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Abstract: In the paper we study parallel key exchange among multiple parties. The
status of parallel key exchange can be depicted by a key graph. In a key graph, a vertex
represents a party and an edge represents a relation of two parties who are to share a
key.

We first propose a security model for a key graph, which extends the Bellare-Rogaway
model for two-party key exchange. Next, we clarify the relations among the various se-
curity notions of key exchange. Finally, we construct an efficient key exchange protocol
for a key graph using the randomness re-use technique. Our protocol establishes the
multiple keys corresponding to all edges of a key graph in a single session. The security
of our protocol is proven in the standard model.
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1 Introduction

Key exchange protocols enable two or more parties to establish a common session
key. The distributed systems like file sharing system, database system, broad-
casting radio/TV system, and audio/video conference system require key estab-
lishment between communicating parties at the same time. These requirements
of key establishment can be conceptually represented by a graph, called a key
graph, where each vertex represents a party and each edge represents a relation
of two parties who are to share a key.

There exist several useful structures of key graphs. A star structure may be
used to play an on-line card game, where a dealer and players need to establish
the common keys. A complete structure may be used in the on-line conference,
where each pair of members in the conference needs to communicate secretly. A
tree structure may be used in a company, where the hierarchy of personnel in
the company is described by a tree structure.

In this paper, we study a key exchange method for key graphs to simulta-
neously generate multiple keys corresponding to all edges of the key graph in a
single session, more efficiently than by running parallel executions of a two-party
protocol.
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1.1 Security Notions

We briefly recall various notions of security for key exchange protocols (formal
definitions are given in Section 3). This paper concerns protocols for authen-
ticated key exchange (AKE) using public-key authentication. The following is
adapted from [Jeong et al. 2006].

At the most basic level, an authenticated key-exchange protocol must provide
secrecy of a generated session key. To completely define the notions of security,
we must consider adversarial behaviors which should be tolerated by a protocol.
The key independence (KI) considers the case that some session keys are revealed.
A bit more formally, key independence protects against “Denning-Sacco” attacks
[Denning et al. 1981] involving compromise of multiple session keys (for sessions
other than the one whose secrecy must be guaranteed).

Protocols achieving forward secrecy (FS) maintain secrecy of session keys
even if an adversary is able to obtain long-term secret keys of parties who have
previously generated a common session key in an honest execution of the pro-
tocol. This type of forward secrecy is known as weak forward secrecy in the
literature. However, in the real system, it is highly feasible that the adversary
interferes in the process of session key establishment. To incorporate this fea-
sibility, forward secrecy in this paper is defined in a strong sense, additionally
requiring secrecy of session keys which have been generated even with interfer-
ence of the adversary.

The above notions are most widely used in key exchange protocols. Be-
sides above security notions, there are various security notions such as key
compromise impersonation and unknown key share [Blake-Wilson et al. 1998,
Law et al. 2003, Menezes et al. 1995]. If an adversary obtains a long-term se-
cret key of a party, the adversary can trivially impersonate the party to the
other parties. But the adversary may not impersonate other parties to the
party. A protocol is secure against key compromise impersonation (KCI) at-
tacks, if an adversary can not impersonate other parties (whose long-term se-
cret keys are not revealed) to the parties (whose long-term secret keys are re-
vealed). The security against session state reveal (SSR) is formally considered in
[Canetti et al. 2001, Krawczyk 2005]. This security is originated from the con-
sideration that the random values of the sessions may be more easily leaked
than the secret keys of the public keys. A protocol is secure against unknown
key share (UKS) attacks, if the following holds: If two parties Alice and Bob

compute the same session key, Alice should consider that she is establishing the
session key with Bob and Bob should consider that he is establishing the session
key with Alice. In our security model in Section 3, FS implies KCI, KCI implies
KI, and KI implies UKS.
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1.2 The Related Works and Our Contributions

To simultaneously generate multiple keys in a single session, a naive approach
would be to execute a two-party key exchange protocol in parallel. In this case,
a party executes a two-party key exchange protocol for each key independently,
thus using independent random numbers for each key. But, we can improve
the computational efficiency by using the same random number for different
keys. This “randomness re-use technique” has been used in multi-recipient en-
cryption schemes to reduce bandwidth and computational cost [Kurosawa 2002,
Bellare et al. 2003].

Our main contributions are as follows:

1. We define a security model for a key graph, which extends the Bellare-
Rogaway model in [Bellare et al. 1993] for two-party key exchange. Our se-
curity model for a key graph incorporates a remarkable list of security prop-
erties stated in [Krawczyk 2005] such as FS, KCI, KI, UKS and SSR.

2. We clarify the relations between the security notions. We prove that KI
implies UKS and FS implies KCI. From these results, we just need to prove
that the protocol provides FS and SSR to show that a key exchange protocol
satisfies all security notions.

3. We suggest an efficient key exchange protocol for a key graph using the
randomness re-use technique. Our protocol is secure in the standard model.

2 Preliminaries

In this section we review the well-known definitions of primitives which we use
to construct a key exchange protocol for key graphs. We use notation [a, b] for a
set of integers from a to b. We use notation c ← S to denote that c is randomly
selected from a set S. We denote the concatenation of two strings a and b as
a||b. If evt is an event, Pr[evt] is a probability that evt occurs.

2.1 Pseudorandom Functions [Goldreich et al. 1986]

Let θ be a security parameter. Let FK : {0, 1}θ → {0, 1}θ be a function selected
from a function family F where

F = {FK |K is in the space of θ-bit strings}.

Let Rand{0,1}θ→{0,1}θ

be a set of all functions from domain {0, 1}θ to range
{0, 1}θ. We consider two experiments:
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ExpPRF-1
F,A (θ) ExpPRF-0

F,A (θ)
K ← {0, 1}θ h ← Rand{0,1}θ→{0,1}θ

d ← AFK(·)(1θ) d ← Ah(·)(1θ)
return d return d

The advantage of an adversary A is defined as follows:

AdvPRF
F,A (θ) = Pr[ExpPRF-1

F,A (θ) = 1] − Pr[ExpPRF-0
F,A (θ) = 1].

The advantage function is defined as follows:

AdvPRF
F (θ, t, q, μ) = max

A {AdvPRF
A },

where A is any adversary with time complexity t making at most q oracle queries
and the sum of the length of these queries being at most μ bits. The scheme F

is a secure pseudorandom function family if the advantage of any adversary A
with time complexity polynomial in θ is negligible.

2.2 Decisional Diffie-Hellman Problem [Diffie et al. 1976]

Let θ ∈ N be a security parameter. Let GG be a group generator which generates
(G, q, g). G is a group with prime order q and generator g. Consider the following
experiment:

ExpDDH-1
ADDH

(θ) ExpDDH-0
ADDH

(θ)
(G, q, g) ← GG(1θ) (G, q, g) ← GG(1θ)
u1, u2 ← [1, q] u1, u2, w ← [1, q]
U1 ← gu1 ; U2 ← gu2 U1 ← gu1 ; U2 ← gu2

W ← gu1u2 W ← gw

d ← ADDH(G, q, g, U1, U2, W ) d ← ADDH(G, q, g, U1, U2, W )
return d return d

The advantage of an adversary ADDH is defined as follows:

AdvDDH
ADDH

(θ) = Pr[ExpDDH-1
ADDH

(θ) = 1] − Pr[ExpDDH-0
ADDH

(θ) = 1].

The advantage function is defined as follows:

AdvDDH
GG (θ, t) = max

A {AdvDDH
ADDH

(θ)},

where ADDH is any adversary with time complexity t. The DDH assumption is
that the advantage of any adversary ADDH with time complexity polynomial in
θ is negligible.
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2.3 Strong Unforgeability (SUF) of Signature Scheme [An et al. 2002]

A signature scheme S consists of three algorihms (S.key, S.sign, and S.ver). S.key

generates a pair of private-/public-keys for a signer. S.sign generates a signature
for a message with the private key. S.ver verifies the message-signature pair with
the public key and returns 1 if valid or 0 otherwise.

Let θ ∈ N be a security parameter and S be a signature scheme. Consider
the following experiment:

ExpSUF
S,ASUF

(θ)
(sk, vk) ← S.key(1θ)
ω ← AS.signsk(·)(vk)
if ω = ⊥ then return 0
else parse ω as (M, σ)
if S.vervk(M, σ) = 1 and signing oracle S.signsk(·) has
never returned σ on input M then return 1
else return 0

The advantage of an adversary ASUF(θ) is defined as follows:

AdvSUF
S,ASUF

(θ) = Pr[ExpSUF
S,ASUF

(θ) = 1].

The advantage function of the scheme is defined as follows:

AdvSUF
S (θ, t, qs) = max

A {AdvSUF
S,ASUF

(θ)},

where ASUF is any adversary with time complexity t making at most qs signing
queries. The scheme S is SUF–secure if the advantage of any adversary ASUF

with time complexity polynomial in θ is negligible.

3 A Key Exchange Model

The security model in [Bellare et al. 1993], called Bellare-Rogaway (BR) model,
considers KI for two-party key exchange. The security models in [Krawczyk 2005,
Jeong et al. 2006] consider FS, KCI, UKS and SSR for two-party key exchange.
We extend the security model of [Bellare et al. 1993, Jeong et al. 2006] and make
the security model for a key graph.

We assume that each party’s identity is denoted as Pi, and each party holds
a private-/public key pair. Πk

i represents the k-th instance of player Pi. If a
key exchange protocol terminates, then Πk

i generates the multiple keys for the
edges.

Session Identifier of an instance, sidk
i , is a string different from those of all

other sessions in the system (with high probability), and simply the concatena-
tion of all messages sent and received by a particular instance Πk

i , where the
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order of these messages is determined by the lexicographic ordering of the parties’
identities. (Note that ordering messages according to the time they were sent
cannot be used when a protocol runs over a broadcasting network since multiple
parties may send their messages simultaneously.)

Consider instance Πk
i of player Pi. An e-partner of Pi, denoted as pidk,e

i , is
a party with whom Pi believes it is interacting to make a key for an edge e.
We define pidk

i as a set of all partners of Pi in Πk
i . We say that two instances

Πk
i and Πk′

j are e-partnered, if pidk,e
i = Pj , pidk′,e

j = Pi, and sidk
i = sidk′

j where
e = (i, j).

An undirected key graph Gk
i of Πk

i consists of Vk
i = {Pi} ∪ pidk

i and a set of
edges Ek

i which is defined as follows:

Ek
i = {(i, j)|Pj ∈ pidk

i ∧ Pi and Pj(�= Pi) establish a key between them}.

Note that pidk
i =

⋃
e∈Ek

i
pidk,e

i and (i, j) = (j, i) in an undirected graph.

skk,e
i denotes a key computed for an edge e = (i, j) of Gk

i . Any protocol should
satisfy the following correctness condition: if Πk

i and Πk′
j are e-partnered, then

skk,e
i and skk′,e

j are equal.
To define a notion of security, we define the capabilities of an adversary. We

allow the adversary to potentially control all communication in the network via
access to a set of oracles (instances) as defined below. We consider an experiment
in which the adversary asks queries to oracles, and the oracles answer back to
the adversary. Oracle queries model attacks which an adversary may use in the
real system. We consider the following types of queries in this paper.

– The query Initiate(i, G) is used to “prompt” party Pi to initiate an execution
of the protocol for given key graph G. Pi sends a protocol message to the
adversary.

– A query Send(i, k, e, M) is used to send a message M to instance Πk
i as a

message from e-partner. When Πk
i receives M , it responds according to the

key-exchange protocol.

– A query Reveal(i, k, e) models known key attacks (or Denning-Sacco attacks)
in the real system. The adversary is given the key skk,e

i for the specified
instance.

– A query Corrupt(i) models exposure of the secret key corresponding to the
public key held by player Pi. The adversary is assumed to be able to ob-
tain secret keys of players, but cannot control the behavior of these players
directly (of course, once the adversary has asked a query Corrupt(i), the
adversary may impersonate Pi in subsequent Send queries.)
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– A query State(i, k, e) models exposure of the random values used in making
skk,e

i in Πk
i .

– A query Test(i, k, e) is used to define the advantage of an adversary. When
an adversary A asks a Test query to an e-fresh instance (defined below) Πk

i ,
a coin b is flipped. If b is 1, then the key skk,e

i is returned. Otherwise, a
random string chosen uniformly from the space of θ-bit strings is returned,
where θ is a security parameter.

To define a meaningful notion of security, we need to define e-freshness :

Definition. An instance Πk
i is e-fresh if the following conditions are true at the

conclusion of the experiment described above:

(a) The adversary has not queried Reveal(i, k, ∗).
(b) Πk

i is e-partnered with instance Πk′
j and the adversary has not queried

Reveal(j, k′, ∗).
(c) The adversary does not control Pi or Pj for e = (i, j). That is, neither Pi nor

Pj is an insider attacker controlled by the adversary. An insider attacker and
its public keys are created by the adversary. And all of the information known
to an insider attacker are also known to the adversary, and its behaviors are
completely controlled by the adversary.

The following notions of security may then be considered, depending on the
types of queries the adversary is allowed to ask:

- KI (Key Independence): An adversary A can ask Reveal queries, but can not
ask Corrupt or State queries.

- FS (Forward Secrecy): An adversary A can ask Corrupt and Reveal queries,
but can not ask State queries. It is possible that after corrupting Pj , A itself
may impersonate Pj at a specific session. In this case, A can trivially find
out a session key of this session. To eliminate this trivial case, the e-freshness
of Πk

i requires the following additional condition:

(d) If the adversary has queried Corrupt(j) and Send(i, k, e, ∗), Corrupt(j)
should have been queried after all Send(i, k, e, ∗) queries, where e = (i, j).

- KCI (Key Compromise Impersonation): An adversary A can ask Corrupt and
Reveal queries, but can not ask State queries. Suppose that A has queried
Corrupt(i) and wants to impersonate Pj to Pi. This is trivial if the adversary
has also corrupted Pj . To eliminate this case, the e-freshness of Πk

i requires
the following additional condition:
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(d) Pj has not been corrupted, where e = (i, j). Even though an adversary
can not corrupt Pj , the adversary can corrupt any party Pk(�= Pj) in-
cluding Pi for e-fresh Πk

i .

- SSR (Session State Reveal): An adversary A can ask State queries, but can
not ask Reveal and Corrupt queries. Suppose that A has queried State(i, k, e)
and wants to know session key skk,e

i . This is trivial if A has also corrupted
Pi. To eliminate this case, the e-freshness of Πk

i requires that A can not ask
Reveal and Corrupt queries.

- UKS (Unknown Key Share): An adversaryA can not ask any Reveal, Corrupt,
or State queries.

For an adversary A attacking a scheme in the sense of UKS, an adversary A
outputs (i, k, e) and (j, k′, e′) at the end of the experiment above, where Pi and
Pj are not insider attackers. The advantage of A, denoted AdvUKS

A (θ), is defined
as Pr[skk,e

i = skk′,e′
j ∧ e �= e′].

In all the security notions considered above except UKS, an adversary A
outputs a bit b′ at the end of the experiment. The advantage of A, denoted
AdvA(θ), is defined as 2 · Pr[b′ = b] − 1.

For an adversary A attacking a scheme in the sense of XX (where XX is
either KI, FS, KCI, SSR, or UKS), we denote the advantage of this adversary
by AdvXX

A (θ). For a protocol P , we define its security as:

AdvXX
P (θ, t) = max

A
{AdvXX

A (θ)},

where the maximum is taken over all adversaries running in time t. A scheme P

is said to be XX–secure if AdvXX
P (θ, t) is negligible (in θ) for any t = poly(θ).

We show that if a key exchange protocol provides FS and SSR, it also provides
KCI, KI, and UKS by the following theorems.

Theorem 1. KI (Key Independence) implies UKS (Unknown Key Share) for
any key exchange protocol P .

Proof of Theorem 1. To prove the theorem, we construct adversary B attack-
ing KI using adversary A attacking UKS. The description of B is as follows:

1. Using its own oracle query, B can answer every query A asks.

2. If A outputs (i, k, e) and (j, k′, e′), B first makes Reveal(j, k′, e′) query and
gets a key skk′,e′

j .
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3. B makes Test(i, k, e) and gets τ . If τ = skk′,e′
j , B returns 1. Otherwise B

returns 0.

Since Πk
i is not e-partnered with Πk′

j , the strategy of B is correct. So if A
succeeds to break UKS, B succeeds to break KI. Thus,

AdvKI
P,B + 1
2

= PrB[b = b′]

≥ PrA[skk,e
i = skk′,e′

j ∧ e �= e′] − 1
2θ

= AdvUKS
P,A − 1

2θ
.

From the above equation, we get

AdvUKS
P (θ, t) ≤ AdvKI

P (θ, t) + 1
2

+
1
2θ

.

Note that if a random string τ is returned to B for Test(i, k, e) query such
that τ = skk′,e′

j , B outputs 1. In this case B fails to guess correctly, but this case
only occurs with a probability 1

2θ . �
Theorem 2. FS (Forward Secrecy) implies KCI (Key Compromise Imperson-
ation) for any key exchange protocol.

Proof of Theorem 2. As noted in the definition of FS, if an adversary is allowed
to ask a sequence of queries, “Send(i, k, e, ∗) after Corrupt(j)”, then the adversary
always can impersonate Pj without interaction with Pj . To exclude this sequence
of queries, an experiment of FS does not allow this sequence of queries if Πk

i is
e-fresh. In an experiment of KCI, since even Corrupt(j) is not allowed for e-fresh
Πk

i , a sequence of queries “Corrupt(j) after Send(i, k, e, ∗)” is not allowed for
e-fresh Πk

i , whereas such a sequence is allowed in an experiment of FS. So FS
implies KCI. �

By the definitions, it is clear that KCI implies KI. So FS implies KCI, KCI
implies KI, and KI implies UKS.

4 A Key Exchange Protocol

A description of the proposed key exchange protocol PKA is given in Figure 1.
We assume that parties can be ordered by their names (e.g., lexicographically)
and write Pi < Pj to denote this ordering. Let θ be a security parameter, and
let G be a group of prime order q (where |q| = θ) with generator g. (We assume
that G, q and g are fixed in advance and known to the entire network.) Let H

be a hash function such that H : {0, 1}∗ → {0, 1}θ, and S be an unforgeable
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and deterministic signature scheme. A deterministic signature scheme does not
use any random number [Bellare et al. 2001]. We assume that each party Pi

has a pair of public-/private-keys (yi = gxi , xi) and another pair of public-
/private-keys (vki, ski) for a signature scheme S. We also assume that the group
membership test of yi is done by the trusted center which issues a certificate of a
public key. We do not describe procedures related to certificates such as validity
check of certificates before using public keys.

PKA

Setup: F is a pseudorandom function and S is a signature scheme. A key
graph for Pi is Gk

i = {Vk
i , Ek

i }.

Round 1: Pi selects a random number ri ← {0, 1}θ, and broadcasts ri.

Round 2: Pi selects a random number αi ← Zq and makes Zi = gαi .
Pi makes sid′ by concatenating the first round messages by lexicographic
ordering of the owners. Pi calculates σi ← S.signski

(sid′||Zi) and broadcasts
Zi||σi.

Computation of keys: Pi verifies that the received signatures. If the
verification is successful, Pi makes sidk

i by concatenating all messages by
lexicographic ordering of the owners. For each e = (i, j) ∈ Ek

i , Pi calculates
ki,j = H((yjg

αj )xi+αi) = H(g(xi+αi)(xj+αj)), and computes a key skk,e
i =

Fki,j (H(sidk
i )). Note that the hash function H is used to adjust the space

of inputs to the key and domain spaces of F.

Figure 1: Description of PKA

The round messages of PKA depend only on the vertices in the key graph.
The information of edges of the key graph is required when the parties calculate
the session keys. Of course, it is possible that a party, without information of
edges, calculates all of the session keys for parties in the vertices, and uses some
of them whenever necessary. But this approach is not efficient, since a party has
to compute some redundant session keys which are never going to be used.

An example of an execution of PKA is shown in Figure 2. In the following
theorem, we provide a formal proof of security for PKA in the model of Section
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G = (V, E),V = {P1, P2, P3, P4}, E = {(1, 2), (1, 3), (1, 4), (2, 3)}
P1 P2 P3 P4

Round 1 r1 r2 r3 r4

Round 2 gα1 ||σ1 gα2 ||σ2 gα3 ||σ3 gα4 ||σ4

sid′ = r1||r2||r3||r4

σi ← S.signski
(sid′||gαi)

sid = sid′||gα1 ||σ1||gα2 ||σ2||gα3 ||σ3||gα4 ||σ4

sk(1,2) = FH(g(x1+α1)(x2+α2))(H(sid))

sk(1,3) = FH(g(x1+α1)(x3+α3))(H(sid))

sk(1,4) = FH(g(x1+α1)(x4+α4))(H(sid))

sk(2,3) = FH(g(x2+α2)(x3+α3))(H(sid))

Figure 2: An example of an execution of PKA where P1 < P2 < P3 < P4

3.

Theorem 3. If F is a secure pseudorandom function and S is an unforgeable
signature scheme, PKA is an FS/SSR–secure key exchange scheme under the
decisional Diffie-Hellman assumption.

Proof of Theorem 3. Theorem 3 is proved by proving two lemmas. We prove
FS security in Lemma 1 and SSR security in Lemma 2. Throughout the proof,
an adversary A attacking PKA is involved in an experiment, where a simulator
runs PKA for A. Whenever A queries one of oracles described in Section 3, the
simulator answers to the query by either using its oracle query or running a
proper algorithm, which may depend on the purpose of the simulator exploiting
A. �
Lemma 1. If F is a secure pseudorandom function and S is an unforgeable sig-
nature scheme, PKA is an FS–secure key exchange scheme under the decisional
Diffie-Hellman assumption. More formally,

AdvFS
PKA(θ, t) ≤ 2q2

s

2θ
+ 2N · AdvSUF

S (θ, t, qs)

+2(Nqs)2 · AdvDDH
GG (θ, t) + 2AdvPRF

F (θ, t, 1, θ),

where t is the maximum total experiment time including an adversary’s execu-
tion time. Here, N is an upper bound on the number of honest parties, and qs is
an upper bound on the number of the sessions an adversary makes. We address
the parties which are not insider attackers as honest parties.

Proof of Lemma 1. Let A be an adversary attacking FS-security of PKA. Let
col be the event that r (the message of Round 1 in PKA) repeats at some point

387Jeong I.R., Lee D.H.: Parallel Key Exchange



during the experiment and forge be the event that A forges at least one signature.
A may get information concerning the particular keys when col or forge occurs,
or do so even when neither col nor forge occurs. The advantage of A then is

PrA[b = b′] ≤ PrA[col] + PrA[forge] + PrA[b = b′ ∧ col ∧ forge].

We bound the probability of the terms of the above equation in the following
claims.

Claim 1. PrA[col] ≤ q2
s

2θ .

Claim 2. PrA[forge] ≤ N · AdvSUF
S (θ, t, qs).

Claim 3. PrA[b = b′ ∧ col ∧ forge] ≤ (Nqs)2 · AdvDDH + AdvPRF + 1
2 .

From Claim 1, Claim 2 and Claim 3, we have

AdvFS
PKA(θ, t) ≤ 2q2

s

2θ
+ 2N · AdvSUF

S (θ, t, qs)

+2(Nqs)
2 · AdvDDH

GG (θ, t) + 2AdvPRF
F (θ, t, 1, θ). ��

Proof of Claim 1. We can easily see that due to “birthday paradox”, the
collision probability is bounded as PrA[col] ≤ q2

s

2θ because at least one honest
party has to select the same random number at lease twice from qs different ses-
sions. †
Proof of Claim 2. We only consider the advantage of the adversary from
the forgery of signatures. We construct a simulator F which tries to break the
underlying signature scheme by exploiting A. Given a public key vk and a signing
oracle S.signsk(·) in the experiment of unforgeability, F randomly selects a party
and sets vk as a public key of the party. F uses S.signsk(·) to generate a signature
of the party. That is, a signature of the party for a message m is S.signsk(m). A
formal description of F is as follows:

1. F selects a random value i∗ from [1, N ], and sets vk as Pi∗ ’s verification
key for the signature scheme. Public keys of other players are chosen in the
specified way.

2. As defined in Section 3, A may ask all types of queries except State query.
For each oracle query of A, F can answers it according to the protocol except
the following cases :

- Send query for which F needs to generate Pi∗ ’s signature as a part of a
message in Round 2 of PKA : F uses its signing oracle S.signsk(·). That
is, a signature of Pi∗ for a message m is S.signsk(m).
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- Corrupt(i) query with i = i∗ : F fails and stops since F does not know
the secret key sk of its signing oracle.

3. If F finds a forged signature σ during simulation such that σ is a valid
signature of the party Pi∗ , then F outputs σ and stops.

The probability that F succeeds depends on the probabilities that A forges a
signature of Pi∗ and F correctly guesses i∗. Only when F makes a correct guess,
F can provides A with exactly the same view as in the experiment until F ends.
Hence, the advantage of F is bounded as follows:

AdvSUF
S,F ≥ PrA[forge] · PrF [Guess correctly the party whose signature is forged]

≥ PrA[forge] · 1

N
.

So the claim follows. †

Proof of Claim 3. Assume that an adversary A breaks FS-security of PKA

with a non-negligible probability without having events col or forge. This al-
lows us to solve the Decisional Diffie-Hellman problem or the pseudorandomness
(with probability related to that of the adversary’s success probability). We now
proceed with a more formal proof.

We define a series of games in the following. Game0 represents the real exe-
cution of the experiment, while Game1 and Game2 only differ from Game0 in the
method constructing a session key.

– In Game0, a session key for the test query is calculated and returned to
the adversary as follows: If b = 1, sk = F

H(g(xi+αi)(xj+αj))
(H(sidk

i )), where
e = (i, j). If b = 0, sk ← {0, 1}θ.

– In Game1, a session key for the test query is calculated and returned to the
adversary as follows: If b = 1, sk = FH(gw)(H(sidk

i )), where w ← [1, q] and
e = (i, j). If b = 0, sk ← {0, 1}θ.

– In Game2, a session key for the test query is calculated and returned to the
adversary as follows: If b = 1, sk = h(H(sidk

i )), where h ← Rand{0,1}θ→{0,1}θ

and e = (i, j). If b = 0, sk ← {0, 1}θ.

The difference of the advantage of an adversary in each game is as follows:

Claim 3.1. PrA[b = b′∧col∧forge in Game0]−PrA[b = b′∧col∧forge in Game1] ≤
(Nqs)2 · AdvDDH.

Claim 3.2. PrA[b = b′∧col∧forge in Game1]−PrA[b = b′∧col∧forge in Game2] ≤
AdvPRF.

It is obvious that PrA[b = b′∧col∧forge in Game2] is 1
2 . Thus, from Claim 3.1 and

Claim 3.2, Claim 3 immediately follows. †
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Now we proceed to prove Claim 3.1 and Claim 3.2.

Proof of Claim 3.1. We remind that A breaks PKA with a non-negligible
probability without having events col or forge. This implies the following facts:

1. Without event col, A can not replay any message because each party Pi

checks if Round 2 messages (received from the other parties) contain Round
1 message ri which is randomly selected by Pi in each session.

2. Without event forge, A has to send to a tested oracle one of Round 2 messages
made by the honest parties because A can not forge a signature.

We construct a distinguisher D1 which tries to break the decisional Diffie-
Hellman assumption using A. That is, D1 tries to decide whether or not a given
(G, q, g, U1, U2, W ) is an instance of the decisional Diffie-Hellman problem. The
more concrete description of D1 is as follows:

1. Given (G, q, g, U1, U2, W ), D1 begins by choosing public keys for all parties
normally (i.e., choosing a random xi and letting yi = gxi, and making se-
cret/public keys for a signature scheme S). D1 randomly selects i∗, j∗ from
[1, N ], and t1, t2 from [1, qs].

2. For each oracle query of A, D1 answers it according to the protocol except
the following cases:

- Send query for which D1 needs to generate a message to be sent by Πt1
i∗

(Πt2
j∗) in Round 2 : D1 uses U1 (U2) as an ephemeral Diffie-Hellman

message (i.e., the first component of a message in Round 2 of PKA).

- Reveal(i, k, e) for (i = i∗ and k = t1) or (i = j∗ and k = t2) : D1

fails and stops since D1 has used U1 or U2 as the ephemeral Diffie-
Hellman message of Πk

i and the Discrete Logarithm problem is hard.
We note that if i /∈ {i∗, j∗} and Πk

i has received U1 from Πt1
i∗ as an

ephemeral Diffie-Hellman message, D1 still can calculate the correct key
ki,i∗ = H(gxixi∗ Uxi

1 (gαi)xi∗ Uαi
1 ), where gαi is Πk

i ’s ephemeral Diffie-
Hellman message. For the case Πk

i has received U2 from Πt2
j∗ , D1 can

also calculate the correct key ki,j∗ = H(gxixj∗ Uxi
2 (gαi)xj∗ Uαi

2 ).

- Test(i, k, e) query such that Πk
i ∈ {Πt1

i∗ , Πt2
j∗}, and Πt1

i∗ and Πt2
j∗ are e-

partnered: D1 flips a coin b as usual. If b is equal to 1, D1 calculates
ki∗,j∗ = H(gxi∗xj∗ Uxi∗

2 U
xj∗
1 W ) and returns Fki∗,j∗ (H(sidk

i )) to A. If b is
equal to 0, D1 returns a random value selected from the space {0, 1}θ.
For Test(i, k, e) query such that Πk

i /∈ {Πt1
i∗ , Πt2

j∗}, or Πt1
i∗ and Πt2

j∗ are
not e-partnered, D1 fails and stops.
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3. When A outputs b′, D1 checks if b = b′. If so, D1 outputs 1 and stops.
Otherwise, D1 outputs 0 and stops.

When the experiment terminates without failure, D1 successfully simulates Game0
or Game1 to A, depending on the value of W . That is, for U1 = gu1 and U2 = gu2 ,
if W = gu1u2 , D1 simulates Game0. Otherwise D1 simulates Game1 since if W
is random, then gxi∗xj∗ Uxi∗

2 U
xj∗
1 W is also random. The probability of success

of D1 depends on whether or not D1 correctly guesses i∗, j∗, t1 and t2. If these
guesses are correct, D1 provides exactly the same view as in Game0 or Game1 to
A. So the following inequality holds:

AdvDDH
D1 = Pr[D1(U1, U2, W ) = 1|U1 = gu1 , U2 = gu2 , W = gu1u2 ]

−Pr[D1(U1, U2, W ) = 1|U1 = gu1 , U2 = gu2 , W = gw]

≥ 1

(Nqs)2
· (PrA[b = b′ ∧ col ∧ forge in Game0]

−PrA[b = b′ ∧ col ∧ forge in Game1]).

The claim immediately follows from the above. †
Proof of Claim 3.2. Consider a distinguisher D2 to break pseudorandomness
of a pseudorandom function family F. Given an oracle function f(·) in the ex-
periment of pseudorandomness of the function family F, D2 uses f(·) to make a
session key for the test oracle. The more concrete description of D2 is as follows:

1. Given an oracle function f(·), D2 begins by choosing public keys for all
parties normally (i.e., choosing a random xi and letting yi = gxi , and making
a pair of private-/public-keys for a signature scheme S).

2. For each oracle query of A, D2 handles it as in Game1 except a Test query. For
Test(i, k, e) query, D2 flips a coin b. If b is equal to 1, D2 returns f(H(sidk

i )).
Otherwise, D2 returns a random value selected from the space {0, 1}θ.

3. When A outputs b′, D2 checks if b = b′. If so, D2 outputs 1 and stops.
Otherwise, D2 outputs 0 and stops.

D2 simulates Game1 or Game2 depending on whether f(·) is a function from F
or not. So the following inequality holds:

AdvPRF
D2 = Pr[D2

f(·) = 1|K ← {0, 1}θ ; f = FK ]

−Pr[D2
f(·) = 1|h ← Rand{0,1}θ→{0,1}θ

; f = h]

≥ PrA[b = b′ ∧ col ∧ forge in Game1] − PrA[b = b′ ∧ col ∧ forge in Game2].

The claim immediately follows from the above. †

Lemma 2. If F is a secure pseudorandom function and S is an unforgeable sig-
nature scheme, PKA is an SSR–secure key exchange scheme under the decisional
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Diffie-Hellman assumption. More formally,

AdvSSR
PKA(θ, t) ≤ 2N2 · AdvDDH

GG (θ, t) + 2AdvPRF
F (θ, t, 1, θ),

where t is the maximum total experiment time including an adversary’s execution
time. Here, N is an upper bound on the number of honest parties, and qs is an
upper bound on the number of the sessions an adversary makes.

Proof of Lemma 2. Assume that an adversary A breaks PKA with a non-
negligible probability. This allows us to solve the Decisional Diffie-Hellman prob-
lem or the pseudorandomness (with probability related to that of the adversary’s
success probability). We now proceed with a more formal proof.

We define a series of games in the following. Game0 represents the real exe-
cution of the experiment, while Game1 and Game2 only differ from Game0 in the
method constructing a session key.

– In Game0, a session key for the test query is calculated and returned to
the adversary as follows: If b = 1, sk = F

H(g(xi+αi)(xj+αj))
(H(sidk

i )), where
e = (i, j). If b = 0, sk ← {0, 1}θ.

– In Game1, a session key for the test query is calculated and returned to the
adversary as follows: If b = 1, sk = FH(gw)(H(sidk

i )), where w ← [1, q] and
e = (i, j). If b = 0, sk ← {0, 1}θ.

– In Game2, a session key for the test query is calculated and returned to the
adversary as follows: If b = 1, sk = h(H(sidk

i )), where h ← Rand{0,1}θ→{0,1}θ

and e = (i, j). If b = 0, sk ← {0, 1}θ.

The difference of the advantage of an adversary in each game is as follows:

Claim 4. AdvSSR,Game0
PKA,A − AdvSSR,Game1

PKA,A ≤ 2N2 · AdvDDH.

Claim 5. AdvSSR,Game1
PKA,A − AdvSSR,Game2

PKA,A ≤ 2AdvPRF.

It is obvious that the advantage of any adversary is 0 in Game2. Thus, from Claim
4 and Claim 5, Lemma 2 immediately follows. �
Now we proceed to prove Claim 4 and Claim 5.

Proof of Claim 4. We construct a simulator D3 which tries to break the
decisional Diffie-Hellman assumption using A. That is, D3 tries to decide whether
or not a given (G, q, g, U1, U2, W ) is an instance of the decisional Diffie-Hellman
problem. The more concrete description of D3 is as follows:

1. Given (G, q, g, U1, U2, W ), D3 randomly selects i∗, j∗ from [1, N ], and uses
U1 as public key yi∗ of Pi∗ and U2 as yj∗ of Pj∗ . D3 chooses all other public
keys normally.
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2. For each oracle query of A, D3 answers it according to the protocol except
the following cases:

- Test(i, k, e) for e �= (i∗, j∗): D3 fails and stops. For Test(i, k, e) for e =
(i∗, j∗), D3 flips a coin b. If b is equal to 1, D3 computes ki∗,j∗ =
H(WUαi∗

2 U
αj∗
1 gαi∗αj∗ ), and returns Fki∗,j∗ (H(sidk

i )). If b is equal to 0,
D3 returns a random value selected from the space {0, 1}θ.

3. When A outputs b′, D3 checks if b = b′. If so, D3 outputs 1 and stops.
Otherwise, D3 outputs 0 and stops.

When the experiment terminates without failure, D3 successfully simulates Game0
or Game1 to A depending on the value W . That is, for U1 = gu1 and U2 = gu2 ,
if W = gu1u2 , D3 simulates Game0. Otherwise, D3 simulates Game1 since if W
is random, then WUαi∗

2 U
αj∗
1 gαi∗αj∗ is also random. The probability of success

of D3 depends on whether or not D3 guesses correctly i∗ and j∗. If these guesses
are correct, D3 provides exactly the same view as in Game0 or Game1 to A. So
the following inequality holds:

AdvDDH
D3 = Pr[D3(U1, U2, W ) = 1|U1 = gu1 , U2 = gu2 , W = gu1u2 ]

−Pr[D3(U1, U2, W ) = 1|U1 = gu1 , U2 = gu2 , W = gw]

≥ 1

N2
· (PrA[b = b′ in Game0] − PrA[b = b′ in Game1])

=
1

N2
· (AdvSSR,Game0

A + 1

2
− AdvSSR,Game1

A + 1

2
).

The claim immediately follows from the above. †

Proof of Claim 5. Consider a distinguisher D4 to break pseudorandomness of a
pseudorandom function family F. Given an oracle function f(·) in the experiment
of pseudorandomness of the function family F, D4 uses f(·) to make a session
key for the test oracle. The more concrete description of D4 is as follows:

1. Given an oracle function f(·), D4 begins by choosing public keys for all
parties normally (i.e., choosing a random xi and letting yi = gxi , and making
a pair of private-/public-keys for a signature scheme S).

2. For each oracle query of A, D4 handles it as in Game1 except a Test query.
For Test(i, k, e), D4 flips a coin b. If b is equal to 1, D4 returns f(H(sidk

i )).
Otherwise, D4 returns a random value selected from the space {0, 1}θ.

3. When A outputs b′, D4 checks if b = b′. If so, D4 outputs 1 and stops.
Otherwise, D4 outputs 0 and stops.

D4 simulates Game1 or Game2 depending on whether f(·) is a function from F

393Jeong I.R., Lee D.H.: Parallel Key Exchange



or not. So the following inequality holds:

AdvPRF
D4 = Pr[D4

f(·) = 1|K ← F.key(1θ); f = FK ]

−Pr[D4
f(·) = 1|h ← Rand{0,1}θ→{0,1}θ

; f = h]

≥ PrA[b = b′ in Game1] − PrA[b = b′ in Game2]

=
AdvSSR,Game1

A + 1

2
− AdvSSR,Game2

A + 1

2
.

So the claim follows. †

5 Conclusions

In the paper we have studied the parallel key exchange. First, we have de-
fined a security model for a key graph, which extends the security models in
[Bellare et al. 1993, Jeong et al. 2006]. Second, we have shown the relation be-
tween the various security notions of key exchange. Finally, we have suggested
an efficient key exchange protocol for a key graph using the randomness re-use
technique. Our protocol is secure in the standard model.
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