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Abstract: We present an algorithm that by using the τ and τ−1 Frobenius operators concur-
rently allows us to obtain a parallelized version of the classical τ -and-add scalar multiplication
algorithm for Koblitz elliptic curves. Furthermore, we report suitable irreducible polynomials
that lead to efficient implementations of both τ and τ−1, thus showing that our algorithm can
be effectively applied on all the NIST-recommended curves. We also present design details of
software and hardware implementations of our procedure. In a two-processor workstation soft-
ware implementation, we report experimental data showing that our parallel algorithm is able to
achieve a speedup factor of almost 2 when compared with the standard sequential point multipli-
cation. In our hardware implementation, the parallel version yields a more modest acceleration
of 17% when compared with the traditional point multiplication algorithm. Although the focus is
on Koblitz curves, analogous strategies are discussed for other curves, in particular for random
curves over binary fields.
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1 Introduction

First proposed in 1991 by N. Koblitz [Koblitz 1992], Koblitz Elliptic Curves have been
subject of extensive analysis and study. Given a finite field Fq for q = 2m, a Koblitz
curve Ea(Fq), also known as an Anomalous Binary Curve (ABC), is defined as the set
of points (x, y) ∈ Fq × Fq that satisfy the equation

Ea : y2 + xy = x3 + ax2 + 1, a ∈ {0, 1}, (1)

together with a point at infinity denoted byO. It is known that Ea(Fq) forms an additive
Abelian group with respect to the elliptic point addition operation.

Let k be a positive integer and P a point on an elliptic curve. Then elliptic curve
scalar multiplication is the operation that computes the multiple Q = kP , defined as the
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point resulting of adding P +P + · · ·+P , k times. One of the most basic methods used
for computing a scalar multiplication is based on a double-and-add variant of Horner’s
rule. As the name suggests, the two most prominent building blocks of this method are
the point doubling and point addition primitives. It is known that the computational cost
of the double-and-add algorithm is m−1 point doublings plus an average of m−1

2 point
additions.

Most works published in this area have strived for reducing the cost associated to the
double-and-add method by following two main strategies: reducing the computational
complexity of point addition and point doubling primitives, and reducing the number
of times that the point addition primitive is invoked during the algorithm execution. A
significant improvement in performance can be obtained when the point P is known
in advance by using precomputation (if memory space permits) and techniques such as
the comb method [Hankerson et al. 2004].

However those methods are not very practical when dealing with the so-called un-
known point case, where the elliptic curve point to be processed is not known in ad-
vance, thus precluding off-line precomputation. In the rest of this paper we will assume
that we are working in the unknown point scenario, with sufficient memory space for
storing a few multiples of the point to be processed. In this scenario, windowing meth-
ods reduce the number of point additions, but not point doubles, and hence the savings
are typically modest. An exceptional case is that of Koblitz curves.

Koblitz curves can significantly speed scalar multiplication by substituting the tra-
ditional double-and-add algorithm with a “τ -and-add” procedure as it was presented
in [Koblitz 1992, Solinas 2000]. In the context of Koblitz curves, the τ operator is de-
fined as the mapping of a point P = (x, y) ∈ Ea to the point τP := (x2, y2), which
also belongs to the curve Ea. Since field squaring is a linear operation in binary exten-
sion fields, the τ operator can be implemented far more efficiently than point double or
point halving primitives. For this reason, the cost of scalar multiplication is determined
largely by the number of point additions, although the applications of τ are typically
not completely free.

Several efforts for speeding elliptic curve scalar multiplication on Koblitz
curves have been reported both in hardware and software platforms
[Avanzi and Sica 2006, Wong et al. 2006, Dimitrov et al. 2006, Hankerson et al. 2004,
Lutz 2004, Solinas 2000, Hankerson et al. 2000]. Authors in [Avanzi et al. 2006] pro-
posed to reduce the number of group operations by using a wide-double non-adjacent
form of the scalar k combined with applications of the point halving primitive. Com-
pared with the τ -NAF method of [Solinas 2000], a savings of 25% in point additions are
obtained. However, the effective savings are somewhat less since the wide-double non-
adjacent form leads to an increment in the number of Frobenius applications (the scalar
multiplication algorithm must execute two loops of about m iterations each). Further,
the savings are in the case where there is no room for a few points of (on-line) precom-
putation. The same savings in point additions (and without the extra applications of τ )
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can be obtained if an extra point of storage is permitted.
[Dimitrov et al. 2005, Avanzi and Sica 2006, Wong et al. 2006, Dimitrov et al. 2006]

proposed the idea of representing the scalar k using a double base rather than the tra-
ditional binary form. Point doublings can be partially substituted with advantage by
tripling, quadrupling and even halving a point. In [Dimitrov et al. 2005], k is repre-
sented as the sum or difference of numbers of the form 2 i3j , and integrated operations
such as 4Q + P are exploited to speed scalar multiplication. On random binary curves,
the savings over the use of NAF is modest; further, the analysis is for affine coordinate
arithmetic, which may be of less interest due to the relatively high cost of field inver-
sion. In [Avanzi and Sica 2006], a double-base expansion using τ and 3 is shown to give
a sublinear scalar multiplication algorithm on Koblitz curves. The result is asymptotic,
and the practical applicability to curves of cryptographic interest requires more exami-
nation. In [Dimitrov et al. 2006], a provably sublinear point multiplication algorithm on
Koblitz curves where the scalar k was represented using multiple-base expansions was
presented. The reconfigurable hardware implementation of that algorithm was reported
to require 35.75μs on a Xilinx Virtex-II device in order to compute a scalar multiplica-
tion operation on the Koblitz elliptic curve E1(F2163).

In this work we discuss yet another approach for accelerating scalar multiplication
on Koblitz curves: the use of parallel strategies. The parallelization occurs at a high
level, an advantage in implementation. First, we show that the τ −1 Frobenius opera-
tor can be successfully applied in the domain of Koblitz elliptic curves giving extra
flexibility and potential speedup to known elliptic curve scalar multiplication proce-
dures. Secondly, we present architectures that utilizing τ and τ −1 blocks offer sig-
nificant speedups. Provided that the costs of computing the τ and the τ −1 operators
are approximately equal, the performance increments attained by our schemes become
maximal.

Unfortunately, several reduction polynomials recommended by NIST lead to expen-
sive computations of the τ−1 operator, thus precluding the effectiveness of our archi-
tecture for providing major performance improvements. In an effort to overcome this
difficulty, we present a list of alternative reduction polynomials that yield efficient com-
putations of the Frobenius inverse operator. We also indicate the exact hardware cost of
computing the τ−1 operator when the proposed alternative polynomials are used.

Additionally, we show how multiple applications of the Frobenius operator of the
form τ±n can be applied for producing an interleaved version of the basic τ and τ −1

scheme. That interleaved version provides a further improvement in the performance
gain. We also discuss an analogous parallelization strategy for random curves over bi-
nary fields when point halving methods apply. This strategy along with the architectures
discussed for Koblitz curves broaden the applicability of our approach to virtually all
relevant elliptic curves defined over GF(2m).

Finally, we present actual implementations of the proposed architectures in both
hardware and software platforms. In hardware, a single point addition block may pro-
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vide a speedup of up to 17% when compared with the traditional sequential version.
Furthermore, for those designs where two point addition units are affordable, we show
that our point multiplication formulation can speed up the operation by a factor close to
2. Experimental data on a two-processor workstation is presented that approaches this
ceiling.

The rest of this paper is organized as follows. In §2 some relevant mathematical
concepts are briefly outlined. Section 3 presents a parallel formulation of scalar multi-
plication on Koblitz curves. Algorithm variants and analogues for other curves appear
in §4. Section 5 discusses relevant implementation aspects of the proposed parallel al-
gorithms for software and hardware environments. Finally, in §6 some conclusions are
drawn.

2 Mathematical background

In a binary field, the map taking x to x2 is an automorphism of the field called Frobenius
map whose inverse, the square root map, takes x to

√
x. Since Koblitz curves are defined

over the binary field GF (2), the Frobenius map and its inverse naturally extend to two
automorphisms of the curve denoted τ and τ −1, respectively. The τ map takes (x, y)
to (x2, y2) and O to O. Similarly, the τ−1 map takes (x, y) to (

√
x,

√
y) and O to O.

Given the above definitions, it is easy to show that in Ea(F2m), τ−i = τm−i for all i.
Moreover, it has been shown that (x4, y4) + 2(x, y) = μ(x2, y2) for every (x, y) on
Ea, where μ = (−1)1−a; that is, τ satisfies τ2 + 2 = μτ .

By solving the quadratic, we can associate τ with the complex number τ = −1+
√−7
2 .

Solinas [Solinas 2000] presents a τ -adic analogue of the usual non-adjacent form (NAF)
as follows. Since short representations are desirable, an element ρ ∈ Z[τ ] is found
with ρ ≡ k (mod δ) of as small norm as possible, where δ = (τ m − 1)/(τ − 1).
Then for the subgroup of interest, kP = ρP and a τ -adic NAF (τNAF) for ρ is ob-
tained in a fashion that parallels the usual NAF. For simplicity, we write this τNAF
(of ρ) as k =

∑l−1
i=0 uiτ

i, where each ui ∈ {0,±1} and l is the expansion’s length.
The scalar multiplication kP can then be computed with a corresponding addition-
subtraction method with the τNAF.

Standard (NAF) addition-subtraction method computes a scalar multiplication in
about m doubles and m/3 additions [Hankerson et al. 2004]. Similarly, the correspond-
ing τNAF method implies the computation of l τ mappings (field squarings) and ap-
proximately l/3 additions. On the other hand, it is possible to process ω ≥ 2 dig-
its of the scalar k at a time. As in [Solinas 2000], define αi = i mod τω for i ∈
{1, 3, 5, . . . , 2ω−1 − 1}. A width-ω τNAF of a nonzero element k is an expression
k =

∑l−1
i=0 uiτ

i where each ui ∈ {0,±α1,±α3, . . . ,±α2ω−1−1} and ul−1 �= 0, and at
most one of any consecutive ω coefficients is nonzero. Therefore, the scalar multiplica-
tion kP can be performed with the ωτNAF expansion of k as

ul−1τ
l−1P + · · · + u2τ

2P + u1τP + u0P. (2)
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Algorithm 1 ωτNAF Scalar Multiplication [Solinas 2000]
Require: ωτNAF(k) =

Pl−1
i=0 uiτ

i, P ∈ Ea(F2m).
Ensure: kP
1: Pre-compute Pu = αuP , for u ∈ ˘

1, 3, 5, . . . , 2ω−1 − 1
¯

where αi = i mod τω;
2: Q ← O;
3: for i from l − 1 downto 0 do
4: Q ← τQ;
5: if ui �= 0
6: Find u such that α±u = ±ui;
7: if u > 0
8: Q ← Q + Pu;
9: else
10: Q ← Q − P−u;
11: Return Q;

The length of ρ is at most m + a, and Solinas presents an efficient technique to find
an estimate for ρ that is of length at most m + a + 3 [Solinas 2000, Blake et al. 2005].
Under reasonable assumptions, the algorithm will usually produce an estimate with
length at most m + 1. For simplicity, we will assume that the recodings obtained have
this as an upper bound on length; small adjustments are necessary to process longer
representations. Under these assumptions and properties of τ , scalars may be written

k =
m∑

i=0

uiτ
i = u0 + u1τ

1 + · · · + umτm (3)

= u0 + u1τ
−(m−1) + u2τ

−(m−2) + · · · + um−1τ
−1 + um =

m∑
i=0

uiτ
−(m−i)

Summarizing, Koblitz elliptic curve scalar multiplication can be accomplished by pro-
cessing elliptic point additions and τ and/or τ −1 mappings.

3 Parallel scalar multiplication on Koblitz curves

Often, a point multiplication algorithm on a Koblitz curve is divided into two main
phases: a ωτNAF expansion of the scalar k, and the scalar multiplication itself based on
the τ Frobenius operator and elliptic curve addition sequences. If projective coordinates
are in use, then the traditional τ -and-add method is Algorithm 1, and expression (2) is
computed from left to right, i.e., it starts processing u l−1 first, then ul−2 until it ends
with the coefficient u0.

The basic strategy in our parallel algorithm is to use (3) to reformulate the scalar
multiplication in terms of both the τ and the τ −1 operators as
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Algorithm 2 ωτNAF Scalar Multiplication: Parallel Version
Require: ωτNAF(k) =

∑m
i=0 uiτ

i, P ∈ Ea(F2m), integer n < m.
Ensure: kP

1: Precompute Pu = αuP , for u ∈ {
1, 3, 5, . . . , 2ω−1 − 1

}
where αi = i mod τω;

2: Q = R = O;
3: Find the largest n1 such that un1 �= 0 and n1 ≤ n.
4: Find the smallest n2 such that un2 �= 0 and n2 > n.
5: for i from n1 downto 0 do
6: Q ← τQ;
7: if ui �= 0 then
8: Find u such that α±u = ±ui;
9: if u > 0 then
10: Q ← Q + Pu;
11: else
12: Q ← Q − P−u;
13: Q ← Q + R;
14: Return Q;

for j from n2 to m do
R ← τ−1R

if uj �= 0
Find u such that α±u = ±uj;
if u > 0 then

R ← R + Pu;
else

R ← R − P−u;

k =
m∑

i=0

uiτ
i = u0 + u1τ

1 + · · · + unτn + un+1τ
n+1 + · · · + umτm

= u0 + u1τ
1 + · · · + unτn + un+1τ

−(m−n−1) + · · · + um (4)

=
n∑

i=0

uiτ
i +

m∑
i=n+1

uiτ
−(m−i)

where 0 < n < m. This formulation leads to a parallel version of Algorithm 1 which is
shown in Algorithm 2.

It is worth mentioning that the joint use of the Frobenius map and its inverse has
appeared in other contexts. For example, taking advantage of the low cost of inverting τ

when using normal basis representations, Solinas [Solinas 2000, Algorithm 5] proposed
a right-to-left windowing method for kP that uses both τ and τ −1. Furthermore, Hasan
in [Hasan 2001] proposed the parallel application of the Frobenius operator and its in-
verse in order to instrument countermeasures for side-channel attacks. The main idea
was to randomize the scalar k, so that an opponent could not easily guess the actual
value of the coefficient being processed. This procedure, however, has the associated
performance penalty of computing more point addition operations.

We stress that the aim of Algorithm 2 is radically different than the two aforemen-
tioned works. Indeed, by means of the expression (4), we effectively split the m-bit
computation of kP into two subsequences of length m/2 bits each, which essentially
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Table 1: Computing kP over GF (217), k = 195 with Algorithm 2.

i ui τ -and-Add j uj τ−1-and-Add
6 0 Q = τP 11 0 R = τ−1P = τ16P
5 −1 Q = (τ2 − 1) · P 12 0 R = τ−2P = τ15 · P
4 0 Q = (τ3 − τ) · P 13 0 R = τ−3P = τ14 · P
3 0 Q = (τ4 − τ2) · P 14 1 R = (τ−4 + 1) · P = (τ13 + 1) · P
2 1 Q = (τ5 − τ3 + 1) · P 15 0 R = (τ−5 + τ−1) · P = (τ12 + τ16) · P
1 0 Q = (τ6 − τ4 + τ) · P 16 1 R = (τ−6 + τ−2 + 1) · P = (τ11 + τ15 + 1) · P
0 −1 Q = (τ7 − τ5 + τ2 − 1) · P 17 0 R = (τ−7 + τ−3 + τ−1) · P = (τ10 + τ14 + τ16) · P

do not share any common operations (an obvious advantage for computing in parallel).
Hence, provided that two independent processing units are available, Algorithm 2 can
speed the computation time of Algorithm 1 by a factor of almost 2, as will be discussed
in more detail in the rest of this section.

3.1 An example

Let us consider the binary extension field GF (2m) with m = 17, generated with the
irreducible trinomial f(x) = x17 + x3 + 1. Referring to the Koblitz elliptic curve of
Eq. (1) with a = 1, suppose we want to compute point multiplication using the positive
integer scalar k = 195. Then, the τNAF expansion of k is given as −1 + τ 2 − τ5 +
τ7 + τ10 + τ14 + τ16, which can be rewritten as

τNAF(k) = −1 + τ2 − τ5 + τ7 + τ10 + τ14 + τ16

= −1 + τ2 − τ5 + τ7 + τ−(m−10) + τ−(m−14) + τ−(m−16)

= −1 + τ2 − τ5 + τ7 + τ−7 + τ−3 + τ−1.

We can compute in parallel above scalar multiplication using Algorithm 2 with n =
	m

2 
 = 8. Indeed, initialization sets n1 = 7 and n2 = 10, and Q = R = P after the
first iteration. Notice also that the τNAF expansion of k can be written in vector form
as τNAF(k) = [1̄01001̄01001000101], where 1̄ = −1. Then, the algorithm dataflow is
as shown in Table 1. The required result is found in step 13 of Algorithm 2 as

Q + R = (τ7 − τ5 + τ2 − 1) · P + (τ10 + τ14 + τ16) · P = kP.

Provided that the computational cost of the τ and the τ −1 are about the same,1 and that
two independent point addition units are available, Algorithm 2 can perform the scalar
multiplication 195P , as described above, at a time cost equivalent to the computation
of four point additions plus seven applications of the τ operator, as opposed to six point
additions and sixteen applications of the τ operator required by Algorithm 1.

1 See Appendix A for details of how to compute the τ and the τ−1 operators efficiently.
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3.2 Computational costs in Algorithm 2

We analyze cost issues in Algorithm 2 in the case where the precomputation (Step 1)
must occur on-line (the point-not-known-in-advance case). However, the step corre-
sponding to “doubling” in traditional algorithms is inexpensive in Koblitz curves (in
contrast to the case for random curves). This is similar to situation for supersingular
curves over fields of characteristic 2 or 3 where point doublings (characteristic 2) or
triplings (characteristic 3) are inexpensive. In such cases, off-line precomputation may
offer only modest acceleration if relatively few (e.g., 8) points of precomputation are
used, and hence the algorithm may also be appropriate in the known-point case.

3.2.1 Precomputation

Step 1 of Algorithm 2 computes 2ω−2 − 1 multiples of the point P , each at a cost of
approximately one point addition. For a given ω, the evaluation stage of the algorithm
has approximately m/(ω + 1) point additions, and hence increasing ω has diminishing
returns. For the curves given by NIST [NIST, 1999] and with on-line precomputation,
ω ≤ 6 is optimal in the sense that total point additions are minimized. A valuable feature
of Algorithm 2 is the shared use of the pre-computed points by the pair of parallel loops
in steps 5–12.

In many cases, the recoding in ωτNAF(k) is performed on-line and can be consid-
ered as part of the precomputation step. Unlike the ordinary width-ω NAF, the τ -adic
version requires a relatively expensive calculation of a short ρ with ρ ≡ k (mod δ)
where δ = (τm − 1)/(τ − 1) [Solinas 2000]. This calculation can be done in parallel
with the computation of Pu.

3.2.2 Square and square root

The choice of the input parameter n in Algorithm 2 depends on the relative cost differ-
ence between τ and τ−1. In a normal basis representation for the field, these operators
are of very low and similar cost. However, polynomial basis multipliers are typically
preferred (due to performance), and so we shall assume a polynomial basis repre-
sentation with a NIST-like reduction polynomial (that is, a trinomial or pentanomial
xm + p(x) where deg p is small relative to m).

Under the given scenario, applying τ is typically inexpensive and can be done via
linearity by “thinning” the coefficients followed by reduction. However, the cost of τ −1

can be significantly higher. A generic method splits the computation of the square root
of a field element c as

√
c =

(∑
cix

i
)1/2 =

∑
i even

cix
i/2 +

√
x

∑
i odd

cix
(i−1)/2

where
√

x is a per-field precomputation. The computation is less expensive than a field
multiplication, but can be significantly more than the cost of a squaring.
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Table 2: Candidate reduction polynomials for F2m , m ∈ {163, 233, 283}, giving low
cost squaring and/or square roots. The value N(M) is listed where N is the total num-
ber of XORs required and M is the number of Tx delays needed for computing the
operation, where Tx is the time delay of one XOR gate.

N(M)
Reduction polynomial

√
x c2

√
c

m = 163
x163 + x7 + x6 + x3 + 1 (79 terms) 252(2) 1619(6)
x163 + x65 + x35 + x33 + 1 x18(x64 + 1) + x33 + x17 272(3) 243(2)
x163 + x99 + x97 + x3 + 1 x50(x32 + 1) + x49 + x2 362(3) 243(2)
m = 233
x233 + x74 + 1 (x32 + x117 + x191)(x37 + 1) 153(1) 153(2)
x233 + x159 + 1 x117 + x80 116(2) 116(1)
m = 283
x283 + x12 + x7 + x5 + 1 (68 terms) 430(2) 2677(6)
x283 + x97 + x89 + x87 + 1 x142 + x49 + x45 + x44 514(3) 423(2)
x283 + x105 + x73 + x41 + 1 x142 + x21(x32 + 1) + x37 432(3) 359(2)

Authors in [Fong et al. 2004] noted that for fields represented with a trinomial re-
duction polynomial,

√
x may be obtained at low cost directly from the reduction poly-

nomial. Further,
√

x is sparse for the NIST reduction polynomials for the fields F2233

and F2409 . The m = 409 case is especially pleasant since
√

x is of degree not exceeding
(m + 1)/2 (and so there is no reduction in the multiplication).

If the given reduction polynomial does not produce sparse
√

x, then we can consider
mapping to another representation where roots are less expensive. This can be done at
the beginning and end of the point multiplication, at a cost comparable to a few field
multiplications (an insignificant amount in the overall point multiplication).

As an example, the NIST-recommend pentanomial for m = 163 yields a 79-term√
x. This appears to demand significant effort in both hardware and software (compared

with squaring). The “best” alternate representation depends on environment. Table 2
gives examples for the NIST-recommended fields with m ∈ {163, 233, 283}. The first
line for each m is the NIST reduction polynomial, which gives low-cost reduction.
In software environments, the difference in reduction cost between the polynomials in
the table (for a fixed m) may be insignificant, and one can choose the representation
giving the fastest square root. For example, the table entries for m = 163 giving 4-term√

x are both reasonably attractive in software.2 Similarly, there are pentanomials for

2 There are other possibilities giving 4-term roots; these where selected because the polynomial
and

√
x have some powers that differ by a multiple of 32 (a possible implementation advantage

for software platforms).
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m = 571 giving fast reduction and 4-term
√

x; in particular, the parallel algorithm can
be applied effectively to all the NIST-recommended Koblitz curves (via the inexpensive
conversion described earlier). In hardware platforms, the costs listed in Table 2 for
m = 233 (where irreducible trinomials can be found) have already been reported in
[Wu 2001, Rodrı́guez-Henrı́quez et al. 2006].

3.2.3 Evaluation stage

Algorithm 2 uses the scalar representation given by Solinas [Solinas 2000] and hence
has the same evaluation-stage cost in terms of total point additions (m/(ω + 1) ex-
pected) as the Solinas algorithm, and an extra point addition at the end. There are also
approximately m applications of τ or its inverse. If the field representation is such that
these operators have similar cost or are sufficiently inexpensive relative to field multi-
plication, then the evaluation stage can be up to a factor 2 faster than the corresponding
non-parallel algorithm.

Overall acceleration will depend on overhead of parallelization, the cost of precom-
putation and scalar recoding, and the amount of hardware shared between the parallel
threads. For example, if two point addition modules are too expensive in hardware then
it is possible to share some of the units and still obtain a performance improvement. We
illustrate via specific software and hardware implementations in §5.

4 Extensions

The essential features exploited by Algorithm 2 are that the scalar can be efficiently
represented in terms of the Frobenius map and that the map and its inverse can be
efficiently applied, and hence the algorithm adapts directly to curves defined over small
fields Fq. For example, Smart [Smart 1999] showed that there are suitable expansions
in the case of (small) odd characteristic fields, and the parallelization applies provided
qth roots are efficiently calculated.

Algorithm 2 is attractive in the sense that two processors are directly supported
without “extra” computations. However, if multiple applications of the “doubling step”
are sufficiently inexpensive, then more processors and additional curves can be accom-
modated in a straightforward fashion without sacrificing the high-level parallelism of
Algorithm 2. As an example for Koblitz curves, a variant on Algorithm 2 discards the
applications of τ−1 and finds kP = k1(τ jP ) + k0P = τ j(k1P ) + k0P for suitable
ki and j ≈ m/2 with traditional methods to calculate k iP . The application of τ j is
low cost if there is storage for a per-field matrix.3 An analogous approach applies (al-
though less efficiently) to supersingular curves over fields of characteristic 2 or 3, where
repeated point doublings or triplings, respectively, are inexpensive.

3 See Appendix A for a specific example of how to compute multiple instances of the Frobenius
τ operator.
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4.1 Interleaving

A variant of Algorithm 2 can be obtained by interleaving the applications of the Frobe-
nious and inverse operators. For simplicity, we shall assume in the following that k =∑m−1

i=0 uiτ
i and n = m/4 is an integer (small adjustments are necessary for m not a

multiple of 4). Write

kP = u0P + u1τnP + u2τ2nP + u3τ3nP

where uj =
∑n−1

i=0 ujn+iτ
i. Using properties of τ , we may write

kP = (u0P + u2τ2nP ) + (ũ3P + ũ1τ−2nP )

where ũj = τ−nuj . If our architecture possesses two independent processing units,
then we can advantageously use the computational partition described next.

Let us suppose that the first processor computes the portions involving u 0 and u2

using a “τ and add” approach as

R = u0P + u2τ2nP = u0P + u2Q, (5)

whereas the second processor concurrently computes the portions involving u 3 and u1

using a “τ−1 and add” procedure as

S = ũ3P + ũ1τ−2nP = ũ3P + ũ1Q (6)

where the point Q = τ 2nP = τ−2nP . Then, the scalar multiplication kP can be ob-
tained by performing one final point addition, namely R + S = kP . Compared with
Algorithm 2, the extra cost is the precomputation of 2ω−2 − 1 multiples of the point
Q, which may be obtained at relatively low cost from the precomputation involving
P .4 As was mentioned in §3, that calculation can be done in parallel with the recoding
ωτNAF(k). In return, the strategy may provide a speedup in the evaluation stage, by cal-
culating (5) and (6) via interleaving techniques for multi-exponentiation such as those
proposed in [Möller 2001]. However, we anticipate that the performance acceleration
using interleaving techniques will be modest for Koblitz curves since the computational
savings will come only from performing fewer of the relatively inexpensive τ and τ −1

applications—the total number of point addition calculations remains the same in both
approaches.

4 Using notation as in Algorithm 2, the precomputation Qu may be obtained as Qu = τ 2nPu.
Appendix A estimates that the calculation in hardware has cost less than that of two field
multiplications. As an example in software, the straightforward vector-matrix multiplication in
[Dahab et al. 2006, Table 2] (on a Pentium III) has cost equivalent to 1.8 to 2.4 field multiplica-
tions. Unless inversion is unusually inexpensive, these estimates imply that the precomputation
for Q is obtained at less than half the cost of the precomputation for P .
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4.2 Parallelization for random binary curves

Scalar multiplication based on point halving shares strategy with the τ -adic method
on Koblitz curves in the sense that point doubling is replaced by a potentially faster
halving operation that produces Q from P with P = 2Q. The method was proposed in-
dependently by Knudsen [Knudsen 1999] and Schroeppel [Schroeppel 2000] for curves
y2+xy = x3+ax2+b over F2m . The method is simpler if the trace of a is 1, and this is
the only case we consider. The expensive computations in halving are a field multipli-
cation, solving a quadratic z2 + z = c, and finding a square root. On the NIST random
curves, for example, the cost of halving was estimated in the software implementation of
[Fong et al. 2004] to be roughly 2M where M denotes the cost of a field multiplication.
In hardware, that computation was also reported at a time cost of about 2 field multipli-
cations in [Hernández-Rodrı́guez and Rodrı́guez-Henrı́quez 2005]. On the other hand,
in López-Dahab projective coordinates the cost of a point addition and a point double is
approximately 8M and 4M , respectively.5 Let the base point P have odd order N , and
let t be the number of bits to represent N . For parallelization, choose 0 < n < t and let∑t

i=0 k′
i2

i be the width-ω NAF of 2nk mod N . Then k ≡ ∑t
i=0 k′

i2
i−n (mod N)

and the scalar multiplication can be split as

kP = (k′
t2

t−n + · · · + k′
n)P + (k′

n−12
−1 + · · · + k′

02
−n)P. (7)

The parallelization then processes the first portion of this expression by a double-and-
add method, and the second portion by a halve-and-add procedure, with shared precom-
putation.

Let us now consider the cost for the NIST random curves using mixed affine-
projective coordinates, and let us recall that halving produces a result in “lambda coor-
dinates” that requires an extra multiplication whenever a point addition is performed.
By choosing ω = 2, the width-ω NAF recoding of the scalar k yields an average cost
of t

ω+1 = t
3 point addition and t point doublings when using the standard double-

and-add method for computing the scalar multiplication kP . This implies a total cost
of (4 + 8/3)t ≈ 6.7t field multiplications. If we use a halve-and-add procedure then
the computational cost is of about t point halving computations plus t

3 point additions,
which is equivalent to (2 + 9/3)t ≈ 5t field multiplications.

On the other hand, we can use a parallel approach by choosing n to balance the
costs of each portion indicated in (7), namely (4+8/3)(t−n+1)M = (2+9/3)nM

or n ≈ 4t/7. In other words, the time cost of the parallel approach is equivalent to
(2 + 9/3)n = 20

7 t ≈ 2.86t field multiplications. This is a 57% and 43% reduction in
time compared with the non-parallel method based on the double-and-add method and

5 One of four multiplications is by b. Kim and Kim [Kim and Kim 2007] provide alternate for-
mulas with two (of four) multiplications by b, and suggest a cost estimate of 3M under the
assumption that multiplication by b can be done at half the cost of a general multiplication.
Faster doubling favors the parallelization discussed here, but we will use the more conserva-
tive estimate of 4M .
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point halving, respectively. We stress that the parallelization has been instrumented at
the same high level as Algorithm 2 (so that synchronization has very low cost).

5 Implementation and timings

This section presents implementation notes and timings for Algorithm 2 in two envi-
ronments. We first consider a software implementation on a common workstation with
two processors. Then we examine the situation on dedicated hardware, where design
constraints may limit the amount of parallel hardware that can be deployed for point
multiplication.

5.1 Software implementation

In software implementations on common platforms, it is generally the case that field
squarings and additions are sufficiently inexpensive relative to multiplication that their
cost is ignored in rough operation counts for point multiplication. Field inversion is
not prohibitive, but typically sufficiently expensive that point arithmetic is done with
projective coordinates to avoid most field inversions.

The “generic method” for a square root discussed in the preceding section is less
expensive than a field multiplication, but can be significant relative to a field squaring.
Since the parallel algorithm uses both squaring and square roots, the algorithm looks
best when these are of comparable cost or are sufficiently inexpensive that point multi-
plication does not heavily favor one or the other.

We consider example fields F2m for m ∈ {163, 233}. These were chosen because
they are the two smallest fields in the NIST recommendation, and further because m =
163 illustrates the case where there is no irreducible trinomial for the field and the NIST
choice of pentanomial yields a non-sparse

√
x. A root in this case can be roughly half

the cost of a field multiplication, substantially more than a squaring. 6

Fortunately, the “workstation” software environment is not especially sensitive to
the precise form of the reduction polynomial xm + p(x), subject to the practical re-
quirement that deg p is not too close to m. The NIST polynomials are chosen so that
the powers of p are smallest in a lexicographic ordering. The candidate replacement
polynomials in Table 2 are not as attractive in this sense; on the positive side, it is some-
times possible to choose polynomials with other nice features, e.g., that more powers
in the polynomial and

√
x differ by a multiple of the processor wordsize, and so that

deg
√

x ≤ (m + 1)/2. For our implementation, we chose the last polynomial in Table
2 for m = 163 and we used the NIST polynomial for m = 233.

6 The smallest of the NIST fields were also chosen because they are more likely to expose any
overhead penalty in the parallelization compared with the larger fields from NIST.
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Table 3: Timings (in μs) for point multiplication on Koblitz curves on a Sun X4200
(dual processor Opteron 2.8 GHz). Times include cost of scalar recoding and precom-
putation. Methods “τ” and “τ−1” indicate the operation applied at each step of the
evaluation phase. The acceleration for the parallel algorithm is relative to the best time
from the other methods.

E(F2163) E(F2233)
Method ω Time ω Time
τ 4 166 4 349
τ−1 4 168 4 345
Algorithm 2 4 103 5 187
Acceleration 38% 46%

Platform notes and timings

Algorithm 2 was implemented on a Sun X4200, a system based on AMD Opteron
processors.7 Roughly speaking, these processors are similar to those in the common
Intel Pentium family, and the instruction set in the Opteron is an extension of that in the
Pentium.

The particular test machine has two (single-core) Opteron running at 2.8 GHz. Cod-
ing was almost entirely in C, and the basic field and curve code was adapted directly
from [Hankerson et al. 2000]. Compilation and timings were done under Solaris 10 us-
ing Sun’s “Studio” compilers to produce 32-bit executables, although nothing in the
code is Solaris-specific. We used POSIX threads, a portable standard in threading, and
synchronization is accomplished via “spin locks” [Garg and Sharapov 2001]. A feature
of Algorithm 2 is that the parallelization is at a very high level, and so it is likely that
synchronization can be done with methods that are more elegant than spin locks.

Timings for Koblitz curves over F2m for m ∈ {163, 233} are given in Table 3.
These are for kP in the online-precomputation (point not known in advance) case, and
the times include the cost of finding the width-ω τ -adic NAF of k. As discussed in
§3, unlike the ordinary width-ω NAF, the τ -adic version requires a relatively expensive
calculation to find a short ρ with ρ ≡ k (mod δ). We implemented Solinas’ algorithms
[Solinas 2000] to find ρ using the OpenSSL libraries. 8

Computation of Pu in Algorithm 2 is done in parallel with the calculation of the τ -
adic NAF. Hence, (a portion of) the precomputation is “free” in the sense that it occurs
during scalar recoding. This can encourage the use of a larger window size ω. Times
are shown for the corresponding sequential algorithm based on the use of τ and τ −1,
respectively, along with the time for the parallel algorithm. The widths ω were chosen

7 See Sun Microsystems, http://www.sun.com, and Advanced Micro Devices, http://
www.amd.com.

8 See http://www.openssl.org.
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so that they minimize each of the timings. The savings are substantial, although less
than 50%, in part because of the cost of precomputation and scalar recoding.

5.2 Hardware implementation considerations

In an effort to minimize the number of clock cycles required by Algorithm 1 when
implemented in a hardware platform, we first pre-process the width-ω τNAF expansion
of coefficient k as described below.

Let us recall that it is guaranteed that at most one of any consecutive ω coefficients
of an ωτNAF expansion is nonzero. Let wi ∈ {±1,±3,±5, . . . ,±(2w−1 − 1)}, 1 ≤
i < n, denote each one of an average of � m

ω+1 nonzero ωτNAF expansion coefficients.
Then, the expansion would have the following structure:

w0, 0 . . . 0, w1, 0 . . . 0, w2, 0, . . . , 0, wi−1, 0 . . . 0, wn−1.

Let zi ≥ ω − 1 denote the length of the zero run that appears to the right of w i,
1 ≤ i < n. Then, the proposed compact representation has the following form,

w0, z0, w1, z1, . . . , zn−1, wn−1. (8)

In this new format we just need to store in memory an average of 2� m
ω+1 expansion

coefficients. Given the relatively cheap cost of the field squaring operation, we may
compute up to ω−1 applications of the τ Frobenius operator per cycle. This will render
a valuable saving of system clock cycles as is discussed next.

Figure 1: A hardware architecture for scalar multiplication on the NIST Koblitz curve
K-233.
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Hardware implementation

Ideally and as we did in the software implementation, we could implement Algorithm 2
using two point addition units with τ and τ −1 blocks operating separately. However, this
approach may have a prohibited price due to the expensive cost of the the point addition
block. A more austere strategy that uses a single point addition unit is shown in Fig. 1.
That architecture is able to compute ω−1 τ and τ −1 applications concurrently with the
calculations of the point addition unit. At every clock cycle our architecture computes a
point addition operation and at the same time can compute ω − 1 applications of τ and
τ−1. Intermediate results required for next stages of the algorithm are read/written in a
RAM block.

The architecture shown in Fig. 1 was coded in VHDL and the basic field and curve
code was adapted directly from [Cruz-Alcaraz et al. 2006]. The design was synthesized
in a Virtex 2 Xilinx XC2V4000 device. The architecture was optimized for the ellip-
tic curve NIST-233 and its corresponding GF (2233) field arithmetic generated using
the irreducible trinomial x233 + x74 + 1. We used ω = 4; therefore we precomputed
and stored in the BRAM 24−2 = 4 elliptic curve points. Table 4 shows the hardware
resources required by the main modules in the architecture.

Table 4: Hardware resources required by the main design blocks.

Block Slices Clock
array of three ω − 1 square blocks 1392

array of three ω − 1 square root blocks 1425
Mult via Karatsuba-Offman 9588

ECC ALU single 14091 51.7 MHz
ECC ALU parallel 15916 51.7 MHz

In order to compute one point multiplication we need to perform an average of
m

ω+1 and m point additions and τ applications, respectively. Therefore, a single point
multiplication requires a total of

# of clock cycles = d · m

ω + 1
+

m

ω − 1
(9)

where d is the number of clock cycles required per point addition operation, ω is the
window size of the expansion, m is the length of the ωτNAF(k) expansion. 9 Notice that
the cost per point addition is given by d clock cycles whereas the cost per τ application
is just 1/(ω − 1) clock cycles, due to the fact that our architecture is able to process up
to ω − 1 tau operators in a row.

9 In the following, we do not take into consideration the cost of generating the ωτNAF(k) ex-
pansion and precomputation.
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In the case of the architecture shown in Fig. 1, since the τ or τ −1 operations will be
computed at the same time that the point addition computation is taking place, the total
number of clock cycles is of just

# of clock cycles = d
m

ω + 1
. (10)

In this work, we utilized the point addition unit design that was presented in
[Cruz-Alcaraz et al. 2006], which accomplishes a point addition computation in d = 8
clock cycles. Hence, according with Eq. (9) and using m = 233 and ω = 4, a straight-
forward implementation of Algorithm 1 yields

# of clock cycles = 8 · 233
4 + 1

+
233

4 − 1
= 451.

In the case of the parallel version of Algorithm 2, we obtain

# of clock cycles = 8 · 233
4 + 1

= 373.

The design can run at a clock speed of 51.7 MHz, therefore the latency on computing
the scalar multiplication operation is of 8.72μs and 7.22μs, respectively, which implies
a speedup of about 17%.

6 Conclusion

In this contribution we presented parallel formulations of scalar multiplication on curves
over binary fields. For Koblitz curves, the main idea proposed here consists of using
concurrently the τ and τ−1 Frobenius operators in order to parallelize known proce-
dures for the computation of scalar multiplication under the so-called unknown point
case. The method is flexible in terms of the amount of hardware dedicated, and can be
implemented in hardware or software environments. For those random curves where
point halving methods apply, we proposed the parallelization of the scalar multiplica-
tion computation via a procedure that concurrently applies the double-and-add and the
halve-and-add procedures. Hence, our strategy can be applied to virtually all crypto-
graphically relevant elliptic curves defined over GF(2m).

The parallelization occurs at a very high level, an attractive feature for software
implementations where the overhead of parallelization is a significant obstacle. The
method for Koblitz curves is most effective when the cost of squaring and square root
are comparable or sufficiently inexpensive relative to field multiplication. In particular,
the method is effective on all the NIST-recommended curves [NIST, 1999] since suit-
able (polynomial basis) field representations can be found. Our timings on the Koblitz
curves over F2m for m ∈ {163, 233} show a 38–46% acceleration compared with a
corresponding non-parallel version on a two-processor workstation, where the cost of
finding the width-ω τNAF and precomputation are included.
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A compact format of the ωτNAF expansion especially tailored for hardware imple-
mentations was introduced. In this new format, typically 2� m

ω+1 expansion coefficients
need to be stored and processed. Furthermore, it was shown that by using as building
blocks the τ and τ−1 Frobenius operators along with a single point addition unit, a por-
tion of the classical double-and-add scalar multiplication algorithm can be parallelized
at low cost, with an estimated acceleration of around 17% when compared with the
traditional sequential version. For those designs where two point addition units are af-
fordable, our point multiplication formulation may potentially speed the operation by a
factor close to 2.

Future work therefore includes implementing Algorithm 2 using two separated point
addition units in a reconfigurable hardware platform. In this way, we will be able to as-
sess the exact impact in the performance that the parallel formulations of the Koblitz
scalar multiplication presented here can yield. On the theoretical side, there are open
questions of interest on the existence of reduction polynomials with special properties.
In the context of the parallel algorithm presented here, we would like to choose reduc-
tion polynomials leading to both fast reduction and fast square roots, and the optimal
choice will depend to some extent on environment. 10

Our focus has been on the on-line precomputation case. The results in §5.1 show
that we can parallelize at minimal speed penalty, and the techniques could be applied to
common methods for known-point cases. It would be of interest to determine feasibility
of parallelism much lower in the arithmetic, and the degradation in using more elegant
synchronization techniques (that cooperate better with other processes).
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Appendix A: Efficient Computation of the τ and τ−1 Operators

The methods discussed in this paper require efficient computation of τ(x, y) := (x 2, y2)
and τ−1(x, y) := (

√
x,

√
y) for curve points (x, y). We assume a field representation

GF (2m) = GF (2)[x]/(f(x)); that is, a polynomial basis representation. In this con-
text, field squaring and field square root are linear operations. They are particularly
simple to implement when the irreducible polynomial f happens to be a trinomial of
the form xm + xn + 1, with n < m/2.

In the rest of this Appendix, we briefly describe how to compute efficiently the τ

and τ−1 operators as defined above, with a focus on hardware implementations.

The Frobenius τ operator

Let A(x) =
∑m−1

i=0 aix
i for ai ∈ {0, 1} be be an arbitrary element of the field GF (2m).

Then the square C = A2 mod f(x) in GF (2m) may be obtained by computing first the
polynomial product of A by itself, followed by a reduction step modulo f(x). In fact,
since the characteristic of the field is 2, the square map is linear, thus the polynomial
square of A is

A2(x) =
(m−1∑

i=0

aix
i

)
·
(m−1∑

i=0

aix
i

)
=

m−1∑
i=0

aix
2i

which is followed by modular reduction. For a field representation generated by a
trinomial, the reduction rule is of the form xk = xk−mxm = xk−m(1 + xn) =
xk−m + xk−m+n for k ≥ m; in other words, the power xk can be expressed as the
addition of two lower powers whose exponents differ by n. We give next two concrete
examples.
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Example 1. Once again, let us consider the binary extension field GF (2 17) generated
with the irreducible trinomial f(x) = x17 + x3 + 1 used as an example in §3.1. Then,
given an arbitrary field element A ∈ GF (217), the field element C satisfying C =
A2 mod f(x) can be computed as

ci =

8>>>>>><
>>>>>>:

a i
2

i even, i < 3,

a i
2

+ a i
2+7 + a i

2+14 i even, 3 < i < 6,

a i
2

+ a i
2+7 i even, i ≥ 6,

a 17+i
2

+ a 17+i
2 +7

i odd, i < 3,

a 17+i
2

i odd, i ≥ 3,

(11)

for i = 0, 1, . . . , 16. It can be verified that Eq. (11) has an associated cost of 17−1
2 =

8 XOR gates and 2Tx delays.

Example 2. Consider the binary extension field GF (2233) generated using the irre-
ducible trinomial f(x) = x233 + x74 + 1. Then, given an arbitrary field element
A ∈ GF (2233), the field element C satisfying C = A2 mod f(x) can be computed
as

ci =

8>>>>>><
>>>>>>:

a i
2

+ a i
2+196 i even, i < 74,

a i
2

+ a i
2+159 i even, 74 ≤ i < 148,

a i
2

i even, i ≥ 148,

a 233+i
2

i odd, i < 74,

a 233+i
2

+ a 233+i
2 −37

i odd, i > 74,

(12)

for i = 0, 1, . . . , 232. It can be verified that Eq. (12) has an associated cost of m+n−1
2 =

153 XOR gates and one Tx delay.

The Frobenius τ−1 operator

As it has been already mentioned, the Frobenius τ −1 operator can be computed using
field square-roots. An efficient way of computing square roots can be found by comput-
ing first field squaring. To see this, since squaring is linear, there exists a square matrix
M of order m × m with coefficients in GF (2) such that

C = A2 = MA (13)

which implies that computing the square root of an arbitrary field element A means
finding a field element D =

√
A such that D2 = MD = A. Hence,

D = M−1A (14)

We give next three concrete examples.
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Example 3. Once again, consider the binary extension field GF (2 17) generated using
the irreducible trinomial f(x) = x17 + x3 + 1 used as example in §3.1. Then, given
an arbitrary field element A ∈ GF (217), the field element D satisfying A = D2 mod
f(x) can be computed as

di =

8>><
>>:

a2i i < 2,

a2i + a2i−3 2 ≤ i < 9,

a2i−3 + a2i−17 9 ≤ i < 10,

a2i−17 10 ≤ i < 17,

(15)

for i = 0, 1, . . . , 16. It can be verified that Eq. (15) has an associated cost of 17−1
2 = 8

XOR gates and one Tx delay.

Example 4. Let us consider the binary extension field GF (2233) generated using the
irreducible trinomial f(x) = x233 + x74 + 1. Then, given an arbitrary field element
A ∈ GF (2233), the field element D satisfying A = D2 mod f(x) can be computed as

di =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

a2i + a2i+159 + a2i+85 + a2i+11 i < 32,

a2i + a2i+159 + a2i+85 + a2i+11 + a2i−63 32 ≤ i < 37,

a2i + a2i+85 + a2i+11 + a2i−63 37 ≤ i < 69,

a2i + a2i+85 + a2i+11 + a2i−63 + a2i−137 69 ≤ i < 74,

a2i 74 ≤ i < 117,

a2i−233 117 ≤ i < 154,

a2i−233 + a2i−307 154 ≤ i < 191,

a2i−233 + a2i−307 + a2i−381 191 ≤ i < 228,

a2i−233 + a2i−307 + a2i−381 + a2i−455 228 ≤ i < 233,

(16)

for i = 0, 1, . . . , 232. Eq. (16) can be implemented with an XOR gate cost of m+n−1
2 =

153 XOR gates with a 3Tx gate delay.
Eq. (16) can be efficiently implemented in software [Fong et al. 2004] by extracting

two half-length vectors organized as, Aeven = (am−1, am−3, . . . , a2, a0) and Aodd =
(am−2, am−4, . . . , a3, a1) followed by the computation of

A1/2 = Aeven + Aodd
(

x32 + x69 + x117 + x154 + x191 + x228
)

mod f(x),

a relatively inexpensive operation.

Example 5. Let us consider the binary extension field GF (2163) generated using The
irreducible pentanomial f(x) = x163 + x99 + x97 + x3 + 1. Then, given an arbitrary
field element A ∈ GF (2163), the field element D satisfying A = D2 mod f(x) can be
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computed as

di =

8>>>>>>>>>>><
>>>>>>>>>>>:

a2i i < 2,

a2i + a2i−3 2 ≤ i < 48,

a2i + a2i−3 + a2i−97 i = 49,

a2i + a2i−3 + a2i−97 + a2i−99 50 ≤ i < 82,

a2i−3 + a2i−97 + a2i−99 + a2i−163 i = 82,

a2i−97 + a2i−99 + a2i−163 83 ≤ i < 130,

a2i−99 + a2i−163 i = 130,

a2i−163 131 ≤ i < 163,

(17)

for i = 0, 1, . . . , 162. Eq. (17) can be implemented with an XOR gate cost of 243
two-input XOR gates with a 2Tx gate delay.

Multiple applications of the Frobenius τ and τ −1 operators

Using Equations (13) and (14) one can readily compute multiple applications of the
Frobenius τ and τ−1 operators. In the following we illustrate how to compute n =
�m

2  = 8 Frobenius operators in the binary extension field F = GF (217). The dis-
cussion for multiple computations of the τ −1 operator is omitted as it is completely
analogous to the one of the τ operator.

Example 6. Once more, let us consider the binary extension field F = GF (2 17) gen-
erated with the irreducible trinomial f(x) = x17 + x3 + 1. Then, given an arbitrary
field element A ∈ GF (217), the field element C satisfying C = A2 mod f(x) can be
computed via (13) as C = A2 = MA, where M is square matrix of order 17 × 17
given by

M =

2
66666666666666666666666664

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

3
77777777777777777777777775

.

Let us say that one is interested in applying n = � m
2  = 8 Frobenius τ operations
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in a row, i.e., we want to compute τ 8. Then the matrix M ′ = M8 can be computed as

M ′ =

2
66666666666666666666666664

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 1 0 0 1 1 1 0
0 1 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0
0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 1 0
0 0 0 1 0 0 1 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 0 1
0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1
0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 0
0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0
0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1
0 1 0 1 1 1 0 0 0 0 1 0 1 1 0 1 1
0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 1 0
0 0 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0
0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1
0 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 0
0 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 1
0 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 0

3
77777777777777777777777775

.

Thus, according to (13), the field element C = M 8A = M ′A = A28
can be obtained

at a hardware cost of 68 two-input XOR gates with a 4Tx gate delay.
It is noted that the proportion of ones in the matrix M ′ is about 135

172 ≈ .47. If the
typical matrix Mn with n sufficiently large has a uniform distribution of ones and zeros,
then, in a first order estimation, the hardware cost of the field arithmetic operation A 2n

for n large can be estimated as about m · m−1
2 two-input XOR gates (less than the cost

of one field multiplication).
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