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Abstract: We present a distributed learning algorithm for optimizing transit prices
in the inter-domain routing framework. We present a combined game theoretical and
distributed algorithmic analysis, where the notion of Nash equilibrium with the first
approach meets the notion of stability in the second. We show that providers can
learn how to strategically set their prices according to a Nash equilibrium; even when
assuming incomplete information. We validate our theoretical model by simulations
confirming the expected outcome. Moreover, we observe that some unilateral deviations
from the proposed rule do not seem to affect the dynamic of the system.
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1 Introduction

The inter-domain market faces two related decisive problems: A price negoti-
ation problem that allows economic contracts, and a routing problem where
routing decisions are made according to the concluded business relationships.
Some recent works [Afergan 2006], [Barth et all 2007], [Feigenbaum et all 2002],
[La and Anantharam 2002] propose to unify these two problems more tightly
by enabling a more dynamic interaction between transit price propositions and
routing decisions. In order to capture the dynamic aspect of such an interac-
tion, the authors propose the use of a repeated game approach. However, the
proposed models require complete information on the underlying game. Such
an approach is necessary to analyze the possible outcome of the game. How-
ever, it is necessary to go in depth into the problem taking into account some
practical constraints. Indeed, providers are not aware about the complete details
concerning the topology linking them. They are not even capable of detecting
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how many providers are actually competing for a specific traffic flow. Accurate
information about which providers have actually been chosen to route the traffic
and at which price is not necessarily available to all providers at each moment.
Hence, an analysis of the underlying game assuming incomplete information is
necessary to tackle the problem.

In [Sastry et all. 2004], a decentralized learning algorithm is proposed in or-
der to reach a Nash equilibrium in games with incomplete information. The
model considers players as a team of automata, a proof is provided to ensure that
convergence can take place into a Nash equilibrium when players follow the learn-
ing rule. In [Maillé and Tuffin 2006], a similar algorithm is used to discover how
many parallel TCP sessions should be open in a game where TCP connections
compete for bandwidth. In [Xing and Chandramouli 2004], learning theory is
also used to study the game related to distributed discrete power control in wire-
less networks. Both in [Sastry et all. 2004] and in [Xing and Chandramouli 2004]
an ordinary equation is derived to describe the system and to prove that con-
vergence is tightly related to the Nash equilibrium notion. Indeed the proposed
learning algorithm is proved to converge only to a point which is a Nash equilib-
rium. Moreover pure Nash equilibriums are proved to be asymptotically stable.
Thus they act as attractors of the system evolution under the learning algo-
rithm. That means that when initial conditions are close to a point which is
a pure Nash equilibrium then the algorithm is ensured to converge to it. Con-
vergence is not ensured otherwise, even with initial conditions close to a mixed
Nash equilibrium.

In our problem, we prove that the use of the decentralized learning algorithm
ensures convergence only to a pure Nash equilibrium or a specific mixed equilib-
rium defined as hidden Nash equilibrium. Thus, players are ensured to play their
optimal strategies (in the N.E. sense). Pure and hidden Nash equilibriums are
the only stable points of the learning algorithm. We also prove the convergence
of the algorithm for specific situations. We rely on simulations to state conver-
gence in general cases. The advantage with the use of the learning algorithm
is that players are ensured to play their optimal strategy according to a Nash
equilibrium, even with lack of information about the underlying topology. We
observe via our simulations that the learning process is not disturbed when some
providers deviate unilateraly from the initial rule.

The outline of the paper is the following: First, we introduce the considered
transit price negotiation model. Then a game theoretical and a distributed al-
gorithmic model are introduced assuming incomplete information. The learning
rule that should be applied by each provider to update his strategy is then pre-
sented. We conclude our theoretical study by a stability analysis and a discussion
about convergence. We evaluate our model via a simulation framework where a
communication model is presented to coordinate providers’ individual decisions.
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Different scenarios are considered to confirm convergence of the learning algo-
rithm and to investigate the behavior of the system when some providers deviate
from the initial learning rule.

2 The transit price negotiation model

We start with the model presented in [Shakkottai and Srikant 2006] and gen-
eralize the results. In addition to local providers competing for customers, we
consider interactions with transit providers that are giving access to the rest of
the internet. Figure 1 illustrates the considered model.

Figure 1: Illustration of the considered model

As in (1), we consider that the traffic destination is the provider at the
highest level of hierarchy giving access to the rest of the internet. Customers are
supposed to be connected to the same direct providers and that they are price
takers: that is they always choose the minimum cost direct provider. Hence, they
can be considered as a single source of traffic. The transit negotiation problem
can be modelled then as a source and destination connected via a graph of transit
providers as in (2). The problem that faces transit providers is how to fix their
transit price in order to be chosen to route the traffic. A transit provider does
not need only to propose an attractive transit price but also to choose itself the
lowest price providers. In the following we describe the generated game model.
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2.1 The game with 1 Source and 1 Destination

The game is defined by a source willing to send traffic into a specific destination
while using transit providers. Each transit provider is considered as a player
which is proposing a transit service against some transit price that he has to
set strategically. Each player announces a price to his neighbors with the corre-
sponding route into the destination. The price at which the route is announced
is the price at which it was bought plus a transit price determined by the an-
nouncing player. In other words, when a provider decides to buy a route from
his neighbor, he can announce this route to his own neighbors while proposing
an adequate price of the route including his transit price. 1 Thus, the negotia-
tion follows a cascade like model from the destination backward to the source,
where each player in the path plays both the customer and the provider role.
The objective of each provider is to maximize his own benefit by proposing an
attractive transit price but also by choosing the lowest price providers(routes).
In case of identical price announces, a player can choose his provider following
a pre-order on his providers. We say then that the chosen provider has priority
over the others. We call transit price negotiation game the game that mod-
els how the providers should set their transit prices in order to be chosen on the
route from Source to Dest.

We consider that the source has an upper bound on price. If the proposed
prices are higher than that limit, it does not send the traffic. We will denote it
pmax. We consider discrete transit prices. Such price discretization depends on
the encoding format in control packets used to announce prices. For instance
here we take a unit discretization, that is a provider transit price can take values
as 1, 2, 3, . . .

A provider’s action in the transit price negotiation game consists of fixing a
transit price at a given stage.

We consider that each player has a distribution over his available actions.
Let Si = ((si,j)j=1,...,pmax) denote the strategy probability vector employed by
player i, where si,j is the probability that the player i sets a price j. We denote
S the strategy profile defined by the players strategy vectors. Note that a pure
strategy is a specific mixed strategy with a unitary probability vector.

Definition 1 Let C be the collection of direct paths (without cycles) between
Source and Dest. A path c ∈ C is dominant if ∀c′ ∈ C :

– either |c| < |c′|
– or |c| = |c′| but c is proposed by a priority provider.

1 If rational, a provider should propose the route at the price he has bought it plus at
least one unit as a transit price in order to have a strictly positive benefit.
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where |c| denotes the length of the path c in term of hops.
We denote cdominant the dominant path. Let csecond represent the dominant path
when C − {cdominant} is considered.

The dominant path is unique since the routing choice is deterministic (minimum
cost route choice with a rule to break tie).

Proposition 1 Let S be a pure strategy in the transit price negotiation game
with one source-one destination such that the chosen route is cdominant and :

(a)
∑

i∈cdominant

pmax∑
j=1

si,j · j =
{ |csecond| if cdominant has priority
|csecond| − 1 otherwise

(b) ∀i′ ∈ csecond si′,1 = 1
Then S is a pure Nash equilibrium.

It is easy to see that a strategy vector S that satisfies both properties (a) and
(b) is a Nash equilibrium. Indeed, The key idea is that a path c is necessarily
announced to the source at a price at least equal to |c|. No player on the dom-
inant path has an incentive to increase his price since the second route will be
cheaper. They do not have incentive to lower their price since they will get less
benefit. The other players have no other choice since they will not be chosen
anyway.

The question that arises is whether the described profile is the only one pos-
sible Nash equilibrium. Let us first consider some notations. We denote cwinner

the chosen route by the source, which is by the way the lowest price route. Let
csec represent the second lowest price route. We say that a route is valid if it
is announced to the source at a price at most pmax. The following proposition
gives a characterization of pure Nash equilibriums in our game.

Proposition 2 Let S be a pure Nash equilibrium then one of the following as-
sertions is correct:

1. There is no valid route: each route c is announced at a price p(c) > |c|
|c|−1 ×

pmax.

2. There is an only one valid route: The valid route is announced at pmax and
each other route c is announced at a price p(c) > |c|

|c|−1 × pmax.

3. There is at least two valid routes:

– The winning path is announced at a price p∗ equal to |csec| or |csec|-1
depending on priority,

– All players in csec are announcing a transit price equal to 1.
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– If c is a route shorter than cwin in terms of hops, then it is necessarily
announced at least at |c|

|c|−1 × p∗.

Proof. Since S is an N.E. then each player has no incentive to unilaterally deviate
from its chosen strategy.

– In the first case, when no route is valid, this means that no player can make
his route valid by lowering alone his price. This means that the price of the
route is already greater than pmax even if the player announces a price equal
to 1. By writing this inequality for each player in a route c, and summing
the |c| inequality, we can deduce that (|c| − 1)p(c) > |c|p∗.

– In the second case, the only one valid route is necessarily announced at a
price pmax since this is the maximum that can be announced. Similarly to
the first case, since players on other routes do not regret their strategy, we
can deduce that (|c| − 1)p(c) > |c|p∗.

– In the third case, there are at least two valid routes. Consider p′ the price
at which the route related to csec is announced. Then the winning path is
announced at p′ (or p′−1) otherwise players on the winning path will regret
their strategies.
Since players on the second path do not regret their strategies, then no one
of them can lower his price by one to make the route more attractive. Hence,
their price must be 1 since this is the only situation where they can no more
lower their price. Then p′ = |csec| and thus we have the desired property on
the winning path’s price.
If there is some path c shorter than cwinning in terms of hops, then similarly
to the first and second case, we can deduce the property on the price at
which c was announced.

Note that the pure N.E. in the proposition 1 is a special case of the third case
in proposition 2. Hence if the winning route is the dominant one with multiple
valid routes, the pure N.E. is necessarily the one described by proposition 1.
The following definition introduces a slightly different outcome to our game
considering mixed strategies.

Definition 2 Let S be a Nash equilibrium in the transit price negotiation game
with one source-one destination such that:

(a) ∀i ∈ cwinning Si is pure and

∑
i∈cwinning

pmax∑
j=1

si,j · j =
{ |csec| if cwinning has priority
|csec| − 1 otherwise
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(b) ∀i′ ∈ csec si′,j is such that the expected utility of players in the dominant
path is lower when they move from their strategy in (a).

Then S is said to be a hidden pure Nash Equilibrium.

In this definition, S is a particular mixed N.E. from which we can deduce a pure
N.E. as in proposition 1.
In reality nodes have only a local view of the game including the topology and
thus ignore the length of the possible routes. They are not even aware of the
number of players in the game. Each provider has to learn his optimal strategy
somehow that providers learn how to set their price in a decentralized way, and
thus reach the N.E. where they are ensured to be on the winning route.

2.2 The distributed algorithmic model

As explained before, the distributed context of the model does not enable players
to predict their optimal strategy in a one-stage game. They do not even detect if
they are on the shortest path from the source to the destination. Hence the game
should be analyzed as a repeated game where providers update their strategies
at each stage in order to learn their optimal prices. We call the way they choose
to update their strategies their local strategic process.
We denote st

i,j the probability that the player i sets a price j at stage t and
St

i = ((st
i,j)j=1,...,pmax) the probability vector of player i at stage t. We denote

Proci the function that represents provider i’s local strategic process and Proc =
{Proci for each provider i} the vector of local strategic processes. In this way, let
us consider the following algorithm AProc which corresponds to the multi-stage
game:

1. Each player sets his price according to his chosen strategy.

2. Each player announces his chosen route depending on the received price
announcement. Thus the minimum cost routes are computed in a distributed
way.

3. Each player deduces his benefit regarding to the outcome of the distributed
routing algorithm.

4. Each player changes his strategy using his local chosen strategic process
Proci

2 which is supposed to learn him his optimal strategy.

Note that to change his strategy, each provider only knows if the traffic crosses
him (if he belongs to the chosen route), his own announced price and the price

2 for example in [Barth et all 2007] we have proposed a tatonment process where a
provider decreases his price by one to attract the traffic when he had lost the market
at the former stage otherwise he increases his price by one
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announced by his provider (if he is not directly linked to the destination). In this
sense, we can talk about a distributed algorithm. It can be implemented locally
by each provider.

Let us denote by Rt and St the source chosen route and the vector of strate-
gies obtained after the tth execution of the algorithm AProc. Let Pricet =
((Pricet

i)i=1,...,n) be the vector of prices set by players at stage t and let
random() : St → Pricet be the function that sets prices according to the
strategy vector St in step 2 of the algorithm. Let Rout() : Pricet → Rt be
the deterministic function that computes the minimum cost route in step 3 of
the algorithm, and let Benef t

i represent the benefit of player i induced by the
computation of Rt, where Benef t

i = Pricet
i if i belongs to the chosen route R

and 0 otherwise.
Given an instance (G, S0, R0), where G is the considered interdomain graph and
R0 an empty set, and given a vector of local strategic processes Proc = {Proci

for each provider i} , the deterministic polynomial decentralized algorithm AProc

computes a new vector of strategies AProc(St) = St+1 leading to a new prices
Pricet = Random(St) and routes Rt+1 = Rout(Pricet).

We will focus on the dynamics of the system defined by the distributed model.
Note that at each stage, the system is fully described by its state (S, R). Let us
define two relevant stability notions related to this model:

Definition 3

– A state (S, R) is S-Stable by AProc, if after n executions of the algorithm,
the strategies are still stable that is ∀n > 0 A(n)

Proc(S) = S, where
A(n)

Proc(S) = AProco . . . oAProc︸ ︷︷ ︸
n times

(S, R) = AProc(AProc(...(AProc︸ ︷︷ ︸
n times

(S)) . . .).

– A state (S, R) is R-Stable by AProc, if after n executions of the algorithm,
routes are still stable. That is ∀n > 0 A(n)

Proc(S) = Sn, and
Rout(Random(Sn)) = Rout(Random(S)).

In this paper, we are interested in a specific class of strategic processes Proc

where each player use a local strategic process Proci based on learning tech-
niques.

The learning algorithm:
Recall that in the proposed algorithm AProc, each player updates his strategy
according to a local strategic process Proci. That is a Player i should compute
a new strategy probability vector Si based on Proci while considering only lo-
cal information: (Si, P ricei, Benefi). Such a process can follow discrete learning
techniques similar to those presented in [Sastry et all. 2004] where the updating
rule is given by :
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Proci(st
i,j) = st+1

i,j =

⎧⎨
⎩

st
i,j − b · ut

i · st
i,j if j �= Pricet

i

st
i,j + b · ut

i ·
∑

k �=Pricet
i

st
i,k otherwise

Where:

– ut
i : is the normalized utility such that: ut

i = Beneft
i −At

i

Bt
i
−At

i
.

Let Bt
i = maxk≤t Benefk

i denote the maximal benefit of player i until
stage t , and At

i = mink≤t Benefk
i denote the minimal benefit of player i

until stage t. Note that we can set At
i = 0 . The normalization is necessary

to ensure values between 0 and 1 and thus keep a valid probability vectors.

– The parameter b ∈ [0, 1] is the step-size of the updating rule.

Moreover, each player i should start with a vector of strategies S0
i such that each

component is non-null to give a chance to all prices to be picked.
Note that the learning rule applied by each player uses only local information
and does not need players to be aware of their number or the topology linking
them.
From Theorem 3.2 in [Sastry et all. 2004], the algorithm AProc where Proci

follows the discrete learning update rule, can only converge to a point that
is a Nash equilibrium of the game. This result gives us the link between the
distributed algorithmic and the game theoretical facets of the problem.

2.3 Combined convergence and stability analysis

We focus on the analysis of the distributed learning algorithm AProc where
each local strategic process in Proc follows the learning update rule. We will
denote it AProc learn. We will highlight some properties related to AProc learn.
The following theorem gives a characterization of stable points of the proposed
algorithm.

Theorem 1 Let (S, R) be a reachable state by AProc learn at stage t. Then

(S, R) is S-Stable by AProc learn

�
For each player i one of the following propositions is satisfied:

(1) St
i is a pure strategy with:

St
i,j = 1 if j = Pricet

i and 0 otherwise.

(2) Whatever the conjunction of prices with the strictly positive probabilities of
other players, whatever the price that i can set, his benefit will be null:
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∀j s.t st
i,j �= 0 then ∀t′ > t, if Pricet′

i = j then Benef t′
i = 0,

Proof. Suppose that (S, R) is S-Stable , by definition we have AProc learn(S) =
S.

That is for each given i, st
i,j =

⎧⎨
⎩

st
i,j − b · ut

i · st
i,j if j �= Pricet

i

st
i,j + b · ut

i ·
∑

k �=Pricet
i

st
i,k otherwise

For j = Pricet
i, we have st

i,j = st
i,j + b · ut

i ·
∑

k �=Pricet
i

st
i,k which imply that

ut
i ·

∑
k �=Pricet

i

st
i,k = 0 then :

– Either
∑

k �=Pricet
i

st
i,k = 0. Since St

i,k ≥ 0 ∀k Then St
i,k = 0 ∀k �= Pricet

i.

Indeed when a null sum is composed only by positive members this implies
that all members are null.
Moreover St

i,Pricei
= 1 − ∑

k �=Pricet
i

si,k then St
i,Pricei

= 1. Hence Si is a pure

strategy and the property (1) is satisfied.

– Otherwise
∑

k �=Pricet
i

st
i,k �= 0 and thus ut

i = 0. Let us prove that ut
i = 0∀t′ ≥ t.

More generally, given t′ > t, we have St′+1 = St′ = St. Hence by considering
the update rule for t′ we have:

St′+1 = AProc learn(St′) ⇒ ut′
i · ∑

k �=Pricet′
i

st
i,k = 0.

At t′, we have:

• either the picked price is equal to the one at t (Pricet′
i = Pricet

i) and
thus

∑
k �=Pricet′

i

st
i,k =

∑
k �=Pricet

i

st
i,k �= 0

• or it is different and thus in
∑

k �=Pricet′
i

st
i,k there is a member st

i,Pricet
i

which is non-null since at t, Pricet
i was picked. The other coefficients are

positive (probabilities), then the sum is non-null.

In both cases, we have in one hand
∑

k �=Pricet′
i

st
i,k �= 0, and in the other hand,

ut′
i · ∑

k �=Pricet′
i

st
i,k = 0. We can conclude that ut′

i = 0. That is the utility of

player i is always null after t.
Consider j such that st

i,j �= 0, then there exists at least t′ > t such that
Pricet′

i = j. This means that the strategy j will be picked at t′ > t . Since
we have concluded that ut′

i = 0 thus Benef t′
i = 0. The property (2) is then

satisfied.
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Let us now suppose that the vector S is such that for each i, Si satisfies one of
the properties (1) or (2) and show that the related state (S, R) is S-Stable. A
player i such that Si satisfies property (2) will always get a zero benefit. Given
the updating rule, ut′

i = 0 ∀t′ ≥ t and thus Si will not change (St′
i = St

i ).
A Player i with pure strategy will not change its strategy too since it will always
play one action and in the updating rule the other probabilities are null. Hence,
S would not change during stage t of AProc learn and thus (S, R) is S-Stable.

Hence the algorithm will only stop on a point such that there is only one winning
route composed by providers that have a pure strategy. Probability vectors of
remaining providers do not allow them to pick a winning strategy. This result
does not ensure that the winning route is the dominant one. In other words, it
does not ensure that the learning process was done correctly by providers in the
dominant path. A more powerful result will be presented later.

Corollary 1 Let (S, R) be a state reachable by AProc learn at stage t. If (S, R)
is S-Stable then it is R-Stable.

If (S, R) is S-Stable then there are players i such that Si satisfies property (2)
with a null benefit. This means that they are never chosen on a route and thus
do not influence the routing choice. The other players have a pure strategy and
since the routing choice made by Rout(.) is deterministic, this leads to choose
always the same route. Hence, (S, R) is R-Stable.
However, an R-stable state by AProc learn is not necessarily S-Stable. Indeed,
consider the following example depicted in Figure 2.

Figure 2: An example of a state which is R-stable but not S-Stable

Suppose that player 1 has the priority in case of identical announces to the
source. As depicted in Figure 2 S1,j �= 0 only when j = 1, 2. In both cases, the
route of player 1 will be chosen. This state is R-stable but not S-Stable since the
strategy of player 1 is not pure and he has a non zero benefit. One can expect
that in a finite number of stages such state will lead to an S-stable state where
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players with pure strategies will choose strategies that corresponds to the maxi-
mal price with a non-null probability in the initial state. In our example, player
1 will choose to set price equal to 2.
In Theorem 1 we give a characterization of states that are S-Stable with the
learning algorithm AProc learn. We show also that the notion of S-Stable in-
duces the notion of R-Stable for such algorithm. In other words, the algorithm
AProc learn, if it converges, will converge to a state which is S-Stable (and thus
R-Stable) since then strategies and routes will not change. Such state will satis-
fies properties (1) and (2) in Theorem 1.
The following theorem concludes the link between the distributed algorithmic
and the game theoretical analysis of our problem.

Theorem 2 The only N.E. that can be discovered by the learning algorithm are
pure or hidden pure N.E. Players on the winning path have pure strategies.

Proof. The algorithm AProc learn converges only to a state which is S-Stable
since then strategies and routes will not change. Given the characterization of
S-stable states in Theorem 1, players on the chosen route have pure strategies.
Hence, if the algorithm has discovered an N.E. , it is either pure or hidden pure.

If the learning rules are followed, and for b sufficiently small the algorithm will
only converge to an N.E [Xing and Chandramouli 2004]. Thus, players on the
dominant path are ensured to discover their optimal strategy even with incom-
plete information assumption. Further with simulations we will see that this
outcome can be conserved even if the learning rule is not strictly followed by all
players.

2.4 Discussion

The learning algorithm converges only to a point which is a Nash equilibrium,
but the convergence is not always ensured. In our problem, we have tried to find
simple situations where we can prove the convergence theoretically.

Let us consider the simple case of two players with two possible strategies
{1, 2} and priority to player 1. Suppose that the algorithm has not converged
yet at time t and that the state at this time is S = (S1, S2). Let us denote pij

the probability of player i choosing price j.
Let us prove that we have S1 = (p11, p12) �= (0, 1). Suppose the contrary,

that is player 1 always chooses strategy 2. Hence, player 2 will always win when
choosing strategy 1 and always loose when choosing strategy 2. Thus p21 is
increasing and p22 is decreasing leading to a pure strategy S2 = (1, 0) and thus
to a state which is not an N.E. Hence S such that S1 = (0, 1) cannot be reachable
state. We have then two cases:
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– S1 = (1, 0) then player 1 will always win and player 2 can no more change
his strategy. The algorithm has reached a stable state.

– S1 = (p11, p12) where p11 and p12 are non-null. Player 2 never wins with
strategy 2, but sometimes wins with strategy 1 as long as p1,1 �= 1. Hence
p22 is decreasing and p21 increasing and thus as the system evolves:

• Either p11 reaches his limit first and the situation will be the same as
the first case,

• Or p22 and p21 reach their limit leading to a state S2 = (1, 0), enforcing
player 1 to choose strategy 1. From this instant p11 is increasing and
p12 decreasing. The algorithm is forced to converge regardless from the
random selection.

The idea is that either player 1 will guess his best strategy first, or player 2
eliminates strategies that never let him win enforcing player 1 choice.

The same idea can be used when there are different prices {1, . . . , n}, player
2 will eliminate one by one his strategies with the highest prices. When the
probability of p2n reaches 0, then p1n becomes decreasing and so on. Either the
player 1 discovers his optimal strategy first or he is forced to when player 2
eliminates his useless strategies. The idea is still valid when there are just direct
providers between the source and the destination. The dominant provider will
take the role of player 1 and the other providers will act as player 2.

For a general topology, we conjecture that the learning algorithm still con-
verges to an N.E. (pure or hidden). Indeed, from simulations we observe that
the algorithm always converges. Another issue about convergence is the choice
of parameter b which is important to ensure that the obtained situation is an
N.E. Indeed, theorem in [Sastry et all. 2004] states that convergence to an N.E.
is ensured for a b sufficiently close to 0. A trade-off should be made in order to
fix b: a high value of b can lead to a situation which is not an N.E.: players do
not take enough time to learn their optimal strategies. A very low value of b may
make the convergence slow. In our simulations b = 0.1 was sufficient to obtain
convergence into N.E. situations.

We have implemented the distributed learning model, and simulate the be-
havior of the players in order to confirm the theoretical stability results and to
observe convergence in the general case. Unilateral deviations from the learning
rules are also investigated.

3 Simulation analysis

First, we need to introduce the asynchronous communication model. Indeed, in
reality, nodes take their decisions locally and asynchronously. A communication
model is needed in order to coordinate player decisions.
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3.1 The asynchronous communication model

As the system evolves dynamically, possible events in a node can be: an update of
price to customers, a choice of a provider or a switching from a path to another
one. Each node informs his customers about relevant events that change his
state. This is done using the traffic control messages.

When the source chooses an acceptable route, it sends an update message
to inform its provider that his route was chosen. The provider in turn sends an
update message to his own provider and so on until the destination. When the
source switches on a new received route with a better price, an update message
is sent iteratively to the nodes on the old route in order to inform them that
their route is no more chosen. At the same time, an update message is sent
iteratively to players on the new route to inform them that their route is now
chosen. Asynchronously in time, players update their prices according to their
strategy vector S which is updated depending in whether they were chosen on
a route or not.

3.2 The simulation environment

A simulation of the proposed model was done using the OMNET [Varga 2001]
simulator. The considered topology includes one source and one destination con-
nected through several paths of different lengths. Neither queuing, nor scheduling
delays were considered in the simulation.
For each player, the game is seen as series of stages where each stage is equal to
70ms not necessarily synchronous. At the end of each stage, each node updates
his transit price according to the current strategy vector S which is updated by
the discrete learning rule.

3.3 Evaluation of the learning algorithm

We consider three different scenarios considering topologies with disjoint and non
disjoint paths. We also consider the case where the chosen route is announced
by a priority or a non-priority player. We suppose that pmax is equal to 6 and
the step-size of the updating rule b is equal to 0.1.

3.3.1 Scenario 1

We consider the network topology depicted in Figure 3. Priority is attributed to
the player 1. We have then cdominant = {Player1, P layer2} and
csecond = {Player3, P layer4, P layer5, P layer6}. Figure 4 displays the benefit
obtained by each player. The curves suggest the convergence to an S-Stable state.
Table 1 shows the probability vector obtained by each node (precision 10−4).
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Figure 3: Network topology
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Figure 4: Benefits of players in scenario 1

The probability vectors of nodes in the dominant path converge to pure
strategies when those of nodes in other paths converge to mixed strategies. Given
Definition 2 the obtained situation is a hidden pure Nash equilibrium. Indeed,
strategies of players in the second path (players 1, 2, 3 and 4) are such that
players in the dominant path have no incentive to deviate from their chosen
strategies (for example the expected utility from announcing price 3 is 1.90 and
for price 4 the expected utility is 0.84). Note that as expected from Theorem 1
since the dominant path is announced by the priority player, the route’s price
at the obtained N.E. is |csecond| = 4. From hidden pure N.E. we can deduce a
pure N.E. where S1 = S2 = 2 and S3 = S4 = S5 = S6 = 1.
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Prices S1 S2 S3 S4 S5 S6 S7, . . . , S12

1 0 0 0.9935 0.8237 0.6349 0.7011 0.40
2 1 1 0.0032 0.1595 0.3563 0.2867 0.30
3 0 0 0.0010 0.0055 0.0029 0.0040 0.10
4 0 0 0.0010 0.0055 0.0029 0.0040 0.10
5 0 0 0.0005 0.0027 0.0014 0.0020 0.05
6 0 0 0.0005 0.0027 0.0014 0.0020 0.05

Table 1: Strategy profile after stabilization in scenario 1.

3.3.2 Scenario 2

In this scenario, we consider the same topology as in scenario 1. However, the
priority is attributed to the player 3. The dominant path is still the one composed
by Player1 and Player2. csecond is still {Player3, . . . , P layer6}. Figure 5 shows
the benefits of players. We notice that the system still converges but to a slightly
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Figure 5: Benefits of players in scenario 2

different state. Table 2 gives the probability vector of each player (precision
10−4).
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Prices S1 S2 S3 S4 S5 S6 S7, . . . , S12

1 0 1 1 0.9923 1 1 0.40
2 1 0 0 0.0041 0 0 0.30
3 0 0 0 0.0018 0 0 0.10
4 0 0 0 0.0008 0 0 0.10
5 0 0 0 0.0004 0 0 0.05
6 0 0 0 0.0004 0 0 0.05

Table 2: Strategy profile after stabilization in scenario 2.

The obtained strategies form also a hidden N.E. Indeed, in one hand, players
on the dominant path have pure strategies. In the other hand, players on second
path have strategies such that those on the first one do not have incentive to
deviate from their initial strategies (the expected utility from announcing a
higher price is quasi null). Note that as expected from theorem 1 since the
dominant path is announced by a non priority player, the route’s price at the
obtained N.E. is |csecond| − 1 = 3. From this hidden pure N.E. we can deduce a
pure N.E. where S1 = 2, S2 = 1 and S3 = S4 = S5 = S6 = 1.

3.3.3 Scenario 3

We consider the network topology depicted in Figure 6 where Source is linked
to Dest through non-disjoint paths. Priority is attributed to the player 1. The

Figure 6: Network topology

algorithm still converges, and the probability vectors are presented by Table 3
(precision 10−6). Figure 7 shows the players benefit.

The algorithm still converges and the obtained strategies form also a hidden
N.E. Players on the chosen path have pure strategies and do not have incentive
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Prices S1 S2 S3 S4 S5 S6, . . . , S11

1 1 0 0.999998 0.999990 0.999996 0.40
2 0 1 0.000002 0.000010 0.000004 0.30
3 0 0 0.000000 0.000000 0.000000 0.10
4 0 0 0.000000 0.000000 0.000000 0.10
5 0 0 0.000000 0.000000 0.000000 0.05
6 0 0 0.000000 0.000000 0.000000 0.05

Table 3: Strategy profile after stabilization in scenario 3.
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Figure 7: Benefits of players in scenario 3

to deviate from their initial strategies (the expected utility from announcing
a higher price is quasi null). Note that as expected from Theorem 1 since the
dominant path is announced by a non priority player, the route’s price at the
obtained N.E. is |csecond| − 1 = 3. From this hidden pure N.E. we can deduce a
pure N.E. where S1 = 1, S2 = 2 and S3 = S4 = S5 = S6 = 1.

We have noticed that players in the dominant path always succeed to learn
how to set their strategies appropriately in order to be chosen. One can argue
that with some particular initial conditions the system can stabilize on another
N.E. where the winning route is not the dominant one. In that case this means
that players in the dominant path have eliminated their optimal strategies inap-
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propriately. This can be resolved if after a certain number of executions, players
that observe a null benefit reset their probability vector in order to give a sec-
ond chance to their eliminated strategies. Hence the dominant path will have a
chance to recover its status of privileged path.

3.4 Deviation from the learning rule: a different local strategic
process

We investigate what could happen if a player tries unilaterally another local
strategic process. We focus on players that initially were not on the chosen route
and check whether their behavior affects the learning process of other players
and thus the initial outcome. We reconsider the network topology depicted in
Figure 3. In both scenarios the priority is attributed to player 1. We simulate the
behavior of the system when player 6 decides to not follow the updating rule. He
chooses for example a myopic strategy that consists in improving his price by
one when his has a strict positive benefit and lowering by one otherwise. Figure
8 depicts benefit of players under the proposed scenario.
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Figure 8: Players benefit when player 6 does not follow the learning rule

The algorithm still converges, and suggests that the learning process of play-
ers on the chosen path is not affected. The probability vectors are presented in
Table 4 (precision 10−6).

763Barth D., Echabbi L., Hamlaoui C.: Optimal Transit Price Negotiation ...



Prices S1 S2 S3 S4 S5 S7, . . . , S12

1 0 0 0.961234 0.968599 0.968599 0.40
2 1 1 0.019383 0.015700 0.015700 0.30
3 0 0 0.006461 0.005233 0.005233 0.10
4 0 0 0.006461 0.005233 0.005233 0.10
5 0 0 0.003231 0.002617 0.002617 0.05
6 0 0 0.003231 0.002617 0.002617 0.05

Table 4: Strategy profile after stabilization in the scenario with deviation

The probability vectors of nodes in the dominant path converge to pure
strategies as in the initial scenario where all players follow the rule. For similar
scenarios, we have observed a similar behavior. This suggests that a player that
is not supposed to be on the chosen route does not affect the learning process
when he decides to not follow rules.

4 Conclusion

We have proposed a complete distributed solution to the transit price negotiation
problem with incomplete information. For the one source one destination model,
we have shown that the proposed algorithm enables players on the dominant path
to fix their transit prices strategically in order to get the market. Simulations
confirm that the system converges to the expected outcome. One issue is how
to extend the model and the proposed solution to multiple sources. For example
this can be the when customers are not linked to the same direct providers.
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