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Abstract: A chain or n-link is a sequence of n links whose lengths are fixed and are
joined together from their endpoints, free to turn about their endpoints, which act as
joints. “Ruler Folding Problem”, which is NP-Complete is to find the minimum length
of the folded chain. The best linear approximation algorithm for it were proposed by
Hopcroft et al. Their algorithm folds any open chain in the interval whose length is less
than 2m1, where m1 is the length of the longest link in the chain. We propose a linear
time approximation algorithm using O(1) additional space. Our algorithm has lower

upper bound for the length of the folded chain which is max{2m1− m1−m2
2k−2 ,

∑k−1

i=0
m1
2i },

where m1 and m2 are the lengths of the two distinct maximum length links in the chain
respectively, and k is the number of links whose lengths are m1 in the chain. Hence it
is the best known approximation algorithm for “Ruler Folding Problem”.
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1 Introduction

We consider a sequence of closed straight line segments [A0, A1], [A1, A2], ...,
[An−1, An] of fixed lengths l1, l2, . . . , ln, respectively, imagining that these line
segments are mechanical objects such as rods, and their endpoints are joints
about which these rods are free to turn. The aim is to find the minimum length
of folded chain in which each joint is to be completely straight, or completely
folded. This problem has been known as “Ruler Folding Problem”

“Ruler Folding Problem” was stated by Hopcroft et al. for the first time and
has been shown to be NP-Complete by a reduction from PARTITION problem
[Hopcroft et al. 1985]. They developed an O(nm2

1) pseudo polynomial algorithm
for optimal folding of an n-link open chain in one dimensional space where m1
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is the length of the longest link [Hopcroft et al. 1985, Whitesides2001]. Hopcroft
et al. proposed a linear time approximation algorithm for the “Ruler Folding
Problem” with the upper bound of 2m1 for the length of a folded chain, where
m1 is the length of the longest link of the chain. They showed that this upper
bound is tight using an example [Hopcroft et al. 1985]. Recently, Calinescu and
Dumitrescu improved the previous result and provided a fully polynomial-time ε-
approximation scheme for ruler folding problem[Calinescu and Dumitrescu 2005].
Total running time of their algorithm was O(n4(1/ε)3 log m1) and it required
O(n4(1/ε)3 log m1) additional space. They used tuples to show the intervals and
by decreasing the length of the intervals improved the approximation ratio.

Nourollah and Razzazi introduced the ruler folding problem in d-dimensional
space. They proposed a dynamic programming approach to fold a given chain
whose links have integer lengths in a minimum length in O(nL) time and space.
Furthermore, they showed that by generalizing the algorithm it can be used in
d-dimensional space for orthogonal ruler folding problem such that it requires
O(2dndLd) time using O(2dndLd) space [Nourollah and Razzazi 2007]. Other
works on linkages are given in[Biedl et al.2002, Biedl et al.2005, Kantabutra1997,
Lenhart and Whitesides1995, O’Rourke1998, Whitesides 1992].

In this paper we present a linear time approximation algorithm for the “Ruler
Folding Problem” which improves the bound already obtained by Hopcroft et al.
Preliminaries are stated in section 2, our algorithms and the proof of correctness
is presented in section 3, and the conclusion is stated in section 4.

2 Preliminaries

A linkage is a planar straight line graph G = (V, E) and a mapping l : E �−→ R+

of edges to positive real lengths. Each vertex of a linkage is called a joint or an
articulation point, each straight line edge e of a linkage, which has a specified
fixed length l(e) is called a bar or a link. A linkage whose underlying graph
is a single path is called polygonal arc, open chain or a ruler, a linkage whose
underlying graph is a single cycle is called polygonal cycle, closed chain or a
polygon and a linkage whose underlying graph is a single tree is called polygonal
tree or tree linkage. An n-link polygonal arc is a sequence of n links of arbitrary
finite lengths moving in Euclidean plane. Theses links are joined together end-
to-end by freely rotating joints. The joints are denoted by A0, A1, . . . , An. The
link between Ai−1 and Ai, 1 ≤ i ≤ n, is called li. The length of a link l is shown
by |l|.

Assume L = (l1, . . . , ln) is an n-link open chain with at least two distinct
links. Let m1 and m2 be the lengths of the first and the second longest links of
the chain. m2 may not exist if all links have the same length. Furthermore, let
k be the number of links whose lengths are equal to m1. The formal definitions
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of m1 , m2 and k are as follows:

m1 = max
1≤i≤n

{|li|}, (1)

m2 = max
1≤i≤n

{|li|; |li| < m1}, (2)

and
k =

∑

1≤i≤n
|li|=m1

1 (3)

3 The Approximation Algorithm

Hopcroft et al. [Hopcroft et al. 1985] developed a linear time approximation al-
gorithm for ruler folding problem which we call H Algorithm. This algorithm
takes an n-link open chain as input and folds it within the interval [0, 2m1],
where m1 is the length of the longest link in the chain. A short description of H
Algorithm is as follows. Using x axis, place joint A0 on the origin and then for
each link li, 1 ≤ i ≤ n, if folding li to the left direction results in placing Ai on
a negative axis then fold li to the right, otherwise fold li to the left.

Theorem 1. Any n-link open chain can be folded in less than 2m1 length in
O(n) time, where m1 is the length of the longest link[Hopcroft et al. 1985].

We use a modified version of H Algorithm which is given as follows. Suppose we
want to fold a sub-chain (lr, . . . , ls) in the interval [a, a + 2m1] on the x axis.
For each link li, joints Ai−1 and Ai are called left-joint and right-joint of the
link, respectively. Assume direction of folding during the algorithm is given. If
direction is left to right, Ar−1, As, lr, and ls are called first-joint, last-joint, first-
link, and last-link, respectively and H Algorithm folds lr toward ls. If direction
is right to left, As, Ar−1, ls, and lr are called first-joint, last-joint, first-link,
and last-link, respectively and H Algorithm folds ls toward lr. Position of first-
joint of the sub-chain is given by FirstJoint ∈ [a, a + 2m1] and H Algorithm
takes it as input value. Figures (1) and (2) show an open chain and its sub-
chain in both cases. Position of last-joint of the given sub-chain is denoted by
LastJoint parameter and it is computed by H Algorithm. Five parameters a

(start point of the interval [a, a + 2m1]), FirstLink (index of the first link in
the given sub-chain), LastLink (index of the last link in the given sub-chain)
, FirstJoint (position of first-joint of the given sub-chain), and Direction are
the input values of H Algorithm.

Output parameters of H Algorithm are an array F=(fr, . . . , fs) and LastJoint,
where fi = +1 or −1, r ≤ i ≤ s. Note that r = Min{FirstLink, LastLink} and
s = Max{FirstLink, LastLink}. For each i (r ≤ i ≤ s), if fi = +1, joint Ai

has to be placed on the right side of joint Ai−1, and if fi = −1, joint Ai would
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Figure 1: Open chain folding such that direction =→ (+1)(left to right)
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Figure 2: Open chain folding such that direction =← (−1)(right to left)

be placed on the left side of joint Ai−1. When the algorithm ends, parameter
LastJoint shows the position of last-joint of the given sub-chain. In this algo-
rithm, initially each link is placed toward the left boundary of the interval. The
algorithm proceeds by changing the direction of positioning the link on the x

axis whenever the end point of a link gets out of the interval. Independent of
the folding introduced in the algorithm, the given sub chain starting from lr and
ending by ls, the result of folding for both cases are the same.

Figure (3) shows the pseudo code of H Algorithm. Function DecideAndFold
decides to fold link li assuming the previous link related to the direction of
folding has been folded. If FirstJointIndex denotes the index of the first-joint,
AFirstJointIndex = first-joint, position of joint AFirstJointIndex+Direction∗i is fixed
when the step ith,(1 ≤ i ≤ |LastLink − FirstLink| + 1), is taken. Variable
CurrentPos shows the position of joint AFirstJointIndex+Direction∗i after ith
step on the x axis. Based on the theorem (1) and using H algorithm, LastJoint

is always within the interval [a, a + 2m1].
Parameters a, i and LastJoint are the input parameters of function Decide-

AndFold, CurrentPos and fi (ith element of array F ) are its outputs. Note that
by this algorithm the folded sub-chain (lr, . . . , ls) are completely laid within the
interval [a, a+2m1]. This is an important fact which is used in the development
of our algorithm.
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Algorithm H(a, F irstLink, LastLink, F irstJoint, Direction, F, LastJoint)
// Folds the given sub-chain (lMin{FirstLink,LastLink} , . . . ,
//lMax{FirstLink,LastLink}) within the interval [a, a + 2m1] assuming
//that first-joint is placed at point FirstJoint.

Input: a is the start point of the interval [a, a + 2m1] into which the
sub-chain must be folded.
FirstLink is index of the first-link in the given sub-chain.
LastLink is index of the last-link in the given sub-chain.
FirstJoint is the position of first-joint of the given sub-chain
(FirstJoint ∈ [a, a + 2m1]).

Output:ArrayF = (fMin{FirstLink,LastLink} , . . . , fMax{FirstLink,LastLink})
of size |LastLink − FirstLink|+ 1 such that fi = +1, if li has been
folded to the right and fi = −1, if li has been folded to the left.
LastJoint shows the position of last-joint of the given sub-chain
after the sub-chain is folded.

Begin
CurrentPos← FirstJoint

//If FirstJointIndex denotes the index of the first-joint,
//CurrentPos shows the position of joint AFirstJointIndex+Direction∗i

//after ith step(1 ≤ i ≤ |LastLink − FirstLink|+ 1).
For i← FirstLink To LastLink Step Direction Do

CurrentPos← DecideAndFold(a, i, CurrentPos, Direction)
End For
LastJoint← CurrentPos

End of Algorithm
Function DecideAndFold(a, i, CurrentPos, Direction)
Begin

//place Ai on the left side of Ai−1 (if Direction = +1)
// or Ai−1 on the left side of Ai(if Direction = −1)with
//distance li from it.
fi ← −Direction

If CurrentPos− |li| < a Then
//place Ai on the right side of Ai−1 (if Direction = +1)
// or Ai−1 on the right side of Ai(if Direction = −1)with
//distance li from it.
fi ← Direction

End If
Return CurrentPos + Direction ∗ fi ∗ |li|

End of Function

Figure 3: Modified H Algorithm
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To fold an n-link open chain we must place joint A0 on point zero and call
H(0, 1, n, 0, +1, F, LastJoint). It is clear to see that the time complexity of H
algorithm is O(n) using O(1) space. H algorithm will be used by our algorithm to
achieve an improved approximation algorithm for ruler folding problem. Based
on the H algorithm, we can develop an improved approximation algorithm whose
time complexity is O(n) using O(1) space but its upper bound for the length of
the folded chain is less than that of the H algorithm.

Using Theorem (2), we propose a new algorithm to fold any n-link open chain
in an interval which is smaller than 2m1.

Theorem 2. Let L = (l1, l2, . . . , ln) be an n-link open chain, m1 and m2 be
lengths of the first two maximum length links in L, and k be the number of links
in L whose lengths are m1. There is an algorithm that can fold L in such a way
that its folded length is less than or equal to

max{2m1 − m1 −m2

2k−2
,

k−1∑

i=0

m1

2i
}

Proof. The proof is by induction on k. If k = 1 then there is one link whose
length is m1. It is positioned in the interval [0, m1] and the left part and right
part of it can be folded in the interval [0, 2m2](using theorem 1), thus it is easy
to see that the total length of the folded chain is max{2m2, m1}. Assume the
theorem holds for all open chains which have k links whose lengths are m1. Let
L be an open chain which has k+1 links whose lengths are m1 and moving from
l1 toward ln let lj be (k + 1)th link whose length is m1. L can be seen as three
distinct parts, L1 = (l1, l2, . . . , lj−1), L2 = (lj), and L3 = (lj+1, . . . , ln). L1 has
k links whose lengths are m1, and therefore, by the inductive hypothesis, it can
be folded in such a way that its folded length is less than or equal to

max{2m1 − m1 −m2

2k−2
,
k−1∑

i=0

m1

2i
}

L2 has one link lj whose length is m1, and therefore, we fold lj around Aj−1

to the best direction such that the total length of folded chain (l1, l2, . . . , lj) is
minimum value. In the worst case, Aj−1 is positioned in the middle of the folded
chain L1. Hence, folding lj results in half length of the folded chain L1 plus to
m1. Therefore we get

m1 +
1
2

max{2m1 − m1 −m2

2k−2
,

k−1∑

i=0

m1

2i
}

= max{2m1 − m1 −m2

2k−2
,

k−1∑

i=0

m1

2i
} = max{2m1 − m1 −m2

2k−1
,

k∑

i=0

m1

2i
}
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Because lengths of lj+1, . . . , ln are less than or equal to m2, we can fold L3 at
the end of the others such that the current length does not exceed from

max{2m1 − m1 −m2

2k−1
,

k∑

i=0

m1

2i
}

�	
Theorem (2) yields a recursive algorithm to fold an n-link open chain which is
shown in figure (4).

Analysis. It is easy to see that Rec Folding Algorithm processes one link at
a time thus it requires O(n) time and since it is called k times recursively, it
requires O(k) additional space for its stack but by rewriting the algorithm into
a nonrecursive algorithm its additional space reduces to O(1). Note that at the
first glance, it seems, finding the last link with size m1 takes O(n) time in each
recursive call but totally the amortized time of these searches takes O(n) and
does not affect the time complexity of the algorithm.

Clearly, the limit of

max{2m1 − m1 −m2

2k−2
,

k−1∑

i=0

m1

2i
}

is 2m1 as k approaches +∞ and therefore our algorithm achieve a better upper
bound for folding a chain than H Algorithm. In practice k is normally a small
integer.

4 Conclusion

The best previously known polynomial time approximation algorithm for the
ruler folding problem was developed by Hopcroft and et al.[Hopcroft et al. 1985].
They achieved upper bound of 2m1 for the length of the folded chain, where m1

is the length of the longest link of the chain. In this paper, we developed a linear
time approximation algorithm for ruler folding problem which its result is lower
than the previous results. In our approach, the bound is given in terms of the
number of the links having the length of the largest link. Our algorithm requires
O(n) time using O(1) additional space.

Ruler folding problem has many applications including robot motions and
protein folding in biology science. The introduced algorithms are useful in robot
motion planning problems in which robot arms are modeled by linkages.
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Algorithm RecFolding(L, r, s, m1, k, j, F, a, b, LastJoint);
Input: an open chain L = (lr, . . . , ls) whose joints are Ar−1, . . . , As.

m1 is the length of the longest link in L.
k is the number of links whose lengths are equal to m1.
j is the largest index of a link in L with length equal to m1

(j = max{i : |li| = m1}).
Output: Array F = (fr, . . . , fs) of size s− r + 1 where if fi = 1,

li has been folded to the right direction and if fi = −1,
li has been folded to the left direction, for each i.
[a, b] is the interval which L is folded into it.
LastJoint is the position of As after folding.

Begin
If k = 1 Then

fj ← +1 // Place lj in the interval [0, m1]
//Fold (lr, . . . , lj−1) in the interval [0, 2m2] starting from
//point zero according to H algorithm.
H(0, j − 1, r, 0,−1, F, LastJoint)
// Fold (lj+1, . . . , ls) in the interval [0, 2m2] starting from
// point m1 according to H algorithm.
H(0, j + 1, s, m1, +1, F, LastJoint)
[a, b]← [0, max{2m2, m1}]

Else
//Call algorithm RecFolding recursively
//to fold open chain (lr, . . . , lj−1).
tempj ← the index of (k − 1)th link whose length is m1

RecFolding(L, r, j − 1, m1, k − 1, tempj, F, a, b, d)
If b−min{a, d− |lj|} < max{b, d + |lj |} − a Then

Fj ← −1 //Place Aj to the left of Aj−1

[a, b]← [min{a, d− |lj |}, b]
Else

Fj ← +1 //Place Aj to the right of Aj−1

[a, b]← [a, max{b, d + |lj |}]
End If
//Fold (lj+1, . . . , ls) in the interval [a, b] according to H algorithm.
H(a, j + 1, s, d, +1, F, LastJoint)

End If
End of Algorithm.

Figure 4: RecFolding Algorithm

573Nourollah A., Razzazi M.: A Linear Time Approximation Algorithm ...



References

[Biedl et al.2002] Biedl, T., Demaine, E., Demaine, M., Lazard, S., Lubiw, A.,
O’Rourke, J., Robbins, S., Streinu, I., Toussaint, G., Whitesides, S.: “A Note on
Reconfiguring Tree Linkages: Trees can Lock”, Discrete Applied Mathematics, 117
(2002), 293-297.

[Biedl et al.2005] Biedl, T., Lubiw, A., Sun, J.: “When Can a Net Fold to a Polyhe-
dron?”, Computational Geometry: Theory and Applications, Volume 31 , Issue 3
(June 2005), 207 - 218.

[Calinescu and Dumitrescu 2005] Calinescu, G., Dumitrescu, A.: “The carpenter’s
ruler folding problem”, in Combinatorial and Computational Geometry, Jacob
Goodman, János Pach and Emo Welzl (editors), Mathematical Sciences Research
Institute Publications, Cambridge University Press,(2005), 155-166.

[Hopcroft et al. 1985] Hopcroft, J., Joseph, D., Whitesides, S.: “On the movement of
robot arms in 2-dimensional bounded regions”, SIAM Journal on Computing, Vol.
14, No. 2,(May 1985), 315-333.

[Kantabutra1997] Kantabutra, V.: “Reaching a point with an unanchored robot arm
in a square”, International journal of Computational Geometry & Applications.,Vol.
7, No. 6, (1997), 539-549.

[Lenhart and Whitesides1995] Lenhart, W., Whitesides, S.: “Reconfiguring closed
polygonal chains in Euclidean d-space”, Discrete and Computational Geometry,
Vol. 13, (1995), 123-140.

[Nourollah and Razzazi 2007] Nourollah, A., Razzazi, M., “A New Dynamic Program-
ming Algorithm for Orthogonal Ruler Folding Problem in d-Dimensional Space”,
ICCSA (1), Lecture Notes in Computer Science, Vol. 4705 , Springer, (2007), ISBN
978-3-540-74468-9, 15-25.

[O’Rourke1998] O’Rourke, J.: “Folding and unfolding in computational geometry”,
Proc. Japan Conf. Discrete Computational Geometry, (Dec 1998), LNCS vol. 1763,
(1999), 258-266.

[Whitesides 1992] Whitesides, S.: “Algorithmic issues in the geometry of planar linkage
movement”, Australian Computer Journal, Special Issue on Algorithms, vol. 24, No.
2, (May 1992), 42-50.

[Whitesides2001] Whitesides, S.: “Chain Reconfiguration. The INs and Outs, Ups and
Downs of Moving Polygons and Polygonal Linkages”, Peter Eades, Tadao Takaoka
(Eds.): Algorithms and Computation, 12th International Symposium, ISAAC 2001,
Christchurch, New Zealand, (Dec 2001), Proceedings. Lecture Notes in Computer
Science vol. 2223, Springer 2001, ISBN 3-540-42985-9, 1-13.

574 Nourollah A., Razzazi M.: A Linear Time Approximation Algorithm ...


