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Abstract: In this paper we present and discuss a new approach for securing mul-
timedia communication, which is based on three innovations. The first innovation is
the integration of a challenge-response scheme for enhancing the Diffie-Hellman based
ZRTP protocol. When being called, a callee must present the result of a computational
puzzle (a “token”) within a short amount of time. A Man-in-the-Middle (MitM) would
not be able to compute such a token within the required time, and thus fail to get into
the media path. The scheme works best in situations when ZRTP is most vulnerable
to so-called Mafia Attacks, i.e., if both caller and callee do not know each other.

The second innovation complements the first one on those occasions where the above
scheme may fail. The call is delayed for a certain amount of time which depends on the
agreed session key. Since during a MitM attack two different keys (and thus waiting
times) exist, caller and callee would not start their call at the same time and the MitM
attack would fail.

The third innovation is in the definition of a new computational puzzle which forms
the basis of the challenge-response scheme. We propose a computational puzzle which
is based on computing selected eigenvectors of real symmetric matrices. In contrast to
existing puzzles, the one we propose does not rely on a shared secret, can be validated
quickly, and existing solution methods exhibit limited scalability so that the threat
from attacks based on massively parallel computing resources can be controlled.

Key Words: VoIP, SRTP, ZRTP, computational puzzle, challenge-response, eigen-
vectors, call delay
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1 Introduction

In this paper we show how to drastically increase the security of Diffie-Hellman
based approaches like ZRTP. We propose a combination of three innovations, the
first, challenge-response based on computational puzzles, is completely new. The
second called Random Call Delay has been known before in a different variant.
The third innovation is a new form of computational puzzle that is difficult to be
computed in parallel, and can be used for our new challenge-response scheme.
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2 Diffie-Hellman and ZRTP

2.1 Diffie-Hellman key exchange protocol

In 1976, Whitfield Diffie, Martin E. Hellman and Ralph Merkel (rarely men-
tioned) published a cryptographic protocol scheme to agree upon a shared key
over an insecure channel. In other words, their approach enables two communica-
tion partners to negotiate a symmetric secret even though anyone could wiretap
this public procedure.

Figure 1 represents the typical two-stage procedure where Alice acts as ini-
tiator, providing Bob the shared public values n (residue class) and g (genera-
tor/base) as well as its individual public value X (step 1).

Alice: x Bob: y
9" mod n
g mod n
L v
Kag = @™ mod n Kag = g% mod n

Figure 1: Diffie-Hellman key agreement

This is calculated by
X = ¢* modn,

where z is the private value which must be kept secret by Alice. Once Bob
receives the shared public values he on his part calculates the individual public
value

Y = ¢Y modn

and sends it back to Alice, again keeping the value y secret to himself (step
2). Usually, the two public values (n,g) are known in advance as they have
no additional security relevance. If so, then both parties can pre-calculate their
public values X and Y, respectively and the Diffie-Hellman protocol only requires
to exchange these values. By means of this agreement Alice and Bob have the
corresponding information to calculate a common shared secret

Kap = XYmodn =Y* modn = ¢°Y modn.

As the Diffie-Hellman key exchange protocol does not provide any measure to
prove identity, it is susceptible to impersonation attacks like Man-in-the-Middle
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(aka Bucket-Brigade attack or Mafia Attack). From the practical viewpoint once
an attacker is able to intercept the communication path between Alice and Bob
an attack on the key agreement can be launched. In such a case the Man-in-the-
Middle (MitM) acts as additional but invisible communication partner using his
own secret value z, that negotiates two different shared keys, a key K 4 with
Alice and a key K ;p with Bob. This means that all traffic between the victims
is decrypted and newly encrypted by the MitM to have access to the original
data (Figure 2).

Alice: x MitM: z Bob: y
g*mod n o
9°mod n -
le gy mod n
le g®modn
\J v \J
Kam = @ mod n Kwe = g® mod n

Figure 2: A MitM-Attack results in two different secret keys K 4 and Kyp.

In the following section the protocol ZRTP is dealt with that tries to elimi-
nate this weakness by comparing a hashed image of the shared key called Short
Authentication String (SAS) over the audio channel.

2.2 ZRTP

ZRTP is an innovative approach for VoIP media path encryption. In 2006, Phil
Zimmermann submitted the draft “ZRTP: Extensions to RTP for Diffie-Hellman
Key Agreement for SRTP” to the IETF even though the key idea originates
from PGPfone already developed in 1995. However, at that time the Internet
and in particular the VoIP technology was not widely used. The abbreviation
ZRTP combines a ’Z’ for Zimmermann with the established protocol for media
transmission RTP (Real-time Transport Protocol). ZRTP is implemented in the
free Zfone product. It is a kind of “bump-in-the-stack” application that passively
observes all network traffic and once VoIP signaling is detected it starts active
operation. ZRTP is then provided on the negotiated media ports. Due to this
implementation Zfone is able to cooperate with each softphone as it works in a
completely transparent way for upper layers.

ZRTP is a VoIP encryption protocol that relies on the Diffie-Hellman key
agreement (see Section 2.1). The smartness of this approach is that the exchange
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of session keys is fully integrated into the media path (in-band keying within
RTP). This solution follows the basic Internet concept of peer-to-peer computing
as neither SIP signaling nor any servers are required. In the latest ZRTP draft
Zimmermann also defined Signaling Interaction, however solely to provide an
add-on in terms of discovery and authentication. The protocol works as follows:

1. Alice acting as initiator sends a Hello-message containing primarily her ZID
(ZRTP ID) and several complementary parameters:

Hello{version, options, Alice’s ZID}.

2. Bob confirms the reception by sending HelloAck{}, and subsequently sends
a Hello-message by himself:

Hello{version, options, Bob's ZID}.

3. Alice also confirms the reception by sending HelloAck{}. Afterwards, the
Diffie-Hellmann key agreement starts with a Commit-message

Commit{Alice’s ZID, options, hash(X)}.

Hereby, Alice commits to the public value X without actually sending it.
This measure foils SAS (see below) collision attacks.

4. The hash commitment signals Bob to start the two-step DH key exchange
with the DHPart1-message:

DHPart1{Y (public value), (old) shared secret hashes}.

The out-dated hashed key material is used to implement the property of key
continuity. Once Alice and Bob have established an authenticated shared
key (see SAS comparison) all subsequent ZRTP sessions can be considered
as secure.

5. Alice completes the Diffie-Hellmann procedure with the DHPart2-message:
DHPart2{ X (public value), (old) shared secret hashes}.

Now, the shared master key (s0) for SRTP (Secure RTP) is calculated by
hashing the agreed DH-key, the old key hashes as well as some additional
parameters.

6. From now on the communication channel between Alice and Bob is encrypted
with SRTP which typically uses AES. In order to guarantee that the Diffie-
Hellmann key exchange was not compromised by a MitM, ZRTP provides
a mechanism named Short Authentication String (SAS). It is a compact
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representation of the exchanged master key which is shown to both commu-
nication partners to be read out aloud over the telephone. Within the ZRTP
Commit-message a so called SAS type is agreed upon which defines the ac-
tual SAS representation. Currently, either the leftmost 20 bits of the SAS
value are z-base-32 encoded!' which yields four characters, or the leftmost
16 bits are mapped to the PGP Wordlist.? If both strings match then it is
very likely that there is no Man-in-the-Middle attack going on since the two
different keys due to a MitM attack (Figure 2) would result in two different
SAS values.

7. Finally, a three-way handshake consisting of Confirm1, Confirm2 and Con-
firm2Ack is applied to securely acknowledge the successful key agreement
and to transmit some important encrypted parameters

Confirm1{HMAC,D,S,V flags, sig}
Confirm2{ HMAC, D, S,V flags, sig}
Confirm2Ack{}.

Additionally, as each ZRTP session carries out a new Diffie-Hellman key agree-
ment and at the end of each session the current keys are destroyed the property
of perfect forward secrecy is provided, i.e., having access to any used session key
does not enable an attacker to decrypt previous or following calls.

As a result, ZRTP is a smart protocol to allow encrypted VoIP communi-
cation based on SRTP without requiring the overhead of a Public Key Infra-
structure (PKI), and with it the complexity of certificate and key management.
The shared keys are agreed within the media channel in pure end-to-end man-
ner using the Diffie-Hellman key exchange protocol with hash-commitment. For
authentication purposes and MitM protection ZRTP introduces the comparison
of an SAS value to be read aloud by both caller and callee.

However, as discussed in Section 2.1 Diffie-Hellman and also ZRTP are prone
to Man-in-the-Middle attacks, and a MitM may interfere reading the SAS values,
for example, by creating two separate calls and repeating everything heard from
one caller to the other. Such an attack is likely to fail if both persons know each
other’s voice well, such as friends, relatives, colleagues etc. However, in case two
strangers talk to each other, the MitM might succeed.

3 Challenge-Response using Computational Puzzles

Our proposed approach is an enhancement of Diffie-Hellman, and uses a new type
of challenge-response scheme, i.e., the presentation of the result of a computa-
tional puzzle in time. As we will point out later, our approach does not guarantee

! http://zooko.com/repos/z-base-32/base32/DESIGN
2 http://en.wikipedia.org/wiki/PGP_Words
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100% authentication. However, it works best if both parties are strangers and
have no known relationship, a situation that is perfect for an attack on ZRTP.
When only taking into account such situations, and assuming that most of them
are vulnerable to MitM attacks, then our approach will drastically reduce the
percentage of successful attacks to a very small number.

Our challenge is communicated within the control channel, for instance SIP.
Suppose Alice sends an INVITE(X ) message to Bob, X being her public Diffie-
Hellman key. Alice also requests Bob to send within a critical time dt., for
instance 10 seconds, the result R(P) of a computational puzzle P to Alice. Only
if Bob is able to present the result of such a puzzle to Alice, Alice accepts
Bob as further trustable, and the ZRTP media channel procedure can proceed.
Otherwise, the second scheme Random Call Delay as described in Section 5
must be invoked. The puzzle result which we call token also must contain some
additional information about Bob, for instance an additional public key that
establishes a VPN between Alice and Bob, and the ZRTP data is sent through
this additional encryption channel.

One important property of the computational puzzle is the fact that even
the best supercomputer in the world is unable to compute the result within
dt. seconds. This requires that Bob has precomputed this result, for instance
while harvesting unused cycles of his private PC during the night. The puzzle
P(T,U,Y) is defined through the following data:

— Period T of validity. Each token is valid only for a certain time, for instance
only on Sept. 1st 2007.

— URI U of Bob.

— Temporary public key Y (belonging to a corresponding private key y) that
is used for creating a VPN.

In order to be able to construct P(T,U,Y), all input parameters including the
time period 7', URI U and public key Y must be known. If the MitM does not
know Bob (if Alice and Bob are strangers this is quite likely) then the MitM
cannot construct and precompute it.

Our approach relies on the assumption that if Alice and Bob do not know
each other, the MitM is unlikely to be able to relate them, and predict that
Alice in the near future might call Bob. In such a situation, if Alice calls Bob,
and a MitM is sitting in between, the MitM would not be able to produce a
token within the tolerance of dt. seconds, even if commanding vast amounts
of computing power. Thus, the MitM would not be able to create a token for a
VPN between him and Alice. It is obvious that a MitM is not able to precompute
tokens for a theoretically unlimited number of VoIP URIs for each day.

On the other hand, if Alice and Bob know each other (and thus each other’s
voice), then the MitM is likely to know this relation also, and is able to pre-
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compute one token for every day and each known acquaintance of Alice. This
already requires commanding a powerful computing infrastructure. However, as
stated above, in such a situation ZRTP is well suited to prevent a successful
MitM attack.

3.1 Scenario 1: MitM shields Alice

The standard scenario (scenario 1) for our proposed scheme is shown in Figure 3.
In scenario 1 we assume that an extremely powerful attacker is able to completely
shield Alice, i.e., he is able to catch and manipulate all data packets sent to or
from Alice, for instance in order to compromise the Diffie-Hellman key exchange.
Alice sends the INVITE(X) to Bob, and within dt. seconds, Bob must answer by

MtV

Alice - - Internet 3 » Bob

Figure 3: Scenario 1: MitM shields Alice.

sending a token M., = (T,U,Y, R), which is a tuple containing the parameters
defining the puzzle P(T,U,Y), as well as the puzzle result R(P). Alice now also
constructs the puzzle P and checks whether R(P) is really a solution to the
puzzle, and also whether the token validity period T covers the current time.
If the result is validated, the common session key is again derived by using the
Diffie-Hellman approach. The session key may now be used for creating a VPN
between Alice and Bob, and the ZRTP channel is established through this VPN,
totally independent of the previously created session key.

3.1.1 Attack Analysis Scenario 1

An important point in our approach is given by the fact that the proposed
scheme is not an authentication mechanism. Receiving a token from Bob within
dt. seconds does not mean that the identity of Bob is guaranteed 100%. Our
proposed scheme is an enhancement of ZRTP, which is aimed at making a Mafia
Attack much more difficult in case Alice and Bob do not know each other.

On the other hand, as was stated above, if Alice and Bob know each other,
and the MitM knows about this relation, he is able to precompute tokens for
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every day of the next years for Bob. However, in this situation there is still
ZRTP, which works well here. A real problem is given by a situation when Alice
and Bob do not know each other and still the MitM is able to predict that
Alice will call Bob in the future, and therefore precomputes tokens for Bob.
In such a situation, our solution fails and the connection is solely protected by
the security mechanisms of ZRTP. As a consequence our scheme is meant only
as an enhancement to an existing system like ZRTP, not as an authentication
mechanisms in itself. This is also the reason for creating a VPN tunnel and
not using the derived session key for ZRTP, since in some cases a MitM might
be able to interfere with our scheme, and using the key also for ZRTP would
render the whole scheme to be endangered. Thus, our scheme is designed to be
an additional independent security layer to ZRTP.

A MitM might also try to precompute tokens for every possible URI for every
day of the near future. Given the needed computational power, this is clearly
not possible using any kind of computer today.

Since the MitM is not able to compute the result of the puzzle within the
required time, another possibility for the MitM is to exchange Bob’s public key
Y with its own public key Z in the token Mp,,. However, in this case the problem
Py will be different than Bob’s original problem P, and R is not a valid solution
to PM.

The MitM may also prevent the establishment of any communication, until
the MitM has computed a suitable token. The computation starts as soon as
Alice tries to communicate with Bob. The MitM catches the INVITE, does not
forward it to Bob, but starts computing his own R. If the MitM commands the
usage of an extremely powerful supercomputer, the result might be ready within
several minutes. Afterwards, the MitM waits for the next call attempt from
Alice to Bob, and is able to return its own token to Alice. It is obvious that in
scenario 1, the MitM can always completely block any communication attempt
Alice initiates. However, after the first call attempt Alice can detect that she has
received no token from Bob within the critical time, and our scheme demands
that in such a case, Alice must immediately switch to the second scheme called
Random Call Delay (see Section 5).

An intrinsic property of our proposed scheme is the fact that during time
period T (e.g., Sept. 1st, 2007, 00:00 am - 12:00 am) Bob will always reuse the
same token, and thus the same public key Y within this period. However, since
in scenario 1 we assume that the MitM shields Alice, and the scheme is mainly
meant for situations when there is no relation between Alice and Bob, Bob as
the called person is safe to reuse his public key Y when answering calls.

3.2 Scenario 2: MitM shields Bob

Figure 4 shows the second scenario that we investigate. In this scenario the MitM
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Bob = - Internet - | Alice

Figure 4: Scenario 2: MitM shields Bob.

shields Bob, who is called by Alice. Again we assume that there is no relation
between Alice and Bob, and the MitM can not foresee that Alice will call Bob
in the future.

Here we propose that Alice is required to attach her own token My, for
this specific time period and her URI to the INVITE message, and that Bob will
only answer to INVITE messages with attached token by sending his own token
Mpop. Again Alice must receive this token My, from Bob within the critical
time.

3.2.1 Attack Analysis Scenario 2

Again the MitM could simply prevent any communication between Alice and
Bob until he has computed a token for Alice. Again Alice can detect that she
was not able to establish a call with Bob and must switch to Random Call Delay.

It turns out that scenario 2 is much more subtle than scenario 1, since in this
situation the MitM of course knows Bob and can easily precompute a token Moy,
for Bob’s URI, which he immediately sends back to Alice. Alice is satisfied and
the ZRTP connection between her and the MitM can commence over the VPN
between Alice and the MitM. However, the MitM must now in parallel start a
conversation with Alice, and start to compute a token M gice which contains
Alice’s URI, and which he needs for establishing a connection between himself
and Bob. The result is a significant delay between starting the conversation
with Alice, and being able to relay the call between Alice and Bob. If the MitM
commands a powerful computer then he will be able to produce such a token
after a few minutes (see Section 4). One important finding of our investigation of
Mafia Attacks is the fact that they are extremely difficult. In fact we think that
they are only possible if there is synchronous conversation between Alice and
Bob, i.e., the MitM in realtime repeats everything he hears without thinking
about it. As soon as the MitM is forced to produce meaningful content, i.e.,
pretend to be somebody else, or to relay the call with a delay of more than
one second, the fraud will most certainly be detected. Of course, in reality, an
attacker is more likely to need much longer than two minutes to compute a valid
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token, and thus again the overall result is that a Mafia Attack is much more
difficult.

A final option for the MitM is now to precompute generic tokens for generic
URISs, like john@bank.com. Upon receiving an INVITE from Alice, the MitM
may select a best fitting generic token and immediately open a connection to
Bob. Bob of course sees this URI, and must now decide whether this URI makes
sense or not.

As overall result, scenario 2 is much more difficult to protect, but as stated
before, the purpose of our approach is to make the life of the MitM more difficult,
since in both scenarios there is no general solution yet found for protection
against MitM attacks without a PKI.

3.3 Existing Computational Puzzles

Computational puzzles have been proposed to make protocols resistant to flood-
ing attacks. The main idea is that the client has to proof he spent a certain
amount of computational effort before the server dedicates any resources. An
important property of a computational puzzle is that they are very expensive to
solve, but it is comparatively cheap to verify the solution.

3.3.1 Hashcash

Hashcash [Back 2002] is a non-interactive cost function, which means that the
client chooses its own challenge or random start value. The client solves the
puzzles by finding a value x that satisfies the following equation:

the k first bits of the hash

——N—
Hash(I,N,z) = 000...000 Y
~—~
rest of the hash bits

Here, Hash is a cryptographic hash function, I represents the identity of
client (like an email address or a SIP URI), and N is a nonce chosen freely by
the client. Solving the puzzle requires the client to find a value x so that the
first k bits of Hash(I, N,x) are zero. The cost of solving the puzzles depends
exponentially on k. The server can verify the correctness of a solution easily by
carrying out a single hash computation.

The cost function used by Hashcash can easily be parallelized. If the attacker
has n computers at his disposal, every single one can start searching for the
solution beginning with different initial values. In contrast, the cost function we
are proposing is designed to be very difficult to be parallelized.

While the goal of Hashcash is to reduce the amount of email spam, research
presented in [Laurie and Clayton 2004] comes to the conclusion that in order
to be effective, puzzles would have to be so difficult that a significant number
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of legitimate email senders would be unable to continue their current level of
activity.

There is also an interactive version of Hashcash, where the nonce N is pro-
vided by the server in a first step. A variant of Hashcash has been proposed to
reduce SIP spamming [Jennings 2007].

3.3.2 Memory Bound Computational Puzzle

An acknowledged problem of computational puzzles is that the processing time
required to solve a puzzle can vary enormously on different hardware platforms.
Work that might take 10 seconds on a 3 GHz Pentium could take an hour or
more on a Palm Pilot. Dwork et al. [Dwork et al. 2003] have proposed puzzles
that rely on addressing large amounts of random access memory. Since memory
access speeds vary considerably less than CPU speeds, time for solving a puzzle
is similar across different machines. Experimental results presented in the paper
show only a factor of 4.6 between fastest and slowest platform for the memory
bound approach. In comparison, Hashcash — a CPU bound method — shows a
factor of 43. However, the presented memory bound puzzle is again a search
through a search space, which can very effectively be parallelized.

3.3.3 Sequential Puzzles

A puzzle which is not parallelizable has been published in [Back 2000], being
is based on time-lock puzzles [Rivest et al. 1996]. However, in order to validate
the result a secret must be known. Since the knowledge of the secret enables an
attacker to quickly compute the result, this scheme is unusable for our purposes.

3.4 Requirements for Cost Functions

The requirements for a cost function that is suitable for our application are the
following;:

1. It should be hard to parallelize the solving process. By that, even an attacker
with a lot of resources (like a botnet or parallel computer) should not have
a considerable advantage.

2. Verifying the solution of a puzzle should be inexpensive and not rely on a
secret.

3. The amount of data that has to be exchanged should be low.

4. The time required for solving the puzzle should be as independent as possible
from processor type and speed.
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As a matter of fact, none of the existing computational puzzles satisfy all con-
ditions. Puzzles relying on searches through large search spaces can easily be
parallelized. An attacker commanding thousands of computers would be able to
compute the results quickly. The sole non-parallelizable puzzles relies on a secret
for verification, which does not make sense in our scheme.

We thus propose to use a type of mathematical problem which is important
for many applications of computational science and which has consequently been
investigated extensively in the past, namely the numerical solution of linear
eigenproblems.

4 Eigenvectors

In the following the standard computer arithmetic IEEE 754-1985 in double
precision is assumed.? We consider eigenproblems which are defined by a real
N x N matrix M as the basis for a computational puzzle. The puzzle is to
compute a vector x € RV and a corresponding real scalar A, such that the
following equation is satisfied:

Mz = Ax. (1)

The tuple (A, z) is then called eigenpair of M. For general matrices there is no
guarantee that the problem (1) has real solutions. However, it is known that
for real symmetric M, there are exactly N linearly independent eigenvectors
x; € RN, Thus, for our application context we only consider real symmetric
matrices.

4.1 Computing Eigenvalues and Eigenvectors

Computation of eigenvalues is necessarily an iterative process since the eigenval-
ues are the roots of the characteristic polynomial. Many methods are available for
solving problems of the type (1). Important distinctions among existing methods
have to be made depending on whether the eigenanalysis of a dense or a sparse
matrix is desired.

4.1.1 Reduction-Based Methods

Computing eigenvalues and eigenvectors of a dense symmetric matrix usually
involves a preprocessing step in order to reduce the complexity of the eigen-
analysis, because it would be prohibitively expensive to work with the original
full matrix. The given matrix is reduced to similar condensed form; tridiagonal
form in the symmetric case. In a tridiagonal matrix the only non-zero matrix

3 http://grouper.ieee.org/groups/754/
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elements are located in the main diagonal, in the first superdiagonal, and in the
first subdiagonal.

In contrast to this reduction operation, which is a finite, non-iterative process,
the actual computation of eigenvalues and eigenvectors is an iterative process (as
mentioned before). Nevertheless, methods which perform a preprocessing step
to condensed form are often called “direct” methods in the literature. In the
following, they will be called reduction-based methods.

4.1.2 Subspace Methods

If the given symmetric matrix is sparse, then a reduction step is usually not
advisable because it produces fill-in. In this case, methods based on projec-
tions onto small subspaces, for instance, the Lanczos method [Lanczos 1950]
(see, for example, also Paige [Paige 1972],[Paige 1976]), or the Jacobi-Davidson
method [Sleijpen and van der Vorst 1996] tend to be much more efficient (see
also [Van der Vorst and Golub 1996]). Often the terminology “iterative meth-
ods” is used for methods of this type. Since every method for computing eigen-
values needs to be iterative (at least partly), we use the term subspace methods
instead.

4.1.3 Relevant Algorithms and Software

In this section, a brief overview of standard algorithms for solving real symmet-
ric eigenproblems which are most relevant for our application context is given.
Much more comprehensive coverage of various algorithms for solving symmet-
ric eigenproblems can be found in various standard text books, for example,
[Golub and Van Loan 1996] or [Parlett 1997]. Many practical issues related to
numerical software for eigenvalue problems are discussed in [Demmel 1997] and
in [Bai et al. 2000].

In the area of reduction-based methods, the reduction step itself has to be
followed by a solver for the symmetric tridiagonal eigenproblem. Various methods
for such problems have been designed, among the most important ones being
the tridiagonal divide-and-conquer (TD&C) method [Gu and Eisenstat 1994],
[Gu and Eisenstat 1995] and the MRRR-method:

— [Dhillon 1997], [Parlett and Dhillon 1997], [Parlett and Dhillon 2000],
— [Dhillon and Parlett 2004b], [Dhillon and Parlett 2004al,
— [Dhillon et al. 2005], and [Dhillon et al. 2004].

The latter, which is considered the “Holy Grail” for symmetric tridiagonal eigen-
problems, represents the latest developments in this area and is the most modern
algorithm available. Currently, for most situations one of these two algorithms
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can be expected to achieve the best performance for symmetric tridiagonal eigen-
problems.

Subspace methods in their standard form usually compute extreme eigenpairs
at the lower or upper end of the spectrum. If interior parts of the spectrum are
to be computed, a suitable starting vector or some form of estimate of an inte-
rior eigenvalue for a shift-and-invert approach is required. This also holds for the
power method, for inverse iteration, and for its very fast converging more ad-
vanced relative, Rayleigh quotient iteration, which almost always exhibits global
cubic convergence [Parlett 1997, Golub and Van Loan 1996].

As outlined in Section 4.4, we design our computational puzzle such that
(1) the matrix M is dense, (ii) the computation of a specified interior eigen-
pair is required, and (4¢¢) no prior information about this eigenpair is available
(neither an approximation of the eigenvalue nor a good starting vector for sub-
space methods). Consequently, there is no clear advantage of subspace methods
in terms of computational efficiency, and therefore the following discussion con-
centrates on the currently best reduction-based methods.

State-of-the-art high quality software for numerically solving large-scale sym-
metric eigenproblems is available in various libraries, many of them available at
http://wuw.netlib.org. For reduction-based methods, the de-facto standard
libraries are LAPACK [Anderson et al. 1999] for sequential and shared memory
computers, and SCALAPACK [Blackford et al. 1997] for distributed memory com-
puters.

4.2 Computational Complexity

As reviewed in the following, the computational complexity of computing an inte-
rior eigenpair of a dense symmetric matrix M is in general O(N?) floating-point
operations (flops). However, given a pair (A, z), it only takes O(N?) (or even only
O(N), see Section 4.4.1) floating-point operations to decide whether this pair is
a sufficiently accurate approximation of an eigenpair of M (via computation of
the residual). This property that computing a solution requires asymptotically
a higher order effort than accepting or rejecting a candidate solution makes the
problem (1) an interesting computational puzzle for our application context.

4.2.1 Tridiagonalization

As a first step in reduction-based methods, the matrix M is reduced to tridiag-
onal form. For a dense matrix M this preprocessing step is very significant in
terms of arithmetic complexity and even dominates the work required for solving
the standard eigenproblem if fewer than N eigenpairs are to be computed.

In summary, Householder-based tridiagonalization of a dense symmetric ma-
trix M requires 4N3/3 + O(N?) floating-point operations for constructing and
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applying the Householder reflections when symmetry is exploited in the update
operation [Golub and Van Loan 1996]. If the accumulated transformation ma-
trix is required explicitly then it can be formed with an additional 4N3/3+O(N?)
flops [Golub and Van Loan 1996].

On a single processor, this tridiagonalization part is one of the components
responsible for the N3 scaling behavior of the execution time with the problem
size N, which can be observed in most circumstances.

4.2.2 Tridiagonal Problem

One eigenvector of a symmetric tridiagonal matrix 7" can be computed with
about 16N flops assuming that no pivoting is required in the factorization of
T [Golub and Van Loan 1996] and that at most two iterations suffice to reach the
desired accuracy (cf. Ipsen [Ipsen 1997]). If several eigenvectors corresponding to
very close eigenvalues are sought, then special care has to be taken in inverse
iteration to avoid a loss of orthogonality in the computed eigenvectors. In fact,
in the worst case reorthogonalization can cause standard inverse iteration to
be an O(N?) process, even for tridiagonal matrices. This problem is one of the
aspects where the most recent development for tridiagonal eigenproblems, the
MRRR-algorithm mentioned before, made substantial progress.

Currently available versions of the TD&C-algorithm are highly competitive
if all N eigenpairs are to be computed, but they are less attractive when only a
single eigenpair has to be computed, as in our setup.

4.3 Parallelization

TD&C has attractive parallelization properties [Tisseur and Dongarra 1999], and
ScALAPACK contains a parallel code for this method. A parallel implementation
of the MRRR algorithm, which promises substantial improvements for the cases
when only parts of the spectrum are to be computed and also a potentially bet-
ter scaling behavior, is currently under development and can be expected to be
included into SCALAPACK soon.

Comprehensive investigations documented in the literature have shown that
reduction-based methods for dense symmetric eigenproblems are not easy to par-
allelize [Ward et al. 2005, Ward 2006]. It is in general difficult to achieve good
scaling behavior over large numbers of processors and in massively parallel en-
vironments. However, important progress has been made recently with the de-
velopment of parallel codes for the MRRR-algorithm [Sunderland 2006] and in
the parallelization [Bai and Ward 2007] of variants of the divide-and-conquer ap-
proach.

Very generally speaking, the following statements hold with respect to paral-
lelization of reduction-based methods for dense symmetric eigenproblems of the

type (1).
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1. For fixed problem size N and growing processor number p, the execution
times first tend to decrease rapidly (high speed-up), then the curve tends
to flatten out (low speed-up), reaching a minimum for some processor num-
ber p*, and finally the execution times tend to increase again (slow-down).
This implies that for a fixed problem size the execution time for current
state-of-the-art eigensolvers cannot be reduced arbitrarily by increasing the
parallelism.

2. Obviously, the processor number p* for which the execution time is min-
imum depends on many different factors, including the problem size N,
hardware properties (interconnect, communication speed, ratio of communi-
cation to computation speed, etc.). Roughly speaking, for N below 10000,
p* tends to be significantly below 1000 for current state-of-the-art hardware
(cf. [Ward et al. 2005, Ward 2006, Sunderland 2006]).

3. Increasing the problem size N also tends to improve the parallelization prop-
erties and thus to increase p*.

Although the parallelization of eigensolvers is easier on shared memory machines
because of the faster communication, the basic performance patterns are simi-
lar. This has been confirmed in a series of experiments which we performed on
Goedel, a Sun Fire v40z server with 4 dual-core AMD 875 2.2 GHz processors
and 24 GB of memory. The runtimes for computing one eigenpair using the latest
version of the parallel MRRR-code (to be included into SCALAPACK soon) are
shown in Figure 5. Due to the fact that only 8 processors are available on this
machine, it was not possible to experimentally determine the processor number
p* for most problem sizes.

4.4 Design of a New Computational Puzzle

The previous brief summary of the state-of-the-art in dense symmetric eigen-
solvers indicates the major guidelines for designing a computational puzzle for
the context discussed here. The central objective is to guarantee that some mini-
mum time Ty;, is required to compute the required eigenpair of a dense symmet-
ric matrix M accurately enough. Additionally, since the solution of the puzzle
must be sent over the network, its size should be as small as possible. In the
following we investigate the order of magnitude of the number of floating-point
operations necessary for computing the solution of a puzzle (determining the
time it takes to compute the result), and also the order of magnitude of the size
of the solution (determining the number of bytes that must be sent over the
network).
From the above it follows that
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Figure 5: Runtimes of parallel MRRR code on a 4-processor dual-core SMP

machine.

1. N cannot be too small in order to exceed T, when sequential processing

is used; and

2. N should not be too large since it determines the size of the solution of
the puzzle. Also, the degree of reasonable parallelization depends on N, the

larger N, the better the problem can be parallelized, which is undesirable in

our scenario.

One way to achieve both objectives is to construct a computational puzzle which
consists of solving a sequence of K eigenproblems P;, 1 < i < K. Problem
P; is defined via a matrix M;, and is solved by finding at least one interior
eigenpair R; = (x;, ;) with M;x; = A\jz;. The size of each subproblem can be

kept relatively small, the strictly sequential structure restricts the benefits of
parallel processing, and the overall time required for solving the puzzle can be
adjusted via the parameter K.

The initial eigenproblem P; is defined by the input data Hy = Hash(T,U,Y)
such that Hj is used as a seed for constructing a random N x N real symmetric

matrix M. Each eigenproblem P;, 1 < ¢ < K is then defined by a random matrix
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M;, which is constructed by setting the seed of a random number generator to
Hi=Hash(Ri_1,H1,...,Hi_1), (2)

i.e., a hash over the previous solution and all previous hashes. The solution to
the computational puzzle is the ordered set of solutions R = (R1, Ra, ..., Rk).

Result R of a token My, = (T,U,Y, R) contains K eigenvectors of length
N, each component being a double (8 bytes). The necessary amount of data
to be transferred is thus O(KN) bytes. The matrices themselves do not have
to be transmitted, since they can be constructed from the token itself. If Bob
sends such a token to Alice, Alice will first have to set up the matrices M;
and then test whether R; = (x;, ;) is a valid solution by multiplying x; on
M;. The complexity of constructing a full N x N matrix is of order O(N?) flops,
vector-matrix multiplication is of order O(N?) flops, and thus the computational
complexity of validating R is of order O(K N?) flops.

4.4.1 Reduction of the Complexity

However, it turns out that both sending and validating the result R can be
improved significantly. A straightforward improvement is to require that for val-
idating the solution R; = (z;, \;) not all vector components must be tested, but
only a fixed number, for instance, 20. This means that Alice multiplies x; only
onto 20 randomly chosen rows M;(k,:) of matrix M;, thus reducing the vector-
matrix multiplication to O(N') floating-point operations. The result is validated
if
M;(k,:) - z; = N\jzi(k) for all chosen values of k,

i.e., the scalar product of matrix row M;(k,:) and eigenvector z; results in the
k-th component of x; times )\;. There is currently no known procedure for iden-
tifying vectors, where a certain fraction of components would yield the same
result.

For reducing the overall validation complexity, we also have to reduce the
matrix construction to O(N) operations. This can, for example, be achieved by
constructing the real symmetric matrix M; strictly element-wise, for example,
by setting its elements M;(k,1) to

[ F(Hash(H k1) if 1<k<NE<I<N
Mk, 1) = {Mi(l,k) else ’

Here, F'(I) denotes a function that turns a large random positive integer I into a
real value from a predefined value range. Hence, only those rows M;(k, :) have to
be created which are needed for the above mentioned scalar products M;(k,:)- ;.
This way, the computing effort required for validating a single result R; can
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be decreased to O(N) flops instead of O(N?), and validating R thus becomes
O(KN) flops instead of O(K N?).

The second improvement is given by the fact that it is not necessary to
validate all solutions R;, but rather only a subset. We thus propose that instead
of sending the solution R, Bob initially only sends R = (Hy, Ha, ..., Hy 1)
which actually defines the matrices M;. Bob thus commits himself to the results
R; without sending them. Upon receiving the token My, = (T,U,Y, R), Alice
then asks Bob to send a randomly selected subset of the R;, for instance Ra, Ry,
and Rg_1. Alice can then set up matrices Ma, M9 and My _; (or only a small
number of rows), validate the Rg, R19, and Ry _1, and test whether

Hy, = Hash(T,U,Y)

Hs = Hash(Rq, Hy, H2),

Hy1 = Hash(Ryo, Hi, ..., Hio), and
Hx = Hash(Rg_1,Hy,...,Hk_1).

The more results R; Alice requests, the more data must be sent over the network,
but also the more reliable is the result. Furthermore, due to the inclusion of the
previous hashes into (2), in the above scheme it is also proven that the results
Rs, Ry and R 1 were computed in sequence and not in parallel (e.g., in order
to create matrix Mg, the hash H3 and thus the result Re must be known).

As aresult, the time for solving our puzzle depends on the number of floating-
point operations, which are of O(K N?), while sending the result and validating
costs are at most O(K N) (bytes and flops), or, if reduced reliability is acceptable,
only O(N) (bytes and flops).

4.4.2 Determining the Optimal Puzzle

Given a certain critical time dt. (which depends on the properties of the connec-
tion available for the call), we need to identify the range of all tuples (N, K), for
which the minimum time required to solve the sequence of K symmetric eigen-
problems of size N x N each as outlined above is greater than dt.. Within this
parameter range, we then need to determine those puzzles, for which the amount
of data to be transferred (N x K) is minimum. In a more compact formulation:

Ig[li]l{lN x K for which T'(N, K) > dt..

This basic concept allows for the concrete definition of an “optimal” compu-
tational puzzle, which is currently under development and will be discussed in
detail in a forthcoming publication.
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5 Random Call Delay

The second mechanism we propose is comparable to the one of Robin and
Schwartz [Robin and Schwartz 2006]. This approach is based on the hypothe-
sis that a MitM attack on ZRTP is impossible if the caller or callee are not
synchronously starting the call at the same time, but instead there is a signif-
icant delay. Such a delay could mean that the caller first starts a call with the
MitM, and then after some time, the MitM starts the call with the callee. They
therefore propose that both caller Alice and callee Bob setup a call at time ¢
and immediately negotiate a value IV, where IV is the maximum amount of time
that both are willing to wait for the call to start. The VoIP clients then start a
timer and create a hash Hash(K ap) over the secret Diffie-Hellman Key Kap.
Since this number should be uniformly distributed over its range [0, Hpqz], it is
then transformed into the range [0, N| by
Hash(KAB)

dtap = N——=. 3
AB Hmax ( )

Both Alice and Bob are then advised to start talking about their issues at time
t+dtag+rr] < (4)

Because of network latency and SIP proxy delay, there must be some kind of
tolerance 7 for coping with network latency variation.

In our opinion this scheme involves too much attention of the involved per-
sons, keeping them busy at the phone for the whole duration of the timer. Even
more so, since in order to work efficiently, the maximum waiting time N should
be quite large, in the order of minutes. Furthermore, the whole scheme depends
on Alice and Bob, and whether they strictly adhere to the described procedure.

We therefore propose a variant of the above scheme, which works as follows.
Similar to the scheme of Robin and Schwartz, at time ¢ the VoIP clients negotiate
a quasi random number dt 4p depending on the secret key K4p via (3). Then
the clients immediately cancel the call. This can be done in a way that the callee
Bob is not even notified that he has been called. Alice must then wait until her
client automatically redials the callee after the timer has elapsed, but is free to
do something else. At time t+dtap Alice’s client calls Bob’s client, which accepts
the call only if it happens right at the negotiated time (4), thus summoning Bob
who only from this time on is involved. In case Bob answers the call, Alice’s
client rings and summons Alice’s attention.

In the second call, however, the media encryption must be based on the
secret session key K ap that has been negotiated in the first call, since this key
is actually validated by the call delay scheme. Again we propose to tunnel the
following ZRTP session through a VPN encrypted with this key K 4p.
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5.1 Attack Analysis Random Call Delay

The MitM here must intercept the first call attempt from Alice at time ¢, thus
generating a dtays. Alice’s client will again call at ¢ + dtaps and expect to
establish the call.

The MitM now has two choices. First he may continuously call Bob at times
t=1t1,ta,...t, <t—+dtapy + 7, thus creating a sequence of delay times

dtyp1,dtvmBe, .., dtuBn

caused by the respective keys between the MitM and Bob. The MitM stops as
soon as a delay time collision is detected:

|(t + thM) — (ti + dtMB,i)| < 2T.

For reasonably small values of 7, the collision probability for one call 4 is 47/N,
and the probability that at least one collision out of n calls is created, is therefore
1 —(1—=47/N)™. Such a sequence of calls, however, can easily be detected by
Bob’s client, for example by detecting that too many call attempts are made per
time unit.

The final option left to the MitM is thus to call Bob once, and later start the
real call at a totally different time than ¢ 4+ dt 4. However, due to the above
hypothesis, relaying such a call is hardly possible.

As a consequence, by using Random Call Delay, we achieve the same level
of security as described in [Robin and Schwartz 2006], but only keep the caller
waiting, who however in the meantime is free to do something else. Because of
this, callers may accept longer waiting times (i.e., a larger N), which automati-
cally increases the level of security due to decreased collision probabilities. The
callee on the other side is only included once the real call is established.

5.2 Combining Tokens and Call Delay

As was stated above, in this paper we propose to combine both the above de-
scribed challenge-response scheme, plus the new Random Call Delay. When di-
aling Bob’s URI, the client should ask Alice whether she knows Bob and has
ever had contact with him before. If Alice denies, the client invokes the compu-
tational puzzle scheme. This allows Alice to skip the waiting time if Bob is able
to present a valid token in time. For this, however, there is only one try. If Alice
does not receive a valid token within the critical time, the client marks Bob’s
URI as unsafe, and Alice should from this time on only use Random Call Delay
to establish a first call (from the second call on, the key continuity of ZRTP
prevents further attacks).
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In case Alice knows Bob, or she has not received a valid token within the
critical time, Alice’s client only offers Random Call Delay, and if Alice wants to
have a secure call she must be prepared to wait a few minutes.

Preventing the first call attempt of course can be caused by two ways. First,
Bob’s VoIP client might not be registered currently, or any other part of the VoIP
infrastructure might be currently unavailable. Second, the MitM might simply
block every first call to any URI he does not know. The first situation can be
improved by using some kind of highly available VoIP system, including highly
available infrastructure and clients. In this case, a call which fails at the first
time may arouse suspicion. The second situation of course cannot be prevented
in the scenarios under consideration, but Random Call Delay as an automatic
fallback remains.

6 Conclusion

In this paper we have shown three innovations. The first innovation is a new
challenge-response scheme for VoIP systems without PKI, as can be created by
ZRTP. In order to pass the challenge, both caller and callee must present the
result of a computational puzzle within a critical time. This can be done only
by precomputing it, an attacker in the media path would not be able to do this
in time. The scheme works best in situations, where ZRTP is vulnerable most,
i.e., if both caller and callee do not know each other, and a MitM could launch
a Mafia Attack.

In the absence of a 100% reliable network, the challenge-response could be
efficiently blocked by a MitM. In such a situation, we propose our second inno-
vation, which delays the call for a random time depending on the shared Diffie-
Hellman session key. The caller would call only after this time has passed by,
and the callee only accepts such a call at this time. Due to our approach, only
the caller experiences the delay, while the callee does not.

The third innovation is a new computational puzzle which computes eigenvec-
tors of large matrices. This puzzle does not rely on shared secrets for validation,
but still is difficult to be parallelized for reasonably sized matrices. We have
further shown that for validating the result, only a small subset of the vector
components needs to be validated. Furthermore, by using hash commitment,
only a subset of the eigenvectors must be transmitted.
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