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Abstract: Over the last decade, due to the rapid developments in information technology (IT), 
a new breed of information systems has appeared such as geographic information systems that 
introduced new challenges for researchers, developers and users. One of its applications is the 
car navigation system, which allows drivers to receive navigation instructions without taking 
their eyes off the road. Using a Global Positioning System (GPS) in the car navigation system 
enables the driver to perform a wide range of queries, from locating the car position, to finding 
a route from a source to a destination, or dynamically selecting the best route in real time. 
Several types of spatial queries (e.g., nearest neighbour - NN, K nearest neighbours – KNN, 
continuous k nearest neighbours – CKNN, reverse nearest neighbour – RNN) have been 
proposed and studied in the context of spatial databases. With spatial network databases 
(SNDB), objects are restricted to move on pre-defined paths (e.g., roads) that are specified by 
an underlying network. In our previous work, we proposed a novel approach, termed 
Progressive Incremental Network Expansion (PINE), to efficiently support NN and KNN 
queries. In this work, we utilize our developed PINE system to efficiently support other spatial 
queries such as CKNN. The continuous K nearest neighbour (CKNN) query is an important 
type of query that finds continuously the K nearest objects to a query point on a given path. We 
focus on moving queries issued on stationary objects in Spatial Network Database (SNDB) 
(e.g., continuously report the five nearest gas stations while I am driving.) The result of this 
type of query is a set of intervals (defined by split points) and their corresponding KNNs. This 
means that the KNN of an object travelling on one interval of the path remains the same all 
through that interval, until it reaches a split point where its KNNs change. Existing methods for 
CKNN are based on Euclidean distances. In this paper we propose a new algorithm for 
answering CKNN in SNDB where the important measure for the shortest path is network 
distances rather than Euclidean distances. Our solution addresses a new type of query that is 
plausible to many applications where the answer to the query not only depends on the distances 
of the nearest neighbours, but also on the user or application need. By distinguishing between 
two types of split points, we reduce the number of computations to retrieve the continuous 
KNN of a moving object. We compared our algorithm with CKNN based on VN3 using IE 
(Intersection Examination). Our experiments show that our approach has better response time 
than approaches that are based on IE, and requires fewer shortest distance computations and 
KNN queries. 
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1 Introduction  

Over the last decade, due to the rapid developments in information technology (IT), 
particularly communication technologies, a new breed of information systems has 
appeared such as mobile information systems. Mobility is perhaps the most important 
market and technological trend within information and communication technology. 
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Mobile information systems will have to supply and adopt services that go beyond 
traditional web-based systems, and hence they come with new challenges for 
researchers, developers and users. 

One of the well-known applications that depend on mobility is the car navigation 
system, which allows drivers to receive navigation instructions without taking their 
eyes off the road. Using a Global Positioning System (GPS) in the car navigation 
system enables the driver to perform a wide manner of queries, from locating the car 
position, to finding a route from A to B, or dynamically selecting the best route in real 
time. 

Several types of spatial queries (e.g., nearest neighbour - NN, K nearest 
neighbours – KNN, continuous nearest neighbour - CNN, continuous k nearest 
neighbours – CKNN, reverse nearest neighbour – RNN) have been proposed and 
studied in the context of spatial databases. The most common type is the point KNN 
query, which is defined as: given a set of spatial objects (or points of interest), and an 
input query point, retrieve the (K) nearest neighbours to that query point. The NN is 
the target object with the shortest path from the query point on the route. The efficient 
implementation of KNN query is of a particular interest in Geographical information 
systems (GIS). For example, a GPS device in a vehicle gives information of an 
object’s location, which, once located onto a map, serves as a basis to find the K 
closest restaurants or gas stations with the shortest path to them.  

Different variations of KNN queries have been introduced. One variation is the 
continuous KNNs of any point on a given path. As an example when the GPS device 
of the vehicle initiates a query to continuously find the 3 nearest gas stations to the 
vehicle at any point of a path from source to destination. The result is a set of 
intervals or split points where the KNNs of a moving object on a path will be the 
same up to these points. The versatility of K nearest neighbours search increases 
substantially if we consider other variations of it such as the Continuous KNN 
(CKNN.) CKNN query is defined as the K nearest point of interest to every point on a 
path, and has found applications in the GISs. For example, in Figure 1, for Car2 find 
the nearest 3 restaurants at any point during its route from its location to reach P12. 
The result of this type of query is a set of tuples <result, interval> such that the result 
is the KNN of all points in the corresponding interval ordered by distances to the 
query point.  The interval is defined by two end-points, called split points, which 
specify where on the path the KNNs of a moving object will change. This means that 
the KNNs of an object travelling on one interval of the path remain the same all 
through that interval, until it reaches a split point where its KNNs change. 

With spatial network databases (SNDB), objects are restricted to move on pre-
defined paths (e.g., roads) that are specified by an underlying network. This means 
that the shortest network distance between objects (e.g., the vehicle and the 
restaurants) depend on the connectivity of the network rather than the objects’ 
location. Taken also into consideration that Mobile devices are usually limited on 
memory resources and have lower computational power, efficient algorithms for 
distance computation are critical for query processing in such real time systems. 

In [Safar, 05] we proposed a novel approach (PINE) that reduces the problem of 
distance computation in a very large network, into the problem of distance 
computation in a number of much smaller networks plus some online “local” network 
expansion. In this work, we use PINE to efficiently address CKNN and RNN queries 
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in SNDBs. With RNN, given a set of spatial objects (or points of interest, e.g., 
restaurants), and a query point (e.g., vehicles’ location), find the restaurants that 
consider that vehicle as their nearest neighbour. For example, in Figure 1, the 
restaurant P2 has Car3 as its RNN.  
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Figure 1:  CKNN and RNN Queries 

In solving CKNN queries, it is important to note that issuing a traditional nearest 
neighbour query at every point of the line segment is infeasible due to the large 
number of queries generated and the large overhead. The challenge for this type of 
query is to efficiently find the location of the split point(s) on the path. Or in other 
words, where in the path does the KNN change. The main idea behind our approach is 
that the KNNs of any object on a path between two adjacent nodes (e.g., intersection 
in road network) can be a subset of any points of interest (e.g., gas stations) on the 
path. Hence, the solution is based on breaking the entire path to smaller segments 
(sub-paths), where each segment is surrounded by two adjacent nodes. Our approach 
is then based on finding the minimum distances between two subsequent nearest 
neighbours of an object, only when the two neighbours can have a split point between 
them. This distance specifies the minimum distance that the object can move without 
requiring a new KNN query to be issued.  

We divide the problem into two cases, depending on the number of neighbours 
requested by a CNN query. When only the first nearest neighbour is requested (e.g., 
finding only the closest restaurant to a vehicle while it is travelling), our solution 
relies entirely on the PINE model. We show that the split points on the path are 
simply the intersections of the path with the network Voronoi polygons (NVPs) of the 
network, which are a subset of the border points of the NVPs. In the case when more 
than one neighbour is requested by CNN query (i.e., CKNN) the main idea behind our 
approach is that the KNN of any object on a path between two adjacent nodes (e.g., 
intersection in road system) can only be a subset of any point of interest (e.g., 
restaurants) on the path, plus the KNNs of the end nodes.  Therefore, we need to first 
find the KNNs of the intersections on the path using PINE, and then find the location 
of the split points between two adjacent nodes and their associated KNN. 

To efficiently find the location of the split point(s) on the path we use a modified 
version of the IE algorithm proposed by [Kolahdouzan, 04b]. The solution is based on 
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breaking the entire path into smaller segments, where each segment has two end-
points (e.g., adjacent intersections in road network), and finding the KNNs of all 
nodes in each segment. There is a split point between two adjacent nodes with 
different KNNs. The location of the split points can be found by first specifying 
whether each NN is increasing or decreasing, depending on the distances from a 
query object to the KNNs of the nodes as the objects move, then calculating a split 
point for each increasing member of the candidate set with every decreasing NN, or 
vice versa. 

In addition, we distinguish between different split points. One type of split points 
where we replace the element(s) of the KNN list with (a) different one(s) compared to 
the KNN list of the starting node of a segment is called “Element- SplitPoint” (ESP). 
The other type of split points at which we change the order of the elements of the 
KNN is called “Order- SplitPoint” (OSP). In some applications, we only care about 
the k nearest neighbours and not their ordered distances (i.e., being the first nearest 
neighbour or the second.) For example, suppose that as we are travelling by a car, we 
issue a query to find the five nearest restaurants to us, however, we would choose to 
go to the one that serves our favourite cuisine and not necessarily the closest one. The 
query may return the following five nearest restaurants in ascending order: Indian, 
Italian, American, Chinese, and Indonesian. Although the Indian restaurant is the 
closest, we could go to the American restaurant if we like the American cuisine. Here, 
the choice was not based on pure distances. If the application does not require the 
order of the KNNs, then we only have to save the ESP points and ignore the OSP. The 
intuition is that the total count of all ESP is less than OSP.  

Contrasting it with [Kolahdouzan, 04b], our method reduces the number of KNNs 
queries performed and eliminates the need to update the directions (increasing, 
decreasing) of the NN as the object moves. We just generate one table to provide the 
information on where the ESP/ OSP are going to occur, and the hints for the KNN 
elements at each breakpoint. Hence, reducing the number of computations to retrieve 
the continuous KNN of a moving object. 

Our experimental results in [Safar, 05] showed that VN3 failed in answering some 
CKNN queries and provided invalid results. Our analysis of the algorithm identified 
some flaws in the algorithm, especially in the cases where both end points of a line 
segment (road link) have a common nearest neighbour. In this case, the algorithm 
assumes that while moving from one end point to the other, the distance to that 
common nearest neighbour either increases or decreases throughout the link. 
However, our investigation and analysis showed that this is not the case. Usually the 
distance increases until you reach a virtual split point (not real). At this point, the 
distance gets decreased because the shortest path to the common nearest neighbour 
would pass through the second end point. Hence, in this paper we provide a modified 
algorithm to resolve that problem.  

 
The remainder of this paper is organized as follows. Section 2 provides a related 

work study. Section 3 provides a background on some definitions and algorithms used 
in this work. Then, we describe how to answer KNN queries using PINE in section 4. 
In sections 5 and 6 we discuss our approaches to solve CKNN using PINE, 
respectively. Section 7 provides our experimental results. Finally, we conclude our 
work in section 8. 
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2 Related work 

The most common type of query encountered in spatial databases is the point k 
nearest neighbour (KNN) query, which is defined as: given a point query in a 
multidimensional space, find the k closest objects in the database to the query point. 
This type of query is extensively used in geographical information systems (GIS) and 
thus was the focus of many researches. There are two groups of algorithms proposed 
to address the KNN query. Some of the algorithms are based on utilizing the 
Euclidean distances; other algorithms are based on network distances. The regular 
KNN queries are the basis for several query variations such as the Continuous KNN 
and the Reverse NN. In this section, we overview previous work related to KNN 
query, and its variations.  

Most of the existing work [Roussopoulos, 95][Korn, 96][Seidl, 98] consider 
Cartesian (typically, Euclidean) spaces, where the distance between two objects is 
determined by their relative position in space. The current algorithms for computing 
the distance between a query object q and an object O in a network will automatically 
lead to the computation of the distance between q and the objects that are (relatively) 
closer to q than O. The advantage of these approaches is that they explore the objects 
that are closer to q and compute their distances to q progressively. The major 
disadvantage with the approaches is that the shortest path calculations are performed 
based on Euclidean distances while in practice, objects usually move only on pre-
defined roads. This makes the distance calculations depend on the connectivity among 
these objects. Hence, they perform poorly when the objects are not densely distributed 
in the network since then they require a large portion of the network to be retrieved 
for distance computation. In this work, the important measure is the network distance, 
which renders the algorithms in the first group impractical for SNDB.  

The other group of research focuses on solving the KNN for spatial network 
databases. In these databases, the underlying network connections are captured and 
the distance between two objects is the length of the shortest path connecting them. 
The approaches in [Papadias, 03][Kolahdouzan, 04][Safar, 05] support the exact KNN 
queries on spatial network databases.  

The solution in [Papadias, 03], called the Incremental Network Expansion (INE), 
introduces an architecture that integrates network and Euclidean information.  It is 
based on creating a search region for the query point that expands from the query that 
is similar to Dijkstra’s algorithm. The advantages of this approach are: 1) it offers a 
method for finding the exact distance in networks, and 2) the architecture can support 
other spatial queries like range search and closest pairs.  However, this approach 
suffers from poor performance when the objects (e.g., restaurants) are not densely 
distributed in the network because this will lead to large portions of the database to be 
retrieved. This problem happens for large values of k as well. 

The Voronoi-based Network Nearest Neighbor (VN3) approach proposed in 
[Kolahdouzan, 04] is based on the properties of the Network Voronoi Diagrams 
(NVD). It uses localized pre-computations of the network distances for a very small 
percentage of neighboring nodes in the network to enhance query response time and 
reduce disk accesses. In addition, Network Voronoi Polygons (NVPs) of a NVD can 
directly be used to find the first nearest neighbor q. Subsequently, NVP’s adjacency 
information provides a candidate set for other nearest neighbors of q. Finally the pre-
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computed distances are used to refine the set. The filter/ refinement process in VN3 is 
iterative: at each step, first a new set of candidates is generated from the VNPs, then 
the pre-computed distances are used to select “only the next” nearest neighbor of q. 
The advantages of this approach are: 1) it offers a method that finds the exact 
distances in networks, 2) fast query response time, and 3) progressively returns the k 
nearest neighbors and their distances from the query point. The main disadvantage of 
this approach is its need for pre-computing and maintaining two different sets of data: 
1) query to border computation: computing the network distances from q to the border 
points of its enclosing network Voronoi polygon, and 2) border to border 
computation: computing the network distances from the border points of NVP of q to 
the border points of any of the other NVPs. Furthermore, this approach suffers in 
performance with lower density data sets.  

We proposed in [Safar, 05] a novel approach, termed PINE, to efficiently address 
KNN queries in SNDBs. The main idea behind this approach is to first partition a 
large network into smaller more manageable regions, then pre-compute distances 
across the regions. Those two steps can be easily and efficiently implemented using a 
first order Voronoi diagram, then a computation similar to the INE can be used for the 
computation of intra-distances. The advantage of PINE is that it has less disk access 
time and less CPU time than VN3. In addition, PINE’s performance is independent of 
the density and distribution of the points of interest, and the location of the query 
object. By performing across-the-network computation for only the border points of 
the neighboring regions, we avoid global computations later on.  

The solutions proposed for regular KNN queries are either directly used or have 
been adapted to address the variations of KNN queries such as CKNN and RNN 
queries. Given a predefined route, a continuous query retrieves tuples of the form 
<result, interval> where each result is accompanied by a future interval, during which 
it is valid. Despite the importance of continuous queries in SNDBs, the scarce studies 
in the literature are designed for Euclidean spaces (e.g., [Tao, 02]), which are not 
applicable to SNDBs.   

For example, the approach proposed in [Tao, 02] uses the R-tree as the 
underlying data-partition access method. Their algorithm traverses the tree and prunes 
unnecessary node accesses based on some heuristics that use Euclidean distances. 
Their goal is to perform one single query of the entire path. The algorithm starts with 
an initial list of split points (SL) containing only the path starting and ending nodes, 
and an empty initial list of NNs, and then it incrementally updates the SL during 
query processing. After, each step, the SL contains the current result with respect to 
all the data points processed so far. The final result contains each split point that 
remains in SL after the termination together with its nearest neighbor. The advantage 
of [Tao, 02] is the avoidance of multiple database scans by reporting the result with a 
single traversal of the database. Yet, it still has the major disadvantage of using 
Euclidean distances that are not applicable to network distances.  

Finally, [Kolahdouzan, 04b] address the problem of CKNN queries in road 
networks. They proposed two techniques termed: Intersection Examination (IE) and 
Upper Bound Algorithm (UBA) to find the location and KNN of split point(s) on the 
path. The first solution, IE, finds KNNs of all the nodes on a path by breaking the 
path into segments and only examining the KNNs of intersection nodes. There is a 
split point on the shortest path between two adjacent nodes with different KNNs and 
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the location of that point is calculated. The second approach, UBA, improves the 
performance of IE by reducing the number of KNN computations by eliminating the 
computation of KNNs for the nodes that cannot have any split points in between. The 
intuition of UBA is that when a query object is moved slightly, it is very likely that its 
KNNs remain the same. UBA proposes a method to find the minimum distance that 
the object can move without requiring a new KNN to be issued.  
There are three shortcomings of [Kolahdouzan, 04]: 1) the total number of split points 
computed using this algorithm is sometimes redundant or useless for some kinds of 
applications as we explained in section 1, 2) The distance to all the KNN of both end 
nodes (i.e., the distance to the candidate list of each segment) are updated and ordered 
at each split point which incurs unnecessary overhead, and 3) The PINE algorithm is 
more efficient than VN3 in finding the KNN of a point. (For experimental results see 
[Safar, 05]). To the best of our knowledge, [Kolahdouzan, 04b] is the only approach 
that uses network distances to find CKNN.  

3 Background 

Our proposed approaches to address the spatial queries are based on PINE algorithm, 
network Voronoi diagram and Dijkstra's algorithm. A Voronoi diagram divides a 
space into disjoint polygons where the nearest neighbor of any point inside a polygon 
is the generator of the polygon. Dijkstra's algorithm provides one of the most efficient 
algorithms that finds shortest paths from the source node to all the other nodes. In 
[Papadias, 03][Safar, 05] Dijkstra’s was preferred over the other famous shortest path 
algorithm (A*) [Kung, 86] because of the way that it computes the shortest path 
distance by expanding from the source towards destination. In addition, it uses a 
queue to store a sorted list of the recently visited nodes instead of applying a 
heuristics to prune the search space and direct the graph expansion like in A* 
algorithm. 

In this section, we review the principles of the Voronoi diagrams. We start 
with the Voronoi diagram for 2-dimensional Euclidean space and present only the 
properties that are used in our approach. We then discuss the network Voronoi 
diagram where the distance between two objects in space is their shortest path in the 
network rather than their Euclidean distance and hence can be used for spatial 
networks. Then, we talk about PINE algorithm. A thorough discussion on Voronoi 
diagrams is presented in [Okabe, 00][Safar, 05]. 

3.1 Voronoi diagrams  

Imagine you are looking for a school for your kid. Among the criteria to be 
considered will be the length of the way to school. If you formulate this as a spatial 
analysis problem, you are looking for the school that is closest to your home, among 
all schools in your city. The classical approach to solve this spatial analysis problem 
is the Voronoi diagram. The Voronoi diagram isolates the area that is closest to each 
school.  The Voronoi diagram of a point set P, VD(P), is a unique diagram that 
consists of a set of collectively exhaustive and mutually exclusive Voronoi polygons 
(Voronoi cells), VPs. Each Voronoi polygon is associated with a point in P (called 
generator point) and contains all the locations in the Euclidean plane that are closer to 
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the generator point of the Voronoi cell than any other generator point in P. The 
boundaries of the polygons, called Voronoi edges, are the set of locations that can be 
assigned to more than one generator. The Voronoi polygons that share the same edges 
are called adjacent polygons and their generators are called adjacent generators. The 
following property holds for any Voronoi diagram and is used to answer KNN 
queries: “ The nearest generator point of pi (e.g., pj) is among the generator points 
whose Voronoi polygons share similar Voronoi edges with VP(pi).” (see [Okabe, 00][ 
Kolahdouzan, 04a] for further details). In general, a Voronoi diagram of a set of 
"sites" (points) is a collection of regions that divide up the plane. Each region 
corresponds to one of the sites, and all the points in one region are closer to the 
corresponding site than to any other site. 

3.2 Network voronoi diagrams 

Sometimes the approach is of limited value, especially if the possibilities to move in 
space are limited to one or several networks. In this case, the above described method 
gives only rough estimates and might even be significantly wrong. Several 
assumptions of the Voronoi diagram are violated in urban areas; distances between 
two addresses are not Euclidean; they have to be measured along the travel 
network(s). If your son has to walk around a block of buildings, the way to school can 
be significantly longer than the Euclidean distance. Thus, we use the Network 
Voronoi diagram [Okabe, 00]. "A network Voronoi diagram, termed NVD, is defined 
for graphs and is a specialization of Voronoi diagrams where the location of objects is 
restricted to the links that connect the nodes of the graph and the distance between 
objects is defined as their shortest path in the network rather than their Euclidean 
distance.” [Kolahdouzan, 04b][Roussopoulos, 95]. Spatial networks (e.g., road 
networks) can be modeled as weighted planar graphs where nodes of the graph 
represent the intersections and roads are represented by the links connecting the 
nodes. 

The Network Voronoi diagram considers distances only in networks, not in the 
plane. It divides the network, not the space, into Voronoi cells. A Voronoi cell in a 
network is the set of nodes and edges that are closer to one Voronoi generator (here, a 
school) than to any other. For the construction of the Network Voronoi diagram an 
algorithm is used based on the shortest path algorithm of Dijkstra. Dijkstra’s 
algorithm calculates in a connected network the shortest path from a selected start 
node to any other node in the network (see [Kolahdouzan, 04b][Roussopoulos, 95] for 
further details). 

4 K nearest neighbor (knn) queries using pine 

Taken into consideration that Mobile devices are usually limited on memory 
resources and have lower computational power, in [Safar, 05] we proposed a novel 
approach that reduces the problem of distance computation in a very large network, 
into the problem of distance computation in a number of much smaller networks plus 
some online “local” network expansion. The main idea behind that approach, termed 
Progressive Incremental Network Expansion (PINE), is to first partition a large 
network into smaller/more manageable regions. We achieved this by generating a 
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network Voronoi diagram over the points of interest. Each cell of this Voronoi 
diagram is centred by one object (e.g., a restaurant) and contains the nodes (e.g., 
vehicles) that are closest to that object in network distance (and not the Euclidian 
distance). Next, we pre-compute the inter distances for each cell. That is, for each 
cell, we pre-compute the distances across the border points of the adjacent cells. This 
will reduce the pre-computation time and space by localizing the computation to cells 
and a handful of neighbour-cell node-pairs. Now, to find the k nearest-neighbours of a 
query object q, we first find the first nearest neighbour by simply locating the Voronoi 
cell that contains q. This can be easily achieved by utilizing a spatial index (e.g., R-
tree) that is generated for the Voronoi cells. Then, starting from the query point q we 
perform network expansion on two different scales simultaneously to: 1) compute the 
distance from q to its first nearest neighbour (its Voronoi cell centre point), and 2) 
explore the objects that are close to q (centres of surrounding Voronoi cells) and 
compute their distances to q during the expansion.  

At the first scale, a network expansion similar to Incremental Network Expansion 
(INE) [Papadias, 03] is performed inside the Voronoi cell that contains q (VC(q)) 
starting from q. To this end, we utilize the actual network links (e.g., roads) and nodes 
(e.g., restaurants, hospitals) to compute the distance from q (e.g., vehicle) to its first 
nearest neighbour (the generator point of VC(q)) and the border points of VC(q). 
When we reach a border point of VC(q), we start a second network expansion at the 
Voronoi polygons scale. Unlike INE and similar to Voronoi-based Network Nearest 
Neighbour (VN3) [Kolahdouzan, 04], the second expansion utilizes the inter-cell pre-
computed distances to find the actual network distance from q to the objects in the 
other Voronoi cells surrounding VC(q).  Note that both expansions are performed 
simultaneously. The first expansion continues until all border points of VC(q) are 
explored or all KNN are found. 

5 Continuous k nearest neighbor (cknn) queries using pine 

Continuous nearest neighbor queries are defined as determining the k nearest 
neighbors of any object on a given path. An example of this type of query is shown in 
Figure 2. In this example, a moving object (e.g., a car) is traveling along the path (L1, 
L2, L3, L4) (specified by the dashed lines) and we are interested in finding the first 3 
closest neighbors (neighbors are specified in the figure by {n1, …, n8}) to the object at 
any given point on the path. The result of a continuous KNN query is a set of split 
points and their associated KNNs. The split points specify the locations on the path 
where the KNNs of the object change. The challenge for this type of query is to 
efficiently find the location of the split point(s) on the path.  

In this section we discuss our solution for CKNN queries in spatial network 
databases. We first present our approach for the scenarios when only the first NN is 
desired (i.e., CNN), and then for the cases where the CKNN of any point on a given 
path is requested. 
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Figure 2:  Example of Continuous K Nearest Neighbour Query 

5.1 Continuous 1nn queries using pine 

Our solution for C-NN queries is based on our previous work PINE that partitions the 
network into disjoint first order network Voronoi polygons (NVP) [Safar, 05] in such 
a way that the first nearest neighbor of any point inside a polygon is the generator of 
that polygon. To find the CNN of a given path, we first find the split points on the 
path at which the NN changes. By intersecting the path with the NVPs of the network, 
the points of intersections specify the split points, which in turn, define the path 
segments inside each polygon. As a result, the first continuous NN for every point in a 
segment inside a polygon is the generator of that polygon. However, this approach 
cannot be extended to CKNN queries because the NVD is a first order network 
diagram that can only specify the first NN. 

5.2 Continuous knn queries using pine 

Our algorithm for finding the continuous KNN of any point on a path, starts by 
breaking the path into smaller segments according to some properties, then finding the 
continuous KNN for each segment, and finally, generating the result set for the entire 
path by joining the results for all segments. It has been shown that there must be a 
split point on the shortest path between the segments’ nodes if the end- nodes have 
different KNNs [Kolahdouzan, 04b]. Otherwise, the set of continuous KNN would 
remain fixed on that segment. To efficiently find the location of split points, our 
algorithm performs the following steps: 

Step 1: The first step is to break the original path into smaller segments using the 
technique proposed by [Kolahdouzan, 04b] such that the end-points of every segment 
are either an intersection or an interest point.  

Step 2: Then, we find the KNNs of the end-nodes of each segment using our 
KNNs algorithm (PINE) [Safar, 05]. It has been shown that the continuous KNNs of 
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each segment are a subset of the union of KNNs of the end-points of that segment; we 
call this union the candidate list. From this list, we generate a new ordered list of the 
nearest neighbors for the starting point of the segment. In other words, the list is 
sorted according to distances to the segment’s starting node (Ly). Similar to 
[Kolahdouzan, 04b], we also specify the direction of each neighbor 
(increase/decrease) according to whether the distance to that neighbor is increasing or 
decreasing as the query object moves from the starting point of the segment to a split 
point.  

Step 3: In this step, we try to find the locations of split points, since we know that 
if the end-nodes have different KNNs, then there must be one or more split point(s) 
on the shortest path between the segments’ nodes [Kolahdouzan, 04b]. For each 
member of the set with increasing direction, compare it with each decreasing direction 
neighbor to find the location (relative to the starting node of a segment Ly) of all split 
points in a segment using the following method: Split Point (P) generated from 
↑(ni, dn i

) and ↓(nj, dn j
) which is at a distance of  (dn j

+ dni
) 2- dn i

 from location Ly 
(note: dn i

 and dn j
 are the distances from location Ly.) The total number of split points 

is always equal to the number of increasing distance neighbors multiplied by the 
number of decreasing distance neighbors and all must be generated. We will later 
distinguish between two types of split points. 

Step 4: We save the results of the previous step for segment (Ly, Ly+1) in a table 
format sorted incrementally according to distances to Ly. Each row has three entries: 
(1) split point (Pi), (2) distance between Pi and Ly (dpi), (3) and split-NN which is a tuple 
(ni, nj) such that the split points are generated from these two neighbors ni and nj. For 
complete pseudo code of the algorithm see Figure 3. 
 
 

 
Algorithm modified IE (Path P) 

1. Break P to segments such that the end-points of every segment 
is either an intersection or interest point: P={L1, L2, …….Ln} 

2. For each segment, start from Ly (y=1): 
• Find kNN (Ly) and kNN(Ly+1) using PINE  
• Find the directions of kNNs of the start of the segment (Ly) 
• Find the location of the split points for the segment (Ly, Ly+1) 

 

Figure 3:  Pseudo code for modified IE algorithm 

Given the table, one can easily find the continuous KNN for a moving object in 
interval Ly, Ly+1. Starting with the list of KNN of the beginning node Ly, the KNN stay 
the same as the object moves until it reaches the first split point where the KNN might 
change according to one of three cases interpreted from the third column entries of the 
saved table (e.g., Table 1.) At a split point (P), the split-NN(ni, nj) could mean (i) 
neighbor ni and nj will change their order in the KNN list if both of them are already 
in the list ( we call these split points OSP), (ii) nj will replace ni in the KNN list if nj is 
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not already in the list (we call these split points ESP), or (iii) nothing is going to 
change in the KNN list if both ni and nj are not in the list. Note that the table lookup 
process is progressive; each iteration (step), as the query object travels between split 
points, depends on the result of its previous step.  

In [Kolahdouzan, 04b], the algorithm keeps track of the candidate list elements 
and updates their distances to the corresponding split point at each step. We are not 
updating the distances at all between the split points and the candidate KNN because 
this incurs unnecessary calculations and wastes storage. In other words, these 
distances are not valid when the query object is moving between split points, and if 
required, the distances to the KNNs need to be calculated on-line depending on the 
current location of the query object. 

Table 1 shows the results of an example of applying the above algorithm for the 
segment (L1, L2), where the first split point for this segment is P4. Hence, the KNNs of 
any point on (L1, P4) interval is equal to the KNNs of L1 (and P4), for any point on (P4, 
P1) segment is equal to KNNs of P4 (and P1), and so on. Note that the distances from a 
query object, which is between two split points, to its KNNs can be similarly 
computed. The results for segments (L2, n3), (n3, L3) and (L3, L4) can be similarly 
found.  

 
Split Point Distance to L1 Split-NN 

P4 1 (2, 3) 

P1 2 (1, 3) 

P5 2.5 (2, 5) 

P6 3 (2, 4) 

P2 3.5 (1, 5) 

P3 4 (1, 4) 

Table 1:  Split points and Split-NN for segment (L1, L2) of Figure 2 

To illustrate our technique, we use the following example: suppose that in Figure 
2, we are interested to find the three closest neighbors to any point on the path (L1, L2, 
L3, L4). We focus on the first segment (L1, L2), the other subsequent segments can be 
treated similarly. 

   Step 1: The first step is to break the original path (L1, L2, L3, L4) to smaller 
segments such that the end- points of every segment are either an intersection or 
interest points. For the given example, the resulting segments will be (L1, L2), (L2, n3), 
(n3, L3), (L3, L4).  

   Step 2: Then we determine the KNNs of the two end-nodes of each segment. 
The three nearest restaurants of L1 and L2 with their distances are {(n1, 3), (n2, 5), (n3, 
7)} and {(n3, 1), (n5, 4), (n4, 5)}, respectively.  Since both end-points of the segments 
have different (or overlapping) set of KNN, then we know that there must be (a) split 
point(s) between L1 and L2 and that the KNNs of any point on segment (L1, L2) is a 
subset of the candidate list {n1 , n2 , n3 , n4, n5}. Next, we generate a new sorted list for 
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L1 KNNs, specifying whether the NN is increasing or decreasing using ↑ and 
↓symbols, respectively. The result of this step is {↑ (n1, 3), ↑ (n2, 5), ↓ (n3, 7), ↓ (n5, 
10), ↓ (n4, 11)}. Note that the distances for the NN are calculated form L1. 

   Step 3:  for each increasing↑ member of the set, we compare it with each 
decreasing↓ one to find the location of the split points. In this example, we have 2 
increasing elements (↑ (n1, 3), ↑ (n2, 5)) and 3 decreasing elements (↓ (n3, 7), ↓ (n5, 
10), ↓ (n4, 11)). Therefore, we have to generate a total of 2 * 3 = 6 split points. The 
first split point (P1) is generated from ↑ (n1, 3) and ↓ (n3, 7) and is at a distance of 
(7+3)/2 - 3 = 2 from L1. The second split point (P2) is generated from ↑ (n1, 3) and ↓ 
(n5, 10) and is at a distance of (10+3)/2-3 = 3.5 from L1. Similarly, we calculate the 
rest of the split points.  

  Step 4: The split points generated from step 2 are sorted incrementally 
according to their distances to L1. In this example, P4 has the shortest distance to L1, 
which is equal to 1, thus it is at the top of Table 1 and first in Figure 4. The third 
column entries represent the NNs from which the corresponding split point is 
generated. For example, when we generated P1 in step 3, we compared n1 with n3 
hence (1, 3) in the column. Similarly, to generate P2, we compared n1 with n5, hence 
(1, 5) in the column. Table 1 shows the results of this step for the segment (L1, L2). 

 
 

 

Figure 4:  Split points for segment (L1, L2) placed on the path ordered according to 
their distances to L1 

Using this table we can solve the problem of our example. The problem was to 
find the continuous three nearest neighbors of a query point moving from L1 to L4. To 
solve that, we started with step 1 to get Table 1. Our (modified IE) says starting from 
L1 to the first split point (P4) the 3 NNs are [n1, n2, n3] sorted according to distances to 
L1, from the list in step 2. Once we reach P4, then moving toward P1 my 3NN will 
change as follows:  
• Look at P4 entry in Table 1 [P4 | 1 | (2,3)] the third column entry indicates a 

change in n1 and n3. If these neighbors where already in the list of L1 3NN, then 
we change the order of elements only. My new 3NN from P4  P1 are the same 
as 3NN form L1  P4 except for the change of positions n2 with n3. The resulting 
3 NN for the path P4  P1 are [n1, n3, n2] sorted according to distances to P4.  

• Then from P1 P5, we look at P1 entry in the same table and see (n1, n3) in the 
third column. If the two elements in the tuple were already in the sorted list of 

L1 L2 

P4 P1 P5 P6 P2 P3 
0.5 0.5 0.5 0.5 0.5 

1 
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P4’s 3NNs, then we change their order as what happened for split point P4 above. 
The resulting 3NN are the same as 3NN from L1 P4 with a change in positions 
of n1 and n3 to get this 3NNs [n3, n1, n2]. 

• Then from P5  P6,we look at P5 entry in the same table and see (2, 5) in the third 
column. If one of the neighbors in the tuple is in the ordered list of P1’s 3NNs, 
and the other one is not, then we take out one and replace it with the other 
element. The resulting 3NN are the same as 3NN from P1 P4 with replacement 
of a neighbor n5 with n2 to get this 3NN [n3, n1, n5], sorted according to distances 
to P5. 

• Continuing the trip to reach P6 from P5, the table entry for P6 has (n2, n4) that are 
neither in P5’s 3NN list. This means that at this split point there is no change in 
the nearest neighbors from the ones at the pervious split point and it stays [n3, n1, 
n5] for the interval ]P1 P5 P6[. From P2  P3, we find (1, 5) in Table 1, so the 
new 3NN are [n3, n5, n1]. Finally, we reach the segment’s end L2 from P3. Looking 
at (1, 4) in the table, the new 3NNs for the interval P3  L2 are [n3, n5, n4].  
As you notice, at split points P5 and P3, we replaced the elements of the 3NN with 

other elements according to the entries in Table1, thus these points are called (ESP). 
Furthermore, at split points P4, P1, P6, and P2 we only changed the order of neighbors 
as we progressed through the steps, thus these are called (OSP). Figure 5 illustrates 
these types of split points for the interval (L1, L2). 

 

 
Figure 5: Two types of split points: ESP (P5 and P3) and OSP (P4, P1, P6, and P2) 

for the interval (L1, L2) 

5.3 Cknn extensions and enhancement 

Our experimental results in [Safar, 05] showed that VN3 failed in answering some 
CKNN queries and provided invalid results. Our analysis of the algorithm identified 
some flaws in the algorithm, especially in the cases where both end points of a line 
segment (road link) have a common nearest neighbour. In this case, the algorithm 
assumes that while moving from one end point to the other, the distance to that 
common nearest neighbour either increases or decreases through out the link. 
However, our investigation and analysis showed that this is not the case. Usually the 
distance increases until you reach a virtual split point (not real). At this point, the 
distance gets decreased because the shortest path to the common nearest neighbour 
would pass through the second end point. Hence, in this section we provide a 
modified algorithm to resolve that problem.  

An example of this type of situation is shown in Figure 6, where a moving object 
(e.g., a car) is travelling along the path (A,B) and we are interested in finding the first 
4 closest restaurants to the object at any given point on the path. The result of a 
continuous NN query is a set of split points and their associated KNN. The split 
points specify the locations on the path where the KNN of the object change. In other 

L1 L2 

P4 P1 P5 P6 P2 P3 
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words, the KNN of any object on the segment (or interval) between two adjacent split 
points is the same as the KNN of the split points. The challenge for this type of query 
is to efficiently find the location of the split point(s) on the path. 

 

 

Figure 6: Example with both end point (A,B) having a common NN (r4) 

In Figure 6 we have a car that travels from A to B and we want to find the 4 
nearest neighbours while it is moving toward B. According to [Kolahdouzan, 04a] the 
4 NN for the car will be a subset of the 4 NN of A and 4 NN of B. Therefore, we 
follow the following algorithm: 

Step 1: First we find the 4 NN for A and for B.  4NN for A = 
{(r1,2),(r5,3),(r4,4),(r2,8)}, 4NN for B = {(r2,3),(r3,4),(r4,5),(r1,7)}  

Step 2: Decide which neighbours are common and which are not: Common 
Neighbours: r1, r4, r2, Uncommon Neighbours: r5 , r3 

Step 3: For uncommon points: 
• r5 (one of A 4 nearest neighbours) distance will always increase ↑ as the 

car moves from A to B 
• r3 (one of B 4 nearest neighbours) distance will always decrease ↓ as the 

car moves from A to B 
Step 4: For common points: 

• If the shortest path goes through one of the nodes (A or B) all the time 
o r2 (shortest path will always go through B)  distance will 

always decrease ↓ as the car moves from A to B 
o r1 (shortest path will always go through A)  distance will 

always increase ↑ as the car moves from A to B 
• If the shortest path doesn’t go through one of the Nodes  (A or B) all the 

time (e.g., at the beginning the shortest path goes through A then the 
shortest path goes through B). For r4 at the start the distance from the 
car to r4 will start with an increase ↑ since the shortest path goes through 
A but at some point the distance from the car to the r4 will ↓ decrease 
since the shortest path will go through B. This point will be the middle 
of (r4, A, B, r4) path. To find this point we use the following equation: 
X=( AC + AB + BC)/2. Hence, the distance from the start point (switch 
point) = X-AC 
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Step 5: Form a list that contains A and B 4 NN  (add the distance between A and 
B to the B’s neighbours) and add the increase, decrease and switch 
indicators:{(r1,2)↑, (r5,3)↑, (r4,4)↑3* or 7* ,(r2,8)↓, (r3,9)↓}. 3* means that we will 
switch the indicator after the car crosses 3 units from A towards B ( or when the 
distance from r4 to the car equals 7 through A). 

Step 6: Find the split point and compare it with the switch value. If it is greater 
than it, then do the switching and then recalculate the split point. For each split point 
decide whether it is an Order-Split point (OSP) (where only the order of the 4 NN 
changed), or it is an Element-Split point (ESP) 

• Find the split point: the split points will be found when ever we have ↑ 
followed by ↓ 

• First split point between r4 and r2 and it will be at 6 and after the car 
crosses 2 units (which is < switch point). This split point called OSP (the 
first 4 nearest neighbours wont change)  

Step 7: Update the list add 2 unit to pairs that have ↑ indicator and subtract 2 
from pairs that have ↓ indicator, The new list will be as follows: {(r1,4)↑, (r5,5)↑ 
,(r2,6)↓, (r4,6)↑3*, (r3,7)↓} 

Step 8: Go to Step 6 and 7 again  
• Between r2,r5  after .5 unit (2.5 from A) 
• Between r4,r3  after .5 unit (2.5 from A) 
• The same split point in this split point one of the 4 nearest neighbours 

will be changed so this is ESP: {(r1,4.5)↑, (r2,5.5)↓, (r5,5.5)↑, (r3,6.5)↓, 
(r4,6.5)↑3*} 

Step 9: Go to Step 6 and 7 again  
• Between r1,r2  after .5 unit (3 from A which = switch point).  
• Between r5,r3  after .5 unit (3 from A which = switch point). 
• This split point called OSP (the first 4 nearest neighbours will not 

change) 
• But its also called switch point where the shortest path of the common 

point r4 will go through B rather than going through A and the distance 
of the car will decrease as the car moves toward B: {(r2,5)↓, (r1,5)↑, 
,(r3,6)↓, (r5,5.5)↑, (r4,7) ↓} 

Step 10: Repeat 6 and 7 until the first 4 pairs in the list = 4NN for B = 
{(r2,3),(r3,4),(r4,5),(r1,7)}, which are r2, r3, r4, r1 

 

6 Experimental results 

We conducted several experiments to compare the performance of our enhanced 
algorithms using PINE to solve Continuous KNN queries to that of continuous KNN 
on VN3 (IE). We used real-world data sets obtained from NavTech Inc., used for 
navigation and GPS devices installed in cars, and represent a network of 
approximately 110,000 links and 79,800 nodes of the road system in downtown Los 
Angeles. The experiments were using Oracle 9 as the database server. We present the 
average results of 100 runs of continuous K nearest neighbor queries where K varied 
from 1 to 20. 
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6.1 Continuous knn using pine 

We conducted several experiments to evaluate the performance of the enhanced 
Continuous KNN queries with PINE structure using different sets of points of interest 
(e.g., restaurants, shopping centers, …etc.). We calculated the number of times that 
the KNN query must be issued and the execution time in seconds, for different values 
of K and assumed that the length of the travelling paths are equal to 4 km. The 
traveling paths were generated randomly, however, we made sure that we do not visit 
any node more than once (to avoid cycles).  

In Table 2, we present the average results of 100 runs of the enhanced continuous 
K nearest neighbor queries using PINE. For example, in the table below we show the 
query response time when the length of the traveling path is 4 km and the value of K 
varies from 1 to 20. The first and second columns specify the entities (or points of 
interest) and their population and cardinality ratio (i.e., the number of entities over the 
number of links in the network), respectively. From the third column and forward, 
each table entry has two values (averaged over 100 runs): 1) Number of KNN queries 
that were issued and 2) Execution time in seconds.  

 

Travelling Path = 4Km 
Averaged over 100 

queries 
K=1 K=3 K=5 K=10 K=20 

#KNN 
Queries 

#KNN 
Queries 

#KNN 
Queries 

#KNN 
Queries 

#KNN 
Queries Entities Qty 

(density) Execution 
Time 

Execution 
Time 

Execution 
Time 

Execution 
Time 

Execution 
Time 

27 26 26 25 24 
Hospital 46 

(0.0004) 16 39 58 102 198 
26 26 25 25 25 Shopping 

Centre 
173 

(0.0016) 9 27 34 75 142 

26 25 25 24 24 
Parks 561 

(0.0053) 4 9 17 26 49 
23 24 23 23 23 

Schools 1230 
(0.015) 2 5 6 14 23 

23 24 23 23 23 Auto 
Services 

2093 
(0.0326) 2 5 6 14 23 

21 22 21 23 22 
Restaurants 2944 

(0.0580) 1 2 3 6 9 

Table 2: Performance of our enhanced algorithm on PINE to solve CKNN queries. 
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6.2 Continuous knn using vn3 (IE) 

We conducted several experiments to evaluate the performance of the Continuous 
KNN queries with VN3 structure (IE) using different sets of points of interest (e.g., 
restaurants, shopping centers, …etc.) and for different values of K (values of {1, 3, 5, 
10, 20}). We used traveling paths of length 4 km. In Table 3, we present the average 
results of 100 runs of IE for different values of K varying from 1 to 20. 
 

Travelling Path = 
4Km 

Averaged over 100 
queries 

K=1 K=3 K=5 K=10 K=20 

Entities Qty 
(density) 

#KNN 
Queries 

#KNN 
Queries 

#KNN 
Queries 

#KNN 
Queries 

#KNN 
Queries 

  Execution 
Time 

Execution 
Time 

Execution 
Time 

Execution 
Time 

Execution 
Time 

25.9 31.95 33.03 43.0 - 
Hospital 46 

(0.0004) 2.27 197.72 595.35 1939.88 - 
26.51 32.47 42.22 51.93 61.54 Shopping 

Centre 
173 

(0.0016) 2 26.93 77.16 418.77 1729.39 
29.44 39.75 48.16 60.39 70.06 

Parks 561 
(0.0053) 2.36 16.69 32.51 87.48 226.11 

30.96 44.58 50.18 64.61 64.73 
Schools 1230 

(0.015) 3.55 14.43 26.33 66.72 161.87 
34.64 45.72 50.54 64.99 65.7 Auto 

Services 
2093 

(0.0326) 6.56 36.73 73.98 182.23 386.11 
35.44 47.19 54.2 58.9 - 

Restaurants 2944 
(0.0580) 11.58 54.57 106.14 241.58 - 

Table 3: Performance of Continuous KNN queries using VN3. 

6.3 Analysis 

From Table 2, Table 3, and Figure 7, we conclude that the total query response time 
of CKNN (based on PINE) is better than the query response time of CKNN (based on 
VN3). On average CKNN-PINE is 9 times faster than CKNN-VN3. This is because 
PINE requires less expensive shortest path computations, and as shown in (Safar, 
2005) VN3 requires 8.5 times the number of computations required by PINE to 
compute any required KNN. As the number of K increases the difference in 
performance gets even larger. For example, for K = 10, CKNN-VN3 is almost 40 
times slower than CKNN-PINE. In general, as the density increases, the performance 
of CKNN-VN3 degrades more relative to PINE.  This is because, as the density 
increases, the number of interest points compared to the total number of links in the 
network increases. Hence, more intersection points are created and more split points 
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are expected to appear on the path. From Figure 8, we can conclude that the number 
of KNN queries issued by CKNN-VN3 is on average twice more than that of CKNN-
PINE (slightly increased by increasing K), and that as the density increases, the 
number of KNN queries increases also but by a small factor.  
 
 

Figure 7: Relative execution time of CKNN using VN3 vs. PINE. 

Figure 8: Relative number of KNN queries issued to solve CKNN using VN3 vs. PINE. 
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7 Conclusion and future work  

In this paper we presented the support of different spatial queries using our PINE 
structure. We presented a novel approach for continuous k nearest neighbor queries 
(CKNN) in spatial network databases. Our approach, based on PINE, focused on 
moving queries issued on stationary objects in Spatial Network Database (SNDB). 
Our solution addressed a new type of query that is plausible to many applications 
where the answer to the query not only depends on the distances of the nearest 
neighbors, but also on the user or application need. This was accomplished by 
distinguishing between two types of split points (ESP, OSP), which reduced the 
number of computations to retrieve the continuous KNN of a moving object. In 
addition, we enhanced the CKNN query support using VN3 by identifying its short 
comes, especially in the existence of common nearest neighbours between the two 
end points of a road link. 

Our algorithm for continuous K nearest neighbor queries in spatial network 
databases based on a Progressive incremental network expansion algorithm (PINE), 
finds the location of split points and the corresponding KNNs on a path. The main 
features of our algorithm are as follows: 1) CKNN using PINE outperforms CKNN 
based on VN3 (in terms of CPU time), one of the few and recently proposed 
algorithms for CKNN queries in spatial network databases. It outperforms CKNN-
VN3 with a factor of 9 depending on the value of K and the density of the points of 
interest, 2) CKNN using PINE requires fewer KNN computations as compared to 
both CKNN using VN3. CKNN using VN3 requires a factor of 2 more computations 
depending on the value of K and the density of the points of interest. 

This paper shows the road to several interesting and practical directions for future 
work on different spatial queries using PINE structure. Many works are redirecting 
the use of such queries from a scientific method to a real commercial application in 
several fields like telecommunication and location based services. We plan to extend 
our algorithms and structures to address group KNN, constraint KNN, reverse KNN, 
continuous RNN and group RNN queries.  
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