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Abstract: The reliability of a communications network is often evaluated without
taking into account the economic consequence of failures. Here a new approach is
proposed to assess the economic consequences of failures as a figure of merit of reliable
networks. For this purpose a partition of the network operator’s market into service
basins is proposed, which includes the presence of correlation between the subsystems
needed to serve different service basins as well as within the same service basin. A
simulation algorithm, based on the Cross-Entropy method, is fully described to evaluate
the probability that the economic loss exceeds a given threshold. An application of the
method to a simple scenario is finally reported.
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1 Introduction

Being reliable is one of the main requirements for a communications networks.
The number of activities that are supported by a network (sometimes extremely
relevant for human life, such as emergency services or healthcare) is such that we
require the network to work properly for an extremely large proportion of time,
which in turn means that failures must be rare and quickly fixed. Requirements
for a highly reliable network are typically met by a combination of strategies, e.g.
by deploying highly reliable network devices, by devising a network architecture
which is tolerant to failures of its individual components, and by establishing
a capillary and reactive maintenance team. A large body of literature has been
devoted to reliability and to the associated issues of availability and depend-
ability (this latter meaning reliability in a broad sense, incorporating both the
availability and the reliability concepts, see [ITU 1994] for the pertaining defini-
tions). A sample of the most covered areas of interest is given by the following
list (a rather exhaustive survey is provided in [Helvik 2004]):

– Reliability evaluation, i.e. the computation of the failure probability with
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the aim of providing a performance index for a network/service architecture
and driving the design process;

– Fault detection, with the aim of obtaining a fast and precise identification
of the occurrence of faults, the devices involved, and their location;

– Fault recovery, with the aim of returning the network to a regular state
as fast as possible, and possibly in a totally automated way (self-healing
networks).

Despite advances in the design of components and networks, reliability is still a
hot issue. In particular, large-scale outages occur more than ever in both data
and telephone networks; some examples are reported in [Snow 2001]. A number
of factors can be thought of as responsibles for such persistence. In fact, present
network design is often driven by the need to deploy services as fast as possible
and with costs as low as possible. This is often achieved e.g. through:

– Use of modular software, with an evergoing stream of upgrades and patches;

– Use of COTS (Commercial Off-The-Shelf) products;

– Massive resort to widespread upgrades;

– Employment of cost-abatement procurement procedures;

– Reduction of functional redundancy.

In addition, networks are increasingly built as the connection of a collection of
independently designed and often distributed modules, whose number is grow-
ing, and with an improper use of diversity mechanisms to achieve reliability
[Snow 2001]. As a result failures do occur at the same time on multiple devices
and points in the network, which often appear as a giant domino effect. An issue
of relevance in reliability analyses is therefore the consideration of correlated
failures and of their common causes.

Another issue that is typically missing in reliability studies is the economic
impact of a network fault (with rare exceptions, see e.g. [Akeson et al. 1994]
and [Kogeda et al. 2005]). When a network device fails, the operator incurs an
economic loss, generally even if the service is kept ongoing. The economical losses
can in fact be ascribed to these categories:

1. Lost revenues;

2. Penalties for breach of SLA (Service Level Agreement) conditions;

3. Recovery costs;
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of which the third one is present even if the customer is not affected by the net-
work failure. However, if we consider the operations of a service provider to be
driven by profit (as is typically the case), the economic impact of failures should
be the prime factor in determining the way the operator approaches reliability.
Under this viewpoint, not all faults are equal: those having a larger economic
impact should deserve more attention. Reliability performance should therefore
be evaluated not by an index such as the probability that the service is main-
tained, but rather by the resulting economical losses with their probability.

In this paper we introduce an economical loss function associated to network
failures and propose a simulation approach to evaluate the probability that the
losses exceed a tolerable threshold. We accomplish that by considering a normal
copula model (first established in [Gupton et al. 1997] in the context of credit
risk modelling and described in Section 2) to represent the correlation between
the failures of different devices. Some considerations on the open issues concern-
ing the concrete application of the normal copula model are provided in Section
4. Resorting to simulation is unavoidable because we are dealing with rare but
correlated events concerning a very large number of devices. As a simulation tech-
nique we have opted for the Cross-Entropy method, introduced by Rubinstein
[Rubinstein and Kroese 2004], whose application to the normal copula model is
detailed in Sections 3 and 5 (the latter reporting a toy example).

2 A normal copula model for the loss function

In this paper we propose a model for the evaluation of economic losses associated
to failures in a communications network. The model revolves around the cus-
tomers and the services affected by the faults rather than the network elements.
The focus is therefore not on the reliability itself but rather on the economical
consequences of poor reliability. It can be said that not all faults are equal: those
having a deeper impact on the operator’s revenues should be addressed first.

For this purpose we introduce the concept of service basin, which can be
defined as a rectangular partition of the two-dimensional space of customers and
services. A service basin is to be considered disrupted if its customers are not
receiving the subscribed services. A representation of a very simple service basin
partition is provided by an operator serving two areas and providing triple play
services (i.e. voice, TV, and Internet), so that we can identify 3 · 2 = 6 service
basins. Of course the partition can be as fine as desired (or possible), considering
even single customers and a more detailed set of services. The state of the i-th
service basin is represented by the binary variable Bi, where Bi = 0 if the basin
is correctly served and 1 otherwise. The disruption of service to the i-th basin
causes the economic loss ai. Though the loss may be actually dependent on the

788 Naldi M., D’Acquisto G.: A Normal Copula Model for the Economic Risk ...



duration of the disruption (which may be random), for the purpose of this model
we consider to be able to associate a single loss value to the disruption (e.g. as
if the duration of the disruption were known) and to perform the economical
loss evaluation over a pre-defined time horizon (e.g. one month). We are not
concerned with the details about the frequency of disruptions and their duration
but rather describe the overall economic loss due to the whole set of fault events
taking place within the time interval of interest. If we have Nb service basins the
overall economic loss is therefore

L =
Nb∑
i=1

aiBi. (1)

We consider that the service to the i-th basin is disrupted if any of a set of subsys-
tems is faulty, though more complex relationship (involving e.g. the simultaneous
failure of two or more components) could be envisaged. A given subsystem may
however impact several service basins. We indicate by Mi the number of sub-
systems impacting the i-th service basin. Unlike the approach typically adopted
that considers the subsystems as independent, we instead take the much more
realistic assumption that the faults of different subsystems may be correlated.
We therefore define a model based on the use of Mi latent variables Xij for each
service basin (one for each subsystem). Each latent variable is in turn driven by
an individual reliability factor ηij and a number of common reliability factors
Zk, k = 1, . . . , F . The common reliability factors allow to model the correlation
between the faults of different subsystems due to a common dependence on other
exogenous factors, e.g. the influence of the external temperature, of a common
control element (whose fault may make all the controlled devices faulty), or the
outage of the energy facilities. The relationship between the latent variable of a
subsystem and its reliability drivers is the following

Xij =
F∑

k=1

ρijkZk + αijηij , i = 1, . . . , Nb j = 1, . . . , Mi, (2)

the weights being subject to the normalizing relation

F∑
k=1

ρ2
ijk + α2

ij = 1. (3)

In this model the common reliability factors and the individual reliability factor
are i.i.d. standard normal variables, hence the name of normal copula assigned
to it, so that the resulting latent variable is itself a standard normal variable.
The link between the state of the j-th subsystem in the i-th service basin and
its associated latent variable is given by the probability that the subsystem is
faulty, equal to

P [Xij > bij ] = 1 − G(bij), (4)
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where bij is a suitable threshold and G(·) is the standard Gaussian cumulative
distribution function. We can then associate the binary variable Yij to the state
of the single subsystem by the indicator function

Yij = I [Xij > bij ] , (5)

so that Yij = 0 denotes a working subsystem and Yij = 1 a faulty one.
The introduction of the common reliability factors allows us to take into account
the correlation between the failures of different subsystems. In fact, the correla-
tion between any two latent variables Xij and Xlm is determined by the weights
of the common reliability factors in expr. (2):

C(Xij , Xlm) =
F∑

k=1

ρijkρlmk. (6)

This model has been introduced first in the context of financial risk analysis
where the insolvency of obligors is of interest [Gupton et al. 1997]. It is to be
noted that the latent variable approach allows us to consider not just the failure
of common causes, but also factors whose influence is gradual (e.g. the rise of
temperature or the fluctuations in the energy supply systems) so to make the
affected subsystem more prone to failure.
Finally, the service basin state is related to the state of its subsystems by the
simple relationship

Bi = max (Yi1, . . . , YiMi ) . (7)

It is to be noted that, though expr. 7 resembles the reliability relationship valid
for a set of independent series-connected devices, it incorporates the correlation
between the subsystems through the common reliability factors present in the
latent variable associated to each subsystem (see expr. 2).

3 Cross-Entropy simulation algorithm

In this section we describe a method to estimate the probability of large losses by
simulation, by applying the Cross-Entropy approach. We will largely draw on the
reference formulation of the method by Rubinstein [Rubinstein and Kroese 2004].
Our problem is to estimate the probability that the overall loss exceeds a given
threshold

γ = P(L > l). (8)

Of particular interest is the case where the threshold is quite large. The interest
is due to two concurrent reasons: the relevance of large losses for the financial
conditions of the operator and the difficulty of estimating the very small prob-
ability associated to this rare event. In the financial literature the threshold l is
named Value-at-Risk (VaR).
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Since the loss L actually depends on a number of random variables, we can
group them together in the random vector S =

{
Z1, . . . , ZF , η11, . . . , ηNbMNb

}
,

made up of F +
∑Nb

i=1 Mi elements, with the associated vector u of parameters
(in our case made of all the expected values and the variances of the common
and individual reliability factors, which are respectively 0 and 1). The proba-
bility density function (pdf) for the random vector S is f(s;u). An alternative
expression for the probability of losses larger than the given threshold is therefore

γ = Pu(L > l) = Eu

[
I{L(S)>l}

]
. (9)

After drawing a random sample of size N of the random vector S we could get a
crude MonteCarlo estimation of the probability of interest by the sample average

γ̂MC =
1
N

∑
i

I{L(Si)>l}. (10)

The problem with MonteCarlo estimation is the large variance associated with
the low value of the probability to be estimated. Namely the normalized standard
error of the MonteCarlo estimator has the well known expression for small values
of γ

σγ̂MC

E (γ̂MC)
=

√
1 − γ

Nγ
�

√
1

Nγ
. (11)

This problem can be overcome by resorting to the Importance Sampling (IS)
simulation method, where the probability associated to the values of interest
(those such that P[L > l]) is artificially increased through the use of a biased
pdf g(s). The bias is then recovered by using the IS estimator

γ̂IS =
1
N

∑
i

I{L(Si)>l}
f(s;u)
g(s)

. (12)

The extent of the improvements depends on the proper choice of this biased pdf,
which has to be such to reduce the variance of the associated estimator. An ideal
zero-variance IS estimator would be attained when the biased pdf is

g∗(s) =
I{L(Si)>l}f(s;u)

γ
, (13)

which unfortunately depends on the same quantity γ to be estimated.
However, this ideal estimator can be approached by looking for the best bias-

ing pdf within the family f(s;v), where v is the so-called tilting parameter vec-
tor, such that the distance between this newly defined pdf and the optimal one is
minimized. In our case the tilting vector is v = {μZ1 , . . . , μZF , μη11 , . . . , μηNMN

}.
A suitable measure of distance is the Kullback-Leibler distance, a.k.a. as Cross-
Entropy, i.e. the expected value of the logarithm of the ratio of the two pdfs
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computed under the probability measure provided by the pdf to be approached

D(g, f) = Eg

[
ln

g∗(s)
f(s;v)

]
=

∫
g∗(s) ln g∗(s)ds −

∫
g∗(s) ln f(s;v)ds. (14)

Since just the latter term depends on the tilting parameters to be optimized, and
we know the optimal biasing pdf (13), minimizing the Kullback-Leibler distance
is equivalent to choose v so to solve the following maximization problem

max
v

∫
I{L(Si)>l}f(s;u)

γ
ln f(s;v)ds, (15)

which in turn is equivalent to the program

max
v

Eu

[
I{L(Si)>l} ln f(s;v)

]
. (16)

By the repeated application of Importance Sampling, using again the pdf family
f(s;w) with a reference tilting parameter vector w the maximization program
can finally be written as

max
v

Ew

[
I{L(Si)>l}

f(s;u)
f(s;w)

ln f(s;v)
]

, (17)

whose solution is

v∗ = argmax
v

Ew

[
I{L(Si)>l}

f(s;u)
f(s;w)

ln f(s;v)
]

. (18)

The optimal tilting parameter vector can be estimated by solving the correspond-
ing stochastic program, which uses a simulated sample S1, . . . ,SN extracted from
f(·;w)

max
v

1
N

N∑
i=1

I{L(Si)>l}
f(Si;u)
f(Si;w)

ln f(Si;v). (19)

The j-th component of the tilting vector can therefore be obtained by the fol-
lowing equation

1
N

N∑
i=1

I{L(Si)>l}
f(Si;u)
f(Si;w)

∂

∂vj
ln f(Si;v) = 0, (20)

which can be solved analytically if the distributions of the random variables of
interest belong to a natural exponential family.

In our case we decide to bias the distributions of the common reliability
factor as well as those of the individual factors. For all these variables we shift
the expected value while maintaining the original variance (the reference vector
u is therefore a zero vector of size equal to the number of the reliability factors
– individual plus common):

Zi ∼ N(0, 1) =⇒ Zi ∼ N(μZi , 1) i = 1, . . . , F, (21)
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ηij ∼ N(0, 1) =⇒ ηij ∼ N(μij , 1) i = 1, . . . , N j = 1, . . . , Mi. (22)

Since all the variables at play are independent, the resulting multidimensional
pdf is just the product of the individual pdf’s. In the absence of bias we have
for the k-th sample element

f(Sk;u) =
F∏

j=1

1√
2π

e−z2
jk/2

Nb∏
i=1

Mi∏
j=1

1√
2π

e−η2
ijk/2. (23)

The joint biased pdf is instead

f(Sk;w) =
F∏

j=1

1√
2π

e−(zjk−μZj )
2
/2

Nb∏
i=1

Mi∏
j=1

1√
2π

e−(ηijk−μηij )
2
/2. (24)

The likelihood ratio is therefore

f(Sk;u)

f(Sk;w)
= exp

8<
:

PF
j=1

h`
zjk − μZj

´2 − z2
jk

i
+

PNb
i=1

PMi
j=1

h`
ηijk − μηij

´2 − η2
ijk

i

2

9=
;.

(25)

If we mark the parameters (to be estimated) of the target pdf by a star, the
equations to solve are

1
N

N∑
k=1

I[Lk > l]
f(Sk;u)
f(Sk;w)

∂

∂μ∗
Zj

ln[f(Sk;v)] = 0 j = 1, . . . , F, (26)

where Lk is the overall loss as evaluated at the k-th simulation run, and

1
N

N∑
k=1

I[Lk > l]
f(Sk;u)
f(Sk;w)

∂

∂μ∗
ηij

ln[f(Sk;v)] = 0, (27)

the latter with i = 1, . . . , Nb and j = 1, . . . , Mi. The solution provides the
following parameter values

μ∗
Zj

=

∑N
k=1 I[Lk > l] f(Sk;u)

f(Sk;w)zjk∑N
k=1 I[Lk > l] f(Sk;u)

f(Sk;w)

j = 1, . . . , F, (28)

μ∗
ηij

=

∑N
k=1 I[Lk > l] f(Sk;u)

f(Sk;w)ηijk∑N
k=1 I[Lk > l] f(Sk;u)

f(Sk;w)

i = 1, . . . , Nb, j = 1, . . . , Mi. (29)

At each updating step the probability of interest can be estimated by the IS
formula

P[L > l] � 1
N

N∑
i=1

I{L(Si)>l}
f(Si;u)
f(Si;v)

(30)
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In order to apply these equations with a sufficient number of useful (i.e. nonzero)
terms it is usually expedient to start the algorithm with a threshold l̂ < l,
to be progressively increased as the bias level grows. In the end, the resulting
simulation programme can be synthetically described by the following list of
steps:

1. Set v0 = u, l0 = 1, and the iteration counter t = 1;

2. Generate a sample S1, . . . ,SN from the probability density f(·;vt−1);

3. Obtain the resulting values of the economic loss L(S1), . . . , L(SN), sort them
in increasing fashion, and extract the 90% percentile to assign it to the
threshold lt;

4. Use the same sample to update the tilting vector vt according to equations
(28) and (29);

5. If lt < l, set t = t + 1 and go back to step 2, else go to the next and final
step;

6. Estimate the loss probability by eq. (30) with v = vt.

4 Open issues: Model Identification and Calibration

So far we have assumed that the model is completely defined, i.e. that all its
parameters are known. However, the actual application of the model to a concrete
situation requires that we are able to completely define the model on the basis of
a set of measurements on the system of interest (typically measurement of failure
rates). Though this is still an open issue, we provide here some indication. In
our case the definition of the model requires the following operations:

1. Identifying the common reliability factors;

2. Setting the values of the M =
∑Nb

i=1 Mi thresholds bij (i = 1, . . . , Nb, j =
1, . . . , Mi);

3. Setting the values of the F · M correlation parameters ρijk (i = 1, . . . , Nb,
j = 1, . . . , Mi, k = 1, . . . , F ).

As to the first item, this requires a deep knowledge of the system at hand, so to
identify those factors that may influence more than a single subsystem. However,
the number F of the common reliability factors has an impact on the capability
of the model to correctly represent the system: too low a number of common
reliability factors may result in the impossibility to fit the model to the observed
failure rates.
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The thresholds bij are easily derived from the observed indidivual failure
rates. In fact if we take the observed failure rate rij of the generic subsystem
as an approximation of its failure probability P[Xij > bij ] the thresholds are
obtained as

bij = G−1 (1 − rij) . (31)

Instead, the determination of the correlation parameters may be quite difficult.
We have to determine F · M parameters. A mathematical view of the problem
would lead us soon to consider the correlation between the latent variables as con-
straints (though these correlations are not observable). The minimum number of
constraints is therefore the number of couples of latent variables

(
M
2

)
= M(M−1)

2 .
Both the number of unknowns and the number of constraints grow with M , but
the former grows linearly and the latter grows quadratically. By equating the
two quantities we can derive some bounds on F of practical interest for the
model determination. When M < 2F + 1 we may have (if we don’t introduce
additional constraints) an underconstrained system, so that there is room to fit
the model to the observed failure rates. Instead, if we exceed this bound, the
resulting system of equations is overconstrained, with the practical consequence
that we won’t be able to model all of the possible correlation conditions. As an
example we can consider the case where we have four subsystems (represented
by the latent variables X1, X2, X3, X4) and a single common reliability factor.
In this case we won’t be able e.g. to obtain the correlation parameters such that
the following conditions on the correlation between the latent variables are met
C (X1, X3) = C (X2, X4) = 0.8, C (X1, X2) = C (X3, X4) = 0.1. In those cases
a way out could be represented by the addition of common reliability factors
(i.e. increasing F ) so to make the resulting system again underconstrained. This
is not tantamount to introducing dummy variables, but is rather related to the
identification of real common factors that were hidden in the first exploration of
the system at hand.

However, in practical cases the determination of the correlation parameters
ρijk can’t be arrived at through the correlation between the latent variables, since
these are essentially unobservable. Instead, we can measure fault correlations,
i.e. the correlation between the random variables Yij indicating the state of the
subsystems. Indicating by pij = P[Xij > bij ] the marginal probability that the
j-th subsystem in the i-th service basin is out of service, and by pij,lm = P[Xij >

bij , Xlm > blm] the joint probability of failure of two subsystems, the correlation
between the faults of these two subsystems is

cij,lm =
pij,lm − pijplm√

pij(1 − pij)plm(1 − plm)
. (32)

In turn the probability of a joint failure can be computed through the joint pdf
of the two latent variables (which is a two-dimensional normal one gβ(·, ·) with
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a correlation coefficient β = C(Xij , Xlm))

pij,lm =
∫ +∞

bij

∫ +∞

blm

gβ(s, t)dsdt, (33)

providing a link between the correlation of faults (observable but not explicitly
present in the copula model) and the correlation of the latent variables (unob-
servable but directly related to the weights of the common reliability factors in
the normal copula model). As noted in [Frey et al. 2001] fault correlations are
much lower than the corresponding latent variable correlations.
Since faults, rather than latent variables, are observable, a better calibration
procedure involves the maximization of the likelihood function, following the
approach of [Demey et al. 2004], which we briefly introduce here. We can first
write the fault probability of the individual subsystem conditioning on the indi-
vidual reliability factor of that subsystem

pij = P[Xij > bij ] = G

⎛
⎝bij −

∑F
k=1 ρijkZk√

1 − ∑F
k=1 ρ2

ijk

⎞
⎠ . (34)

If we observe the network for a number T of periods and introduce the observed
variable Dij(t), equal to 1 if we observe the fault of that subsystem at time t

and 0 otherwise, the conditional likelihood function is

Lc =
T∏

t=1

Nb∏
i=1

Mi∏
j=1

[pijDij(t) + (1 − pij)(1 − Dij(t))] . (35)

Since we have conditioned on the individual reliability factors, which are inde-
pendent and identically distributed according to a standard normal law, the log
likelihood function is finally

L =
T∑

t=1

Nb∑
i=1

Mi∑
j=1

∫
[pijDij(t) + (1 − pij)(1 − Dij(t))] g(z)dz, (36)

where g(z) is the standard normal probability density function. The log-likelihood
function depends, through the marginal probability values pij , on the correla-
tion parameters ρijk of interest as expressed by expr. (34). We can therefore
calibrate the ρijk values by maximizing, by numerical procedure, this likeli-
hood function. As the maximization problem can be quite complex, since there
are many parameters and in many instances the observed fault indicator Dij

will be zero, a constrained maximization approach has been proposed e.g. in
[Demey et al. 2004], where some conditions are imposed on the correlation be-
tween the latent variables (e.g. that they are all equal or that take some value
within a small set).
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Once the correlation parameters have been determined the weights of the
individual reliability factors αij can be readily derived by the normalizing rela-
tionship (3).

5 A toy example

For the purpose of illustrating the application of the method described so far we
consider in this section a simple model, made of 100 service basins, with each
service basin made of a single subsystem and a single reliability factor, common
to all the subsystems. The latent variable of the i-th subsystem is therefore

Xi = ρZ +
√

(1 − ρ)2ηi, i = 1, . . . , 100. (37)

The loss associated to the disruption of a single service basin is unitary, so
that the overall loss ranges from 0 to 100 in steps of 1. We apply the method
previously described to evaluate the probability of a large loss, corresponding to
the simultaneous failure of many service basins. As a simple case we set the failure
threshold for each latent variable b = 1, so that the individual failure probability
is 1 − G(1) � 0.16. We examine how the probability of a large loss varies with
the Value-at-Risk (i.e. the threshold l as defined in Section 2) and with the
correlation weight ρ. We examine the former issue for a case of mild dependance,
setting ρ = 0.1 and letting the loss treshold vary in the range l = 30 ÷ 70. As
can be seen in Figure 1 the fall of the loss probability is roughly exponential. In
order to assess the effect of the correlation we can compute the loss probability
when all subsystems are independent by the binomial distribution, obtaining
for the extreme cases (l = 30 and l = 70) a loss probability respectively equal
to 1.697 · 10−4 and 1.774 · 10−33. The distance from the values reported in the
picture shows that the effect of correlation is particularly relevant for large values
of VaR.

The effect can be highlighted in greater detail by setting a value for the
VaR (say l = 50) and varying the correlation weight ρ in the range 0.05 ÷ 0.5.
Now the loss probability, reported in Figure 2, grows much more rapidly when
the correlation weight first grows, approaching then its limiting value (i.e. the
individual failure rate, in this case 1 − G(1) � 0.16). Again we can derive the
limiting value on the other side, i.e. when all the subsystems are independent
(ρ = 0), obtaining P(L > 50) � 1.88 · 10−15.

6 Conclusions

A new approach, based on the economic loss, has been proposed to evaluate
the reliability behaviour of a communications network. The model is based on
the partition of the network operator’s market in a number of service basins,
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Figure 1: Probability of losses larger than a given Value-at-risk (ρ = 0.1)
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Figure 2: Effect of the correlation weight (l = 50)
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each relying on a number of subsystems. The dependence among different sub-
systems, largely ignored in most reliability models, has been taken into account
by introducing a normal copula model. In order to solve the model and obtain
the probability of a given level of losses a simulation algorithm, based on the
Cross-Entropy approach, has then been proposed. The full description of the
algorithm is finally accompanied by a toy example to show its usability in a
simple scenario.

References

[Akeson et al. 1994] Akeson, J.K., Casey, B.K., Dagli, A.A., Glickman, S.E., Kalisz,
T.: “Cost Impact of Telecommunications Switch Software Problems on Divested
Bell Operating Companies”; IEEE Journal Sel. Areas in Communications, 12, 2
(February 1994)

[Demey et al. 2004] Demey, P., Jouanin, J.F., Roget, C., Roncalli, T.: “Maximum like-
lihood estimate of default correlations”; Risk, 17, 11 (November 2004) 104-108

[Frey et al. 2001] Frey, R., McNeil, A.J., Nyfeler, M.A.: “Modelling Dependent De-
faults: Asset Correlations Are Not Enough!”; Working paper (9 March 2001)

[Gupton et al. 1997] Gupton, G., Finger, C., Bhatia, M.: “CreditMetrics Technical
Document”; J.P. Morgan and Co. (2 April 1997)

[Helvik 2004] Helvik, B.:“Perspectives on the dependability of networks and services”;
Telektronikk, 3 (2004) 27-44.

[ITU 1994] ITU-T: “Recommendation E.800: Terms and definitions related to quality
of service and network performance including dependability”; Geneva (1994).

[Kogeda et al. 2005] Kogeda, O.P., Agbinya, J.I., Omlin, C.W.: “Impacts and Cost of
Faults on Services in Cellular Networks”; Proceedings of the International Confer-
ence on Mobile Business (ICMB’05) (2005).

[Rubinstein and Kroese 2004] Rubinstein, R.Y., Kroese, D.P.: “The Cross-Entropy
Method”; Springer, New York

[Snow 2001] Snow, A.P.: “Network Reliability: The Concurrent Challenges of Innova-
tion, Competition, and Complexity”; IEEE Trans. Reliability, 50, 1 (March 2001)
38-40.

799Naldi M., D’Acquisto G.: A Normal Copula Model for the Economic Risk ...


