEAN-computability without the requirement that the local error is measur-
able, we consider it an interesting question, under what conditions it actually is
measurable. It seems to be reasonable to put the question in the following form:
When does the measurability of f imply the measurability of e(f, δ, Φ, ·)?

Proposition7.6. Suppose that σ(δ−1) ⊆ S. Let Φ : dom(δ) → dom(ρ) be
continuous, and let f : X → Y be (S,B(Y ))-measurable. Then e(f, δ, Φ, ·) is
(S,B(R))-measurable.

Proof. There is a prefix-free set {w
}
 ⊆ Σ∗ such that dom(δ) ⊆ ⋃
 w
Σ
ω and

Φ is constantly equal to some a
 ∈ dom(α) on each set w
Σ
ω∩dom(δ). One then

has
e(f, δ, Φ, x) = sup



χW (δ,w�)(x)d((α ◦ Φ)(p), f(x)).

e(f, δ, Φ, ·) is a countable supremum of measurable functions and hence itself
measurable. ��

Lemma7.7. Suppose that σ(δ−1) �⊆ S and that Y contains at least two distinct
points. Then there is a constant mapping f : X → Y and a computable Φ :
dom(δ) → dom(α) such that e(f, δ, Φ, .) is not (S,B(R))-measurable.

Proof. There must be at least two distinct points α(a0), α(a1) in range(α).
Choose f ≡ α(a0). There must be a w ∈ Σ∗ such that W (δ, w) /∈ S. Define
Φ by

Φ(p) :=

{
a1 if p ∈ wΣω

a0 else.

We then have e(f, δ, Φ, ·)−1((0,∞)) = W (δ, w). ��

We combine the last two results:

Corollary 7.8. Suppose that Y contains at least two distinct points. Then the
following two statements are equivalent:

1. For every (S,B(Y ))-measurable f : X → Y and every continuous Φ :
dom(δ) → dom(α), we have that e(f, δ, Φ, ·) is (S,B(R))-measurable.

2. σ(δ−1) ⊆ S.
��
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We have found that σ(δ−1) ⊆ S is the crucial condition. This condition has
already appeared before in a different context (see Proposition 4.2 and Corollary
4.5). It is time to ask for conditions under which it is fulfilled. We have already
seen (Lemma 2.4) that we have σ(δ−1) ⊆ B(X) if δ is the standard represen-
tation associated with an effective topological structure on X . For the Cauchy
representation of a computable metric space, there are no complications, either:

Proposition7.9. Let (X, d′, α′) be a computable metric space with Cauchy rep-
resentation δX . Then σ(δ−1

X ) ⊆ B(X).

Proof. Let w ∈ Σ∗ be arbitrary. Let us first suppose that w has the form

ι(w0)ι(w1) . . . ι(wk). (6)

Either W (δX , w) = ∅ (and is hence measurable), or w can be extended to an
element of dom(δX). In the latter case, we know that w0, . . . , wk ∈ dom(α′) and
d′(α′(wi), α(wj)) ≤ 2−i for 0 ≤ i < j ≤ k. It is easy to see that

W (δ, w) =
⋂

0≤i≤k

{a ∈ range(α′) : d′(α′(wi), a) ≤ 2−i}

and hence is a closed set. If w is not necessarily of the form (6), we still have

W (δ, w) =
⋃

{W (δX , wv) : wv is of the form (6)}

So W (δ, w) is an at most countable union of closed sets and hence Borel. ��

A different different type of sufficient condition for σ(δ−1) ⊆ S is presented
in the following:

Proposition7.10. Suppose (X,A) is a standard Borel space10, μ is a σ-finite
measure on (X,A), D is a Borel subset of Σω ,and δ : D → X is a Borel
measurable representation of X. Put S = Aμ. Then σ(δ−1) ⊆ S.

Proof. By [Kechris 1995, Corollary 13.4], all Borel subsets of a standard Borel
space are again standard Borel, hence all wΣω ∩D are. From [Kechris 1995, Ex-
ercise 14.6] we have that Borel images of standard Borel spaces are analytic (see
[Kechris 1995, Definition 14.1]); so all sets of the form δ(wΣω ∩D) are analytic.
Finally, [Kechris 1995, Theorem 21.10] asserts that every analytic subset of a
standard Borel space is universally measurable, which means μ-measurable with
respect to any σ-finite Borel measure μ. ��
10 A measurable space is called a (standard) Borel space if it is isomorphic to (Y,B(Y ))

for some Polish space Y . A Polish space is a separable completely metrizable topo-
logical space.
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A natural question is whether[
σ(δ−1

1 ) ⊆ S and δ1 ≡ δ2

]
=⇒ σ(δ−1

2 ) ⊆ S.

Surprisingly, the answer is “No” (even for admissible real number representa-
tions), as can be seen by combining Proposition 7.9 with the next proposition:

Proposition7.11. Suppose that (X, d′, α′) is a perfect11 and Polish computable
metric space. Let δX denote its Cauchy representation. There is a representation
δ of X such that dom(δ) ∈ B(Σω), δ ≡ δX , and σ(δ−1) �⊆ B(X).

Proof. Let N be the Baire space and let δN be its representation as defined in
[Weihrauch 2000, Definition 3.1.2.8]; one easily verifies that

– δN is a homeomorphism between dom(δN ) and N ,

– δ−1
N : N → Σω is (δN , idΣω )-computable,

– dom(δN ) ∈ B(Σω).

It is also clear that the projection π1,2 : N 3 → N 2 onto the first two coordinates
as well as the standard homeomorphic tuplings

〈·, ·, . . . , ·, ·︸ ︷︷ ︸
n

〉 : Nn → N , n ≥ 1,

are ([δN ]3, [δN ]2)- and ([δN ]n, δN )-computable, respectively.
From [Kechris 1995, Proof of Theorem 14.2], we have that there is a closed

set F ⊆ N 3 such that π1,2(F) is not Borel. The homeomorphous image F :=
(δ−1

N ◦ 〈·, ·, ·〉)(F) is closed in dom(δN ) and is hence Borel.
By a straightforward effectivization of [Kechris 1995, Theorem 6.2], there is

an (idΣω , δX)-computable injective mapping ι : Σω → X . We have that the
composition

N 2 〈·,·〉→ N (δN )−1

→ Σω ι→ X,

which we shall call H , is injective and ([δN ]2, δX)-computable. We also have that
A := H(π1,2(F)) is non-Borel in X (because A is the continuous injective image
of a non-Borel set). We also have that

δ̃ := H ◦ π1,2 ◦ 〈·, ·, ·〉−1 ◦ δN : F → A

is a representation of A with Borel-domain and δ̃ ≤ δX |A.
It is easy to verify that dom(δX) =: D itself is Borel. So we can define δ by

dom(δ) = 0D ∪ 1F , δ(0p) = δX(p) and δ(1p) = δ̃(p). So of course δ has Borel
domain, δX ≡ δ, and W (δ, 1) = A is not Borel. ��
11 A topological space is called perfect if it does not have any isolated points.
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[Müller 1999] Müller, N.Th.: Computability on random variables. Theoret. Comput.

Sci., 219:287-299, 1999.
[Parker 2003] Parker, M.W.: Undecidability in Rn: Riddled basins, the KAM tori, and

the stability of the solar system. Philos. Sci., 70(2):359-382, 2003.
[Parker 2005] Parker, M.W.: Undecidable long-term behavior in classical physics:

Foundations, results, and interpretation. PhD thesis, University of Chicago, 2005.
[Parker 2006] Parker, M.W.: Three concepts of decidability for general subsets of

uncountable spaces. Theoret. Comput. Sci., 351:2-13, 2006.
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