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Abstract: This paper addresses the security of optimistic fair exchange in a multi-user
setting. While the security of public key encryption and public key signature schemes
in a single-user setting guarantees the security in a multi-user setting, we show that
the situation is different in the optimistic fair exchange. First, we show how to break,
in the multi-user setting, an optimistic fair exchange scheme provably secure in the
single-user setting. This example separates the security of optimistic fair exchange
between the single-user setting and the multi-user setting. We then define the formal
security model of optimistic fair exchange in the multi-user setting, which is the first
complete security model of optimistic fair exchange in the multi-user setting. We prove
the existence of a generic construction meeting our multi-user security based on one-
way functions in the random oracle model and trapdoor one-way permutations in the
standard model. Finally, we revisit two well-known methodologies of optimistic fair
exchange, which are based on the verifiably encrypted signature and the sequential
two-party multisignature, respectively. Our result shows that these paradigms remain
valid in the multi-user setting.
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1 Introduction

Multi-user Security. In the early stage of modern cryptography, public
key cryptography was usually studied in the single-user setting and the secu-
rity model assumed only one public key; one receiver in the public key encryp-
tion and one signer in the public key signature [Goldwasser and Micali 1984,
Goldwasser et al. 1988]. However, there are many users in the real world and
the security in the single-user setting does not guard against the attacks by
colluding dishonest users.

Even though threats under multiple public keys were already pointed out in
1980’s (e.g., [Simmons 1983, H̊astad 1988]), the security in the multi-user setting
was formally studied only recently [Bellare et al. 2000, Galbraith et al. 2002].
Fortunately, these researches show that the security of encryption schemes in
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the single-user setting is preserved in the multi-user setting [Bellare et al. 2000]
and the same result holds good for signature schemes [Galbraith et al. 2002].
Therefore, we only have to deal with the single-user security and need not con-
sider the multi-user security in the public key encryption and signature schemes.

One may notice that [Menezes and Smart 2004] presents a slightly different
result, where authors argue that the existential unforgeability against chosen
message attacks in the single-user setting is not enough for the multi-user setting.
However, their duplicate-signature key selection attack is not a flaw from the
view of standard security notions and can be thwarted with ease. We also note
that separate security analysis in the multi-user setting sometimes gives tighter
security reduction [Bellare et al. 2000].

While the security of public key encryption and public key signature schemes
in the single-user setting guarantees the security in the multi-user setting, there
are other cryptosystems where the single-user security is not enough. For exam-
ple, identity-based encryption schemes [Shamir 1984, Boneh and Franklin 2001],
by nature, must be analyzed in the multi-user setting and the security proof in
the single-user setting is almost meaningless.

Optimistic Fair Exchange. A fair exchange scheme is a protocol by which
two parties Alice and Bob swap items or services without allowing either party
to gain an advantage by quitting prematurely or otherwise misbehaving. For in-
stance, Alice signs some statement (e.g., e-cash) and Bob fulfills some obligation
(e.g., delivery of goods). However, each party will play the role only if he (or
she) is sure that the other party will keep the appointment. Of course, one could
use an online trusted third party in every transaction to act as a mediator; each
party sends the item to the trusted third party, who upon verifying the correct-
ness of both items, forwards each item to the other party. A drawback of this
approach is that the trusted third party is always involved in the exchange even
if both parties are honest and no fault was occurred. In practice, sending mes-
sages via a trusted third party can lead to performance problems as it becomes
a bottleneck.

A more desirable approach is that a semi-trusted arbitrator involves only in
cases where one party attempts to cheat or simply crashes. We call such a fair
exchange protocol optimistic. In this model, Alice first issues a verifiable “partial
signature” σ′ to Bob. Bob verifies the validity of the partial signature and fulfills
his obligation, after which Alice sends her “full signature” σ to complete the
transaction. Thus, if no problem occurs, the arbitrator does not participate in
the protocol. However, if Alice refuses to send her full signature σ at the end,
Bob will send σ′ (and proof of fulfilling his obligation) to the arbitrator who will
convert σ′ into σ, sending σ to Bob.

Optimistic fair exchange was introduced in [Asokan et al. 1997] and formally
studied in [Asokan et al. 1998, Asokan et al. 2000] where several solutions were
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presented based on verifiably encrypted signatures. This approach was later gen-
eralized in [Camenisch and Damg̊ard 2000], but all these schemes involve ex-
pensive and highly interactive zero-knowledge proofs in the exchange phase.
The first non-interactive verifiably encrypted signature was built by Boneh et
al. [Boneh et al. 2003] under a form of the computational Diffie-Hellman assump-
tion over special elliptic curve groups.

A different approach for building non-interactive optimistic fair exchange
based on sequential two-party multisignatures was proposed in [Park et al. 2003],
which was broken and repaired in [Dodis and Reyzin 2003]. While the schemes
in [Dodis and Reyzin 2003] are very efficient, one important drawback of the
approach based on the sequential two-party multisignature is that it is setup-
driven [Zhu and Bao 2006]; the registration is required between the user and the
arbitrator.

Our Contribution. There have been attempts to formally define the secu-
rity of optimistic fair exchange. The first formal security model was proposed
in [Asokan et al. 1998, Asokan et al. 2000] but was not complete as their model
did not consider a dishonest third party. In the construction based on verifiably
encrypted signatures, each user has a signing key and the third party has a
decryption key [Asokan et al. 1998, Asokan et al. 2000]. Therefore, the dishon-
est third party, who does not know the signing keys, cannot compromise the
signature schemes of users. However, we can devise other constructions which
are secure in the model of [Asokan et al. 1998, Asokan et al. 2000] but they can
be broken by a dishonest third party. For example, think of the optimistic fair
exchange scheme where the third party simply holds the private keys of all users.

A more generalized and unified model for non-interactive optimistic fair
exchange was suggested by Dodis and Reyzin [Dodis and Reyzin 2003]. Their
model, called verifiably committed signatures, incorporates all aspects of non-
interactive optimistic fair exchange but was defined in a single-user setting. If
the security of optimistic fair exchange in the single-user setting guarantees the
multi-user security, the model of [Dodis and Reyzin 2003] is satisfactory. Other-
wise, we should extend the model to the multi-user setting.

In this paper, we show that the single-user security of optimistic fair ex-
change does not guarantee multi-user security. We present a simple counterex-
ample based on a signature scheme and a trapdoor permutation. We then define
the multi-user security model of optimistic fair exchange, extending the model of
[Dodis and Reyzin 2003]. While the single-user model of [Dodis and Reyzin 2003]
is setup-driven, our multi-user model is setup-free [Zhu and Bao 2006], which we
feel is a more natural and advantageous realization of “optimistic” fair exchange
in the multi-user setting; (1) If every fair exchange is performed normally (i.e.,
every user behaves honestly), it is desirable that users need not contact the
arbitrator even for the registration purpose. (2) The arbitrator in setup-driven
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schemes should be semi-online to respond to registration requests, even when
no dispute between users occurs. (3) If there are several arbitrators, the user in
setup-free schemes can decide on a particular arbitrator in run-time.

After defining security notions, we address our attention to the basic theo-
retical question, namely whether or not a scheme satisfying the security notions
exists, and, if so, what are the minimal computational complexity assumptions
under which this existence can be proven. We answer this by providing a generic
setup-free construction which relies on one-way functions in the random oracle
model and trapdoor one-way permutations in the standard model. While the
construction in the standard model is of theoretic interest, some specific instan-
tiations in the random oracle model are efficient enough for practical use. Finally,
we revisit two well-known techniques of optimistic fair exchange; the verifiably
encrypted signature and the sequential two-party signature. Fortunately, our re-
sult shows that these paradigms remain valid in the multi-user setting if the
underlying primitives satisfy some security properties. Furthermore, the con-
struction based on the verifiably encrypted signature shows that trapdoor per-
mutations imply optimistic fair exchange schemes that are stand-alone as well as
setup-free; a fair exchange scheme is stand-alone if the full signature is the same
as it were produced by an ordinary signature scheme only [Zhu and Bao 2006].

Remark. A preliminary version of this work appeared in [Dodis et al. 2007]. This
full version includes a concrete instantiation of the generic construction, all
proofs, and other updates. The multi-user security of optimistic fair exchange
was also studied in [Zhu et al. 2007] independently of this work.

2 Preliminaries

2.1 Notation

If k ∈ N, then 1k denotes the string of k ones. If x is a string, then |x| denotes its
length, while if X is a finite set then |X | denotes its size. If x and y are strings,
then x‖y denotes the concatenation of x and y; any concatenation method can
be used if it can guarantee unique encoding and decoding. A function f(n) is
negligible if for all polynomials p(n), f(n) < 1/p(n) hold for all sufficiently large
n. An efficient algorithm A(·) is a probabilistic polynomial-time (PPT) Turing
machine. If A(·) is an efficient algorithm and x is an input for A, then A(x)
denotes the probability space that assigns to a string s the probability that A,
on input x, outputs s. For a probability space P , x← P denotes the algorithm
that samples a random element according to P . For a finite set X , x ← X

denotes the algorithm that samples an element uniformly at random from X .
If p(·, ·, · · · ) is a boolean function, then Pr[p(x1, x2, . . .) | x1 ← P1, x2 ← P2, . . .]
denotes the probability that p(x1, x2, . . .) is true after executing the algorithms
x1 ← P1, x2 ← P2, . . ..
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2.2 NP-Relations and Σ-Protocols

An NP-relation R is a subset of {0, 1}∗ × {0, 1}∗ for which there is an efficient
algorithm to decide whether (α, β) ∈ R or not in time polynomial in |α|. The
NP-language LR associated with R is the set of α for which there exists β such
that (α, β) ∈ R, i.e., LR = {α | ∃β [(α, β) ∈ R]}.

A Σ-protocol [Cramer et al. 1994] for an NP-relation R is an efficient 3-
move two-party protocol between the prover and the verifier on a common input
α ∈ LR. Besides α, a valid NP-witness β for α, meaning (α, β) ∈ R, is also given
to the prover as a private input. The prover first sends a commitment message
c to the receiver. After receiving the commitment message c, the verifier sends a
challenge message e to the prover. Finally, the prover sends a response message
s to the verifier who decides to output 1 (accept) or 0 (reject) based on the input
α and the transcript π = {c, e, s}. The transcript π is valid if the verifier outputs
1 (accept).

A Σ-protocol should satisfy three properties: correctness, special soundness,
and special (honest-verifier) zero-knowledge. Correctness property states that
for all α ∈ LR and all valid witnesses β for α, if the prover and the verifier fol-
low the protocol honestly, the verifier must output 1 (accept). Special soundness
property states that there is an efficient extraction algorithm (called a knowledge
extractor) that on input α ∈ LR and two valid transcripts π1, π2 with the same
commitment message c outputs β such that (α, β) ∈ R. Special zero-knowledge
property states that there is an efficient simulation algorithm (called a simulator)
that on input α ∈ LR and any challenge message e, outputs a valid transcript
π′ = {c′, e, s′}. Moreover, the distribution of (c′, s′) is computationally indistin-
guishable from the corresponding distribution on (c, s) produced by the prover
knowing a valid witness β for α and the verifier.

A function f : {0, 1}∗ → {0, 1}∗ is a one-way function, if there exists a poly-
nomial time algorithm which computes f(x) correctly for all x and the following
probability is negligible for all PPT algorithm A: Pr[f(x′) = y | x← {0, 1}k; y =
f(x); x′ ← A(y, 1k)]. A one-way function f is called a trapdoor (one-way) permu-
tation, if f is a permutation (that is, every f(x) has a unique pre-image x) and
there exists a polynomial-length trapdoor td such that the inverse of f can effi-
ciently be computed with td. For simplicity, we let f−1 be an inverse algorithm
of f with the trapdoor td. It is known that any language in NP has a Σ-protocol
if one-way functions exist [Feige and Shamir 1989, Goldreich et al. 1991].

Theorem 1. For any NP-relation, a Σ-protocol can be constructed if one-way
functions exist.

While the Σ-protocol for any NP-relation can be constructed in generic ways
[Feige and Shamir 1989, Goldreich et al. 1991], there are efficient Σ-protocols
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for specific cases; for example, GQ protocol [Guillou and Quisquater 1988] and
Schnorr protocol [Schnorr 1989].

A Σ-protocol can be transformed into a signature scheme by using the
Fiat-Shamir heuristic [Fiat and Shamir 1986]. To sign a message m, the legal
signer produces a valid transcript π = {c, e, s} of the Σ-protocol, where e =
H(c, m) and H(·) is a cryptographic hash function modeled as a random func-
tion. The signature scheme obtained by applying the Fiat-Shamir heuristic to
the Σ-protocol is secure in the random oracle model [Bellare and Rogaway 1993,
Pointcheval and Stern 1996]. It is also known that the Fiat-Shamir heuristic pro-
vides a non-interactive proof of knowledge in the random oracle model (i.e., the
witness can be extracted by rewinding the adversary).

If there are two Σ-protocols, i.e., Σ1 for R1 and Σ2 for R2, we can construct
another Σ-protocol ΣOR (called OR-proof) [Cramer et al. 1994] which allows
the prover to show that given two inputs x1, x2, he knows w such that either
(x1, w) ∈ R1 or (x2, w) ∈ R2 without revealing which is the case (called the
witness indistinguishability property [Feige and Shamir 1990]). By applying the
Fiat-Shamir heuristic to the OR-proof ΣOR, we obtain a signature scheme SOR

(called the OR-signature) secure in the random oracle model such that a valid
signature can be generated by the signer who knows a valid witness w correspond-
ing to either of the two inputs x1, x2. It is known that the Fiat-Shamir heuristic
does not affect the witness indistinguishability property of the Σ-protocol.

2.3 Signatures

Syntax. A signature scheme S consists of three efficient algorithms: S =
(Sig-Gen, Sign, Vrfy). The key generation algorithm Sig-Gen takes as input a se-
curity parameter 1k and outputs a signing key sk and a verification key vk. The
signing algorithm Sign takes as input a signing key sk and a message m from
the associated message space M, and outputs a signature σ. The verification
algorithm Vrfy takes as input a verification key vk, a message m, and a signa-
ture σ; it outputs 1 if the signature is valid and 0 otherwise. We require that
Vrfyvk(m, Signsk(m)) = 1, for any m ∈M.

Security. We consider existential unforgeability under adaptive chosen mes-
sage attacks, denoted by UF-CMA [Goldwasser et al. 1988]. The adversary A is
given oracle access to the signing oracle OSign, i.e., A is allowed to query the
signing oracle OSign to obtain valid signatures σ1, . . . , σn of arbitrary message
m1, . . . , mn adaptively chosen by A. Naturally, A is considered successful only
if it forges a valid signature σ of a message m which has not been queried to
OSign: m �∈ {m1, . . . , mn}. Quantitatively, we define

AdvSA(k) = Pr[Vrfyvk(m, σ) = 1 | (sk, vk)← Sig-Gen(1k), (m, σ)← AOSign(vk)]
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where m should not be queried to the signing oracle OSign.
Let S = (Sig-Gen, Sign, Vrfy) be a signature scheme. An adversary A is said

to (t, qs, ε)-break S, if A runs in time at most t, makes at most qs signing queries
to OSign, and succeeds in forgery with probability at least ε. S is said to be (t, qs,
ε)-secure, if no adversary can (t, qs, ε)-break it. Asymptotically, S is UF-CMA-
secure if AdvSA(k) is negligible for any PPT adversary A.

2.4 Encryption

Syntax. An encryption scheme E consists of three efficient algorithms: E =
(Enc-Gen, Enc, Dec). The key generation algorithm Enc-Gen takes a security pa-
rameter 1k as input and outputs an encryption key ek and a decryption key dk.
The encryption algorithm Enc takes as input an encryption key ek and a mes-
sage m from the associated message space M, and outputs a ciphertext c. The
decryption algorithm Dec takes a decryption key dk and a ciphertext c as input;
it outputs some message m ∈ M if the ciphertext is valid and ⊥ otherwise. We
require that Decdk(Encek(m)) = m, for any m ∈M.

Security. We consider indistinguishability against adaptive chosen cipher-
text attacks, denoted by IND-CCA [Rackoff and Simon 1991, Bellare et al. 1998].
Intuitively, no efficient adversaryA can distinguish encryptions of any two equal-
length messages m0, m1 for a randomly selected public key, even though A is
given oracle access to the decryption oracle ODec. For an efficient algorithm A,
which runs in two stages of find and guess, we define the adversary’s advantage
CCA-AdvEA(k) as∣∣∣∣∣Pr

[
b = b̃

(ek, dk)← Enc-Gen(1k), (m0, m1, α)← AODec(ek, find),
b← {0, 1}, cb ← Encek(mb), b̃← AODec(cb, α, guess)

]
− 1

2

∣∣∣∣∣
where the challenge ciphertext cb should not be queried to the decryption oracle
in the guess stage and α is some internal state information that A saves and uses
in the two stages.

Let E = (Enc-Gen, Enc, Dec) be an encryption scheme. An adversaryA is said
to (t, qd, ε)-break E , if A runs in time at most t, makes at most qd decryption
queries to ODec, and succeeds in distinguishing the challenge ciphertext with
advantage at least ε. The encryption scheme E is said to be (t, qd, ε)-secure, if no
adversary can (t, qd, ε)-break it. Asymptotically, E is CCA-secure if CCA-AdvEA(k)
is negligible for any efficient adversary A.

3 Optimistic Fair Exchange in a Single-user Setting

3.1 Definition

We review the single-user security model of [Dodis and Reyzin 2003].
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Definition 2. A non-interactive optimistic fair exchange involves the signer Al-
ice, the verifier Bob and the arbitrator Charlie, and is given by the following
efficient algorithms:

– Setup. This is a registration protocol between Alice and Charlie, by the end
of which Alice learns her secret signing key SK, Charlie learns his secret
arbitration key ASK, and they publish Alice’s public verification key PK and
Charlie’s partial verification key APK.

– Sig and Ver. These are similar to conventional signing and verification algo-
rithms of an ordinary digital signature scheme. Sig(m, SK, APK) — run by
Alice — outputs a signature σ on m, while Ver(m, σ, PK, APK) — run by
Bob (or any verifier) — outputs 1 (accept) or 0 (reject).

– PSig and PVer. These are partial signing and verification algorithms. PSig

together with Res is functionally equivalent to Sig. PSig(m, SK, APK) — run
by Alice — outputs a partial signature σ′, while PVer(m, σ′, PK, APK) —
run by Bob (or any verifier) — outputs 1 (accept) or 0 (reject).

– Res. This is a resolution algorithm run by Charlie in case Alice refuses to
open her signature σ to Bob, who in turn possesses a valid partial signature
σ′ on m (and a proof that he fulfilled his obligation to Alice). In this case,
Res(m, σ′, ASK, PK) should output a legal signature σ on m.

Correctness property states that

– Ver(m, Sig(m, SK, APK), PK, APK) = 1,

– PVer(m, PSig(m, SK, APK), PK, APK) = 1,

– Ver(m, Res(m, PSig(m, SK, APK), ASK, PK), PK, APK) = 1.

Ambiguity property states that

– Any “resolved signature” Res(m, PSig(m, SK, APK), ASK, PK) is computa-
tionally indistinguishable from the “actual signature” Sig(m, SK, APK).

In a meaningful application, Charlie runs Res to produce a full signature σ

from σ′ only if Bob’s obligation to Alice has been fulfilled. The definition does
not deal with the application-specific question of how Bob proves to Charlie
that he fulfilled his obligation to Alice. The definition assumes the authenticity
of public keys.

The security of non-interactive optimistic fair exchange consists of ensur-
ing three aspects: security against the signer, security against the verifier, and
security against the arbitrator. In the following, we denote by OPSig an oracle
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simulating the partial signing procedure PSig, and by ORes an oracle simulating
the resolution procedure Res.

Security against Alice. We require that any PPT adversary A succeeds
with at most negligible probability in the following experiment.

Setup∗(1k)→ (SK∗, PK, ASK, APK)

(m, σ′)← AORes(SK∗, PK, APK)

σ ← Res(m, σ′, ASK, PK)

success of A = [PVer(m, σ′, PK, APK) ?= 1 ∧ Ver(m, σ, PK, APK) ?= 0]

where Setup∗ denotes the run of Setup with dishonest Alice (run by A) and SK∗

is A’s state after this run. In other words, Alice should not be able to produce
partial signature σ′, which looks good to Bob but cannot be transformed into
her full signature by honest Charlie.

Security against Bob. We require that any PPT adversary B succeeds
with at most negligible probability in the following experiment.

Setup(1k)→ (SK, PK, ASK, APK)

(m, σ)← BOPSig,ORes(PK, APK)

success of B = [Ver(m, σ, PK, APK) ?= 1 ∧ (m, · ) �∈ Query(B, ORes)]

where Query(B, ORes) is the set of valid queries of B has asked to the resolution
oracle ORes (i.e., (m, σ′) such that PVer(m, σ′, PK, APK) = 1). In other words,
Bob should not be able to complete any partial signature σ′ that he received
from Alice into a complete signature σ, without explicitly asking Charlie to do
so.

Note that there is no need to provide B with access to the signing oracle
OSig, since it could be simulated by OPSig and ORes. Finally, we remark that we
also want Bob to be unable to generate a valid partial signature σ′ which was
not produced by Alice (via a query to OPSig). However, this guarantee will follow
from a stronger security against Charlie, which is defined below. Indeed, we will
ensure that even Charlie, who knows more than Bob (i.e., ASK), cannot succeed
in this attack.

Security against Charlie. We require that any PPT adversary C succeeds
with at most negligible probability in the following experiment.

Setup∗(1k)→ (SK, PK, ASK∗, APK)

(m, σ)← COPSig(ASK∗, PK, APK)

success of C = [Ver(m, σ, PK, APK) ?= 1 ∧ m �∈ Query(C, OPSig)]

where Setup∗ denotes the run of Setup with dishonest Charlie (run by C), ASK∗

is C’s state after this run, and Query(C, OPSig) is the set of queries of C asked
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to the partial signing oracle OPSig. In other words, Charlie should not be able
to produce a valid signature on m without explicitly asking Alice to produce
a partial signature on m (which Charlie can complete into a full signature by
himself using ASK).

3.2 Single-user Security � Multi-user Security

We show that the single-user security of optimistic fair exchange does not imply
the multi-user security by presenting a counter-example.

Scheme. Let f(·) be a trapdoor permutation and S = (Sig-Gen, Sign, Vrfy) be
a signature scheme.

– Setup. Charlie generates a trapdoor permutation (f, f−1) and publishes
APK = f , while he keeps ASK = f−1 secret. Alice generates (sk, vk) ←
Sig-Gen(1k) and publishes PKA = vk and keeps SKA = sk secret.

– Sig and Ver. To sign a message m, Alice chooses a random number rA,
and computes yA = f(rA) and δA = Signsk(m‖yA). The signature of m is
σA = (rA, δA). To verify Alice’s signature σA = (rA, δA) of m, Bob computes
yA = f(rA) and checks Vrfyvk(m‖yA, δA) ?= 1.

– PSig and PVer. To generate a partial signature, Alice chooses a random
number rA and computes yA = f(rA) and δA = Signsk(m‖yA). The partial
signature of m is σ′

A = (yA, δA). Bob verifies σ′
A = (yA, δA) by checking

Vrfyvk(m‖yA, δA) ?= 1.

– Res. Given a partial signature (m, yA, δA), the arbitrator Charlie first verifies
its validity by checking Vrfyvk(m‖yA, δA) ?= 1. If valid, he computes rA =
f−1(yA) and returns σA = (rA, δA).

The Single-user Security. The above scheme is secure in the single-user
setting, which can be shown following the proofs in [Dodis and Reyzin 2003].

Theorem 3. The optimistic fair exchange scheme described above is single-user
secure if the underlying trapdoor permutation and signature scheme are secure.i

Proof: Security against Alice. Security against Alice follows uncondition-

ally. If a partial signature σ′
A = (yA, δA) passes PVer, we have Vrfyvk(m‖yA, δA) =

1. Now, the honest arbitrator Charlie can compute rA = f−1(yA) and the re-
solved signature σA = (rA, δA) passes Ver.

i Actually, we need not assume secure signature, as signature schemes can be built
from trapdoor permutations.
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Security against Bob. To show security against Bob, we convert any at-
tacker B that attacks the fair exchange scheme into an inverter Inv for the
trapdoor one-way permutation f . Recall that Inv gets as input a trapdoor one-
way permutation g : D → D and b ∈ D, and wins if Inv outputs a ∈ D

satisfying b = g(a). On the other hand, B expects (PK, APK) and oracle access
to both OPSig and ORes, and wins if B forges a signature σ of some message
m without asking a valid query (m, σ′) to ORes. Let (mB, σB) be the successful
forgery of the attacker B. We can assume that B obtained the corresponding
partial signature σ′

B on mB from OPSig, since the underlying signature scheme
S = (Sig-Gen, Sign, Vrfy) is existentially unforgeable.

On input of g and b, Inv begins simulating the attack environment of B.
It picks a random signing/verification key pair (sk, vk) by running Sig-Gen(1k),
sets PK = vk, SK = sk, APK = g, and gives (PK, APK) to B. Let qPSig be the
total number of OPSig queries made by B and j be a random number chosen by
Inv in the interval of {1, 2, · · · , qPSig}. Now, Inv knowing SK = sk responds to
the i-th OPSig query mi of B as follows.

– If i = j, Inv sets yi = b and computes δi = Signsk(mi‖yi). Inv returns
σ′

i = (yi, δi) to B.

– If i �= j, Inv picks ri ∈ D randomly and computes yi = g(ri), δi =
Signsk(mi‖yi). Inv returns σ′

i = (yi, δi) to B.

Inv maintains a list H = {(mi, ri, σ
′
i) | 1 ≤ i ≤ qPSig}, where rj = ⊥. To

simulate ORes’s response to a resolution query (mi, σ
′
i), Inv checks the validity

of the partial signature σ′
i and retrieves the corresponding ri from the list H . If

ri = ⊥ (meaning i = j), Inv aborts. Note that if the query is valid but mi is
not in the list, it is an existential forgery of the signature scheme S.

When B outputs the forgery (mB , σB) where σB = (r, δ), Inv verifies whether
b = g(r) or not. If b �= g(r), Inv outputs a random number. Otherwise, Inv

outputs r. Let ε be the success probability of B’s forgery in the real attack
environment. Since b ∈ D and r ∈ {1, · · · , qPSig} are randomly chosen and g is a
permutation, Inv succeeds in inverting g with a probability ε′ ≥ ε/qPSig.

Security against Charlie. To show security against Charlie, we convert
any arbitrator C that attacks the optimistic fair exchange scheme into a forger
F for the underlying signature S = (Sig-Gen, Sign, Vrfy). The forger F , on in-
put vk, generates a trapdoor permutation (f, f−1) and gives (ASK, PK, APK) =
(f−1, vk, f) to C. Now, F responds to the i-th OPSig query mi of C with
σ′ = (y, δA), where y is chosen randomly and δ = Sign(mi‖y) is obtained
from its own signing oracle OSign. When C outputs the forgery (m, σA) where
σA = (rA, δA), F computes yA = f(rA) and outputs (m‖yA, δA). We see that
the simulation is perfect and F succeeds in producing a new forgery if and only
if C succeeds.
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Attack Scenario. We observe that yA can be re-used by a dishonest user
without knowing the corresponding rA, which causes the scheme to be insecure
in the multi-user setting. Dishonest users Bob and Eve attack Alice as follows:

1. Alice gives a partial signature (mA, yA, δA) to Bob, where yA = f(rA) and
δA = SignSKA

(mA‖yA).

2. Bob gives (mB , yB, δB) to his dishonest friend Eve, where mB �= mA, yB =
yA and δB = SignSKB

(mB‖yB).

3. Eve comes to the arbitrator with (mB, yB, δB) and claims that Bob refuses
to open his signature (and maybe gives a proof to the arbitrator that Eve
fulfilled her obligation to Bob).

4. The arbitrator does not suspect anything and completes this signature by
giving rA = f−1(yB) to Eve.

5. Eve gives rA to Bob, who now has completed the signature of Alice, (mA, rA,
δA), although Alice never intended to open this and Bob did not fulfill his
duty to Alice.

Therefore, the above optimistic fair exchange scheme is secure in the single-user
setting but insecure in the multi-user setting; a naive countermeasure such as
including the signer’s public key in the message m does not defeat the collusion
attacks. This counterexample entails the following theorem.

Theorem 4. The single-use security of optimistic fair exchange does not imply
the multi-user security.

Remark. (Disclaimer) Theorem 4 does not claim that all previous schemes
(e.g., [Asokan et al. 2000, Boneh et al. 2003, Dodis and Reyzin 2003]) are inse-
cure in the multi-user setting. Even though the previous schemes were proved
secure in the single-user models (or in the incomplete models), we believe that
they are also secure in the multi-user model of Section 4.

4 Optimistic Fair Exchange in a Multi-user Setting

4.1 Definition

Instead of defining the syntax and security from scratch, we extend the model of
[Dodis and Reyzin 2003] to the multi-user setting. Firstly, we separate the Setup

algorithm of the single-user setting into two algorithms SetupTTP and SetupUser

to model the setup-free optimistic fair exchange. By running SetupUser, each user
Ui generates his own key pair (SKUi , PKUi).
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Definition 5. A non-interactive optimistic fair exchange involves the users (sign-
ers and verifiers) and the arbitrator, and is given by the following efficient algo-
rithms:

– SetupTTP. The arbitrator setup algorithm takes as input a security parameter
and returns a secret arbitration key ASK and a public partial verification key
APK.

– SetupUser. The user setup algorithm takes as input a security parameter and
(optionally) APK. It returns a private signing key SK and a public verification
key PK.

– Sig and Ver. These are similar to conventional signing and verification algo-
rithms of an ordinary digital signature scheme. Sig(m, SKUi , APK) — run by
a signer Ui — outputs a signature σUi on m, while Ver(m, σUi , PKUi , APK)
— run by a verifier — outputs 1 (accept) or 0 (reject).

– PSig and PVer. These are partial signing and verification algorithms. PSig to-
gether with Res is functionally equivalent to Sig. PSig(m, SKUi , APK) — run
by a signer Ui — outputs a partial signature σ′

Ui
. PVer(m, σ′

Ui
, PKUi , APK)

— run by a verifier — outputs 1 (accept) or 0 (reject).

– Res. This is a resolution algorithm run by the arbitrator in case a signer Ui

refuses to open his signature σUi to a user Uj , who in turn possesses a valid
partial signature σ′

Ui
on m (and a proof that Uj fulfilled his obligation to

Ui). In this case, Res(m, σ′
Ui

, ASK, PKUi) should output a legal signature σUi

on m.

Correctness property states that

– Ver(m, Sig(m, SKUi , APK), PKUi , APK) = 1,

– PVer(m, PSig(m, SKUi , APK), PKUi , APK) = 1,

– Ver(m, Res(m, PSig(m, SKUi , APK), ASK, PKUi), PKUi , APK) = 1.

Ambiguity property states that

– Any “resolved signature” Res(m, PSig(m, SKUi , APK), ASK, PKUi) is compu-
tationally indistinguishable from the “actual signature” Sig(m, SKUi , APK).

We do not deal with the subtle issue of timely termination, which was ad-
dressed in [Asokan et al. 1998, Asokan et al. 2000]. We remark, however, that
the technique of [Asokan et al. 1998, Asokan et al. 2000] can easily be added to
our solutions to resolve this problem. The security of non-interactive optimistic
fair exchange is composed of ensuring three aspects: security against signers, se-
curity against verifiers, and security against the arbitrator. To clarify the identity
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of the signer, we hereinafter assume that the message m (implicitly) includes the
identity of the signer. One simple and trivial solution is to include the signer’s
identity inside the message. If the included signer’s identity does not corre-
spond to the subject of the alleged signer’s public key, we consider the signature
(or the partial signature) is invalid. We also remark that it is a good practice
to include an enforcing resolution policy κ inside the message, as suggested in
[Asokan et al. 2000].

In order to consider the collusion attack of dishonest users, we modify the
resolution oracle ORes. In the single-user setting, the input to ORes is (m, σ′),
assuming that σ′ is the partial signature value of the single signer Alice and
the oracle checks the validity of σ′ by using Alice’s public key. In the multi-user
setting, we define the input to ORes as (m, σ′, PKUi) where PKUi is the public
key of the alleged signer Ui. As usual, we assume that the authenticity of public
keys can be verified and each user should show his knowledge of the legitimate
private key in the public key registration stage to defend against key substitution
attacks.

For simplicity but without loss of generality, when we model either the dis-
honest verifier or the dishonest arbitrator, we suppose that the adversary attacks
an honest user Alice and the adversary can collude with all other (dishonest)
users. In identity-based cryptosystems, fixing the identity of the target user also
fixes the corresponding public key and consequently weakens the security level
(so-called “selective-ID security” [Canetti et al. 2003, Boneh and Boyen 2004]).
However, fixing the identity of the target user in our context does not impose
any constraint on the corresponding public key. Therefore, the dishonest verifier
or the dishonest arbitrator has access to private keys of all users except Alice,
and the partial signing oracle OPSig, taking as input a message m, always returns
Alice’s partial signature σ′

A on m.

Security against Signers. We require that any PPT adversary A, who
models the dishonest signer Alice, succeeds with at most negligible probability
in the following experiment.

SetupTTP(1k)→ (ASK, APK)

(m, σ′, PKA)← AORes(APK)

σ ← Res(m, σ′, ASK, PKA)

success of A = [PVer(m, σ′, PKA, APK) ?= 1 ∧ Ver(m, σ, PKA, APK) ?= 0]

In the single-user setting, the signer Alice wins if she comes up with a partial
signature (m, σ′) which is valid with respect to her public key but cannot be
transformed into her full signature by the honest arbitrator. In the multi-user
setting, Alice wins if she comes up with (m, σ′, PKA) where σ′ is a valid partial
signature with respect to PKA but cannot be completed to the full signature
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(w.r.t. PKA) by the honest arbitrator.
Note that there is no need to provide A with access to any kind of the partial

signing oracle, since she has access to private keys of all users and can simulate
all partial signing oracles by herself.

Security against Verifiers. We require that any PPT adversary B suc-
ceeds with at most negligible probability in the following experiment.

SetupTTP(1k)→ (ASK, APK)

SetupUser(1k)→ (SKA, PKA)

(m, σ)← BOPSig,ORes(PKA, APK)

success of B = [Ver(m, σ, PKA, APK) ?= 1 ∧ (m, · , PKA) �∈ Query(B, ORes)]

where Query(B, ORes) is the set of valid queries of B has asked to the resolution
oracle ORes (i.e., (m, σ′, PKUi) such that PVer(m, σ′, PKUi , APK) = 1). Even
though the adversary B is not allowed to ask a valid query (m, · , PKA) with the
target message m, it can freely ask (·, · , PKUi) to the resolution oracle ORes as
long as PKUi is not Alice’s public key. This very property was used to attack
the scheme of Section 3.2. Note that there is no need to provide B with access
to the signing oracle OSig, since it can be simulated by OPSig and ORes.

Security against the Arbitrator. We require that any PPT adversary
C succeeds with at most negligible probability in the following experiment.

SetupTTP∗
(1k)→ (ASK∗, APK)

SetupUser(1k)→ (SKA, PKA)

(m, σ)← COPSig(ASK∗, PKA, APK)

success of C = [Ver(m, σ, PKA, APK) ?= 1 ∧ m �∈ Query(C, OPSig)]

where SetupTTP∗ denotes the run of SetupTTP with the dishonest arbitrator (run
by C), ASK∗ is C’s state after this run, and Query(C, OPSig) is the set of queries
of C asked to the partial signing oracle OPSig.

4.2 Generic Construction

If we allow the registration between the signer and the arbitrator, there are
trivial setup-driven solutions. For example, the signer chooses two signature key
pairs (sk1, pk1), (sk2, pk2) and gives only sk2 to the arbitrator. The user’s full
signature is (Signsk1

(m), Signsk2
(m)), while the partial signature is Signsk1

(m).
Therefore, we present a generic construction of non-interactive “setup-free” op-
timistic fair exchange based on the OR-proof where the signer has one witness
and the arbitrator has the other witness. We use the Fiat-Shamir heuristic in
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the random oracle model and the non-interactive witness indistinguishable proof
of knowledge in the standard model.

Scheme. Let S = (Sig-Gen, Sign, Vrfy) be an ordinary signature scheme.

– SetupTTP. The arbitrator chooses (sk, vk) by running Sig-Gen(1k) and sets
(ASK, APK) = (sk, vk).

– SetupUser. Each user Ui chooses (ski, vki) by running Sig-Gen(1k) and sets
(SKUi , PKUi) = (ski, vki).

– Sig. When a user Ui wants to sign a message m, the signer generates an
ordinary signature s1 on “0||m” (i.e., s1 = Signski

(0||m)) and then generates
an OR-signature s2 on “1||m” for the knowledge of ski or Signsk(1||m).
Since the signer Ui knows ski, he can generate the valid OR-signature s2.
The signature value on m is σUi = (s1, s2).

– Ver. To verify the signature σUi = (s1, s2) on m, a verifier checks that (1)
Vrfyvki

(0||m, s1)
?= 1 and (2) s2 is a valid OR-signature on “1||m” for the

knowledge of ski or Signsk(1||m).

– PSig and PVer. The same as Sig and Ver except that the partial signature
σ′

Ui
on m is s1.

– Res. For the user Ui’s partial signature σ′
Ui

= s1 on m, the arbitrator first
checks that Vrfyvki

(0||m, s1)
?= 1 and then computes an OR-signature s2 on

“1||m” for the knowledge of ski or Signsk(1||m). Since the arbitrator knows
sk, he can compute an ordinary signature Signsk(1||m) and then the valid
OR-signature s2. The arbitrator outputs σUi = (s1, s2).

The correctness property of the scheme is obvious and the ambiguity property
follows from the witness indistinguishability of the OR-signature s2. We now
analyze the security.

Theorem 6. The generic construction of the optimistic fair exchange scheme is
multi-user secure in the random oracle model if the underlying signature scheme
is secure.

Proof: Security against Signers. Security against the signer follows un-

conditionally. Since the OR-signatures are non-interactive proofs of knowledge
of ski or Signsk(1‖m), the arbitrator who knows sk can always generate valid
OR-signatures. Therefore, if the partial signature σ′ = s1 passes PVer, the hon-
est arbitrator can transform the partial signature σ′ into the valid full signature
σ by generating an OR-signature s2.
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Security against Verifiers. To show security against the verifier, we con-
vert any verifier B that attacks the optimistic fair exchange scheme into a forger
F for the underlying signature S = (Sig-Gen, Sign, Vrfy). Recall that F gets vk

as input and has access to the signing oracle OSign. The forger F wins if it forges
a signature which has not been queried to OSign. On the other hand, B expects
(PKA, APK) as input and has access to both OPSig and ORes oracles. B wins if it
forges a signature σ of a message m without asking a valid query (m, σ′, PKA) to
ORes. Let (m, σ) be a successful forgery of B, where s1 is a signature on “0||m”
(w.r.t. PKA) and σ = (s1, s2). If B did not obtain the corresponding partial
signature σ′ = s1 from OPSig, s1 becomes an existential forgery of S and the
analysis of this type of attack is covered in the security against the arbitrator
discussed later. Hence, we assume that B has obtained the corresponding partial
signature σ′ = s1 from OPSig.

On input vk, the forger F begins simulating the attack environment of B. It
sets vk1 = vk and picks a random key pair (sk2, vk2) by running Sig-Gen(1k). F

flips a coin and gets a random bit b. According to the random bit b, F performs
one of the following two games.

– Game 0 (b = 0): The forger F gives (PKA, APK) = (vk1, vk2) to B and
answers the i-th OPSig query mi of B by getting an ordinary signature
Signsk1

(0||mi) from its own signing oracle OSign. To simulate ORes to a res-
olution query (mi, σ

′
i, PKi) = (mi, s

i
1, PKi) of B, the forger F checks the

validity of (mi, s
i
1) w.r.t. PKi and then computes Signsk2

(1||mi) with sk2.
From the knowledge of the signature Signsk2

(1||mi), F can generate a valid
OR-signature si

2 on the message 1||mi. F returns σi = (si
1, s

i
2) to B.

– Game 1 (b = 1): The forger F gives (PKA, APK) = (vk2, vk1) to B and an-
swers the i-th OPSig query mi of B by computing a signature Signsk2

(0||mi)
with sk2. To simulate ORes to a resolution query (mi, σ

′
i, PKi) = (mi, s

i
1, PKi)

of B, the forger F checks the validity of (mi, s
i
1) w.r.t. PKi and then obtains

a signature Signsk1
(0||mi) from its own signing oracle OSign. Now, F gener-

ates a valid OR-signature si
2 on the message 1||mi from the knowledge of

Signsk1
(0||mi), and returns σi = (si

1, s
i
2) to B.

If the attacker B succeeds in attacking, i.e., forges a valid OR-signature s2 on
1||m without asking the arbitrator, the forger F rewinds B and obtains one of
the two witnesses SKA and SignASK(1||m). The forger wins if (1) he performs
Game 0 and extracts the witness SKA (total break recovering the signing key),
or (2) he performs Game 1 and extracts the witness SignASK(1||m) (existential
forgery of a new message “1||m”). Note that B cannot distinguish between Game
0 and Game 1 because the simulation is perfect and OR-signatures are witness
indistinguishable. Therefore, if B succeeds with a probability ε, the forger F

succeeds with a probability ε/2.
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Security against the Arbitrator. To show security against the arbitrator,
we convert any arbitrator C that attacks the optimistic fair exchange scheme
into a forger F for the underlying signature S = (Sig-Gen, Sign, Vrfy). Recall that
F gets vk as an input and has access to the signing oracle OSign. On the other
hand, C expects (ASK, PKA, APK) as input and has access to OPSig. C wins if it
generates a valid signature σA of some message m without asking m to OPSig.

Here is how F , on input vk, simulates the run of C. To choose (ASK, APK),
F runs Sig-Gen(1k) and obtains (skC , vkC). Then, F gives (ASK, PKA, APK) =
(skC , vk, vkC) to C.ii Now, F responds to the i-th OPSig query mi of C by getting
a signature on “0||mi” from its own signing oracle OSign. When C outputs the
forgery (m, σA) where σA = (s1, s2) and s1 is an ordinary signature on “0||m”
(w.r.t. vk), F outputs (0||m, s1). We see that the simulation is perfect and F

succeeds in producing a new forgery if and only if C succeeds.

Random Oracles. Careful readers could find that we omitted to simulate
random oracles. The random oracles are (1) implicitly used in the OR-signatures
that are based on the Fiat-Shamir heuristic and (2) explicitly called if needed.
The simulation of the random oracles can be done simply by answering randomly
but consistently since we do not need to manipulate the answers of the random
oracles. The only exception is the knowledge extraction by rewinding, which can
be treated easily.

Theorem 7. If there are one-way functions, we can build the setup-free opti-
mistic fair exchange schemes that are multi-user secure in the random oracle
model.

Proof: [Naor and Yung 1989, Rompel 1990] showed that secure signatures ex-
ist if and only if one-way functions exist. Together with Theorem 6, we obtain
Theorem 7.

The proof of Theorem 6 only requires two properties from the Fiat-Shamir
proofs: (1) witness indistinguishability and (2) proof of knowledge. Hence, we
can use the straight-line extractable witness indistinguishable proof [Pass 2003]
instead of the Fiat-Shamir proof. Like the Fiat-Shamir heuristic, the construction
of the straight-line extractable witness indistinguishable proof starts with the
Σ-protocol but the length of the resulting proof is much longer. However, non-
programmable random oracle is used and better exact security can be obtained.

Instead of the Fiat-Shamir proof, we can also use the non-interactive wit-
ness indistinguishable proofs of knowledge for ski or Signsk(m). In this case, we

ii Precisely, (skC , vkC) should be generated by the adversary C, who keeps skC secret
and vkC public. However, in that case, it is a common practice that one requests
C to perform zero-knowledge proof of knowledge of skC , which, in turn, allows the
forge F to obtain skC by rewinding C. Therefore, the effect of C’s generation of
(skC , vkC) makes no practical difference in our simulation.
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do not need the random oracle and can instead use a common reference string
(which could be generated by the arbitrator). Note that we use a common “refer-
ence” string rather than a common “random” string. The arbitrator can indeed
publish the common reference string because in our particular scheme cheating
in OR-signature or NIZK does not help the arbitrator. The construction of non-
interactive witness indistinguishable proofs of knowledge requires the existence
of trapdoor permutations [Santis and Persiano 1992] and this observation leads
to the following theorem.

Theorem 8. If there are trapdoor one-way permutations, we can build the setup-
free optimistic fair exchange schemes that are multi-user secure in the standard
model.

The main purpose of generic construction is to find out minimal computa-
tional complexity assumptions under which setup-free optimistic fair exchange
exists in the multi-user setting. While the construction using non-interactive
witness indistinguishable proofs of knowledge in the standard model is mainly
of theoretic interest, the construction using the Fiat-Shamir heuristic in the ran-
dom oracle is very efficient for specific cases, as there are efficient Σ-protocols for
the knowledge of a signature value and for the knowledge of a secret signing key
with respect to a public verification key (e.g., [Guillou and Quisquater 1988,
Schnorr 1989, Camenisch and Lysyanskaya 2002, Boneh et al. 2004]). Here, we
present an example based on the Schnorr protocol [Schnorr 1989] and the GQ
protocol [Guillou and Quisquater 1988]. The output length is |σ′

Ui
| � 320 and

|σUi | � 1824 (for typical parameters of |p| = |n| = 1024, |q| = 160) and each pro-
cedure requires only a few exponentiations, which is a comparable performance
to the state-of-the-art setup-free schemes. The security is based on the standard
RSA and discrete logarithm problems. If we use other efficient Σ-protocols, we
can obtain optimistic fair exchange schemes of different performance character-
istics.

Scheme. Let (p, q, g, t, H1, H2) be a domain parameter, where (1) p and q

are primes such that q | p − 1, (2) g is a generator for the subgroup of Z
∗
p of

order q, (3) t is an integer such that 2t < q, and (4) H1 : {0, 1}∗ → Z
∗
n and

H2 : {0, 1}∗ → {0, 1}t are cryptographic hash functions.

– SetupTTP. The arbitrator chooses an RSA modulus n = p′q′ and exponents
e, d, where p′ and q′ are safe primes, e is a small prime, and d satisfies
ed ≡ 1 mod ϕ(n). The arbitrator sets ASK = d and APK = (n, e).

– SetupUser. Each user Ui chooses xi ∈R Z
∗
q , computes yi = gxi mod p, and sets

(SKUi , PKUi) = (xi, yi).
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– Sig. When a user Ui wants to sign a message m, the signer first gener-
ates a Schnorr signature s1 = (c0, z0) on “0‖m” and an OR-signature s2 =
(c1, z1, c2, z2) on “1‖m” by using xi. The signature is σUi = (s1, s2).

s1 s2

(c0, z0) (c1, z1) (c2, z2)

r0 ← Z
∗
q r1 ← Z

∗
q c2 ← Z2t , z2 ← Z

∗
n

a0 = gr0 mod p a1 = gr1 mod p a2 = ze
2 ·H1(1‖m)−c2 mod n

c0 = H2(0‖m, a0) c = H2(1‖m, a1, a2)
z0 = r0 + c0xi mod q c1 = c⊕ c2

z1 = r1 + c1xi mod q

– Ver. To verify the signature σUi = (s1, s2) on m, a verifier checks the following
conditions.

s1 s2

(c0, z0) (c1, z1, c2, z2)

a0 = gz0y−c0
i mod p a1 = gz1y−c1

i mod p

c0
?= H2(0‖m, a0) a2 = ze

2 ·H1(1‖m)−c2 mod n

c1 ⊕ c2
?= H2(1‖m, a1, a2)

– PSig and PVer. The same as Sig and Ver except that the partial signature
σ′

Ui
on m is s1.

– Res. For the user Ui’s partial signature σ′
Ui

(= s1 = (c0, z0)) on m, the ar-
bitrator first checks c0

?= H2(0‖m, gz0y−c0
i mod p) and then computes an

OR-signature s2 = (c1, z1, c2, z2) on “1||m” by using an RSA signature value
ω = H1(1‖m)d mod n. The arbitrator outputs σUi = (s1, s2).

s2

(c1, z1) (c2, z2)

c1 ← Z2t , z1 ← Z
∗
q r2 ← Z

∗
n

a1 = gz1y−c1
i mod p a2 = re

2 mod n

c = H2(1‖m, a1, a2)
c2 = c⊕ c1

z2 = r2ω
c2 mod n

5 Previous Paradigms Revisited

5.1 Optimistic Fair Exchange from Verifiably Encrypted Signature

Suppose Alice wants to show Bob that she has signed a message, but does not
want Bob to possess her signature. Alice first encrypts her signature using the
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public encryption key of the arbitrator, and sends the ciphertext to Bob with
proof that she has given him a valid encryption of her signature. Bob can ver-
ify that Alice has signed the message, but cannot deduce any information on
her signature. Later in the protocol, if Alice is unable or unwilling to reveal
her signature, Bob can ask the arbitrator to decrypt the ciphertext of Alice’s
signature.

Scheme. Let (P, V ) be a non-interactive zero-knowledge (NIZK) proof system
for the NP-language L = {(c, m, ek, vk) | ∃s [c = Encek(s) ∧ Vrfyvk(m, s) = 1]},
where E = (Enc-Gen, Enc, Dec) is an encryption scheme and S = (Sig-Gen, Sign,
Vrfy) is a signature scheme. (For brevity’s sake, we omit the description of a
common reference string, which could be generated by the arbitrator.)

– SetupTTP. The arbitrator chooses (dk, ek) by running Enc-Gen(1k) and sets
(ASK, APK) = (dk, ek).

– SetupUser. Each user Ui chooses (ski, vki) by running Sig-Gen(1k) and sets
(SKUi , PKUi) = (ski, vki).

– Sig. When a user Ui wants to sign a message m, the signer generates a
signature s = Signski

(m). The signature value of m is σUi = s.

– Ver. To verify the signature σUi = s of m, a verifier checks Vrfyvki
(m, s) ?= 1.

– PSig. When a user Ui wants to generate a partial signature of m, the signer
first computes a signature s = Signski

(m) and then encrypts s with APK,
i.e., c = Encek(s). The partial signature of m is σ′

Ui
= (c, π), where π is a

proof showing (c, m, ek, vki) ∈ L.

– PVer. To verify the partial signature σ′
Ui

= (c, π) of m, a verifier checks
that π is an accepting proof for the statement (c, m, ek, vki) ∈ L. If so, 1 is
returned and otherwise, 0 is returned.

– Res. For the user Ui’s partial signature σ′
Ui

= (c, π) of m, the arbitrator first
checks that π is an accepting proof for the statement (c, m, ek, vki) ∈ L and
then decrypts s = Decdk(c). The arbitrator outputs σUi = s.

For security analysis, we need the concept of simulation-sound NIZK proofs
[Sahai 1999]. The soundness property of ordinary proof systems states that with
overwhelming probability, the prover should be incapable of convincing the veri-
fier of a false statement. Intuitively, the simulation-sound property requires that
this remains the case even after a polynomially bounded party has seen a sim-
ulated proof of its choosing. The formal definition of simulation soundness can
be found in [Sahai 1999].
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Theorem 9. The optimistic fair exchange scheme based on a verifiably en-
crypted signature is secure in the multi-user setting if the underlying E is CCA-
secure, S is UF-CMA-secure, and (P, V ) is a simulation-sound NIZK proof sys-
tem.

Proof: Security against Signers. To break the security against signers, a

dishonest signer has to generate a partial signature σ′
Ui

= (c, π) of m, where π

is an accepting proof but (c, m, ek, vki) �∈ L. However, this is infeasible by the
soundness of the NIZK proof system (P, V ).

Security against Verifiers. To show security against the verifier, we con-
vert any verifier B that attacks the optimistic fair exchange scheme into a distin-
guisher D for the underlying encryption scheme E = (Enc-Gen, Enc, Dec) which is
CCA-secure. Recall that D gets ek as an input and has access to the decryption
oracle ODec. The distinguisher D wins if it distinguishes encryptions of two equal-
length messages of its own choosing. On the other hand, B expects (PKA, APK)
as input and has access to both OPSig and ORes oracles and wins if B forges a
signature σ of some message m without asking a valid query (m, σ′, PKA) to
ORes. Let (m, σ) be a successful forgery of the adversary B. If B did not ob-
tain the corresponding partial signature σ′ from OPSig, σ becomes an existential
forgery of S and the analysis of this type of attack is covered in the security
against the arbitrator discussed later. Hence, we assume that B has obtained
the corresponding partial signature σ′ from OPSig.

Let q be the total number of OPSig queries made by B. On input ek, the
distinguisher D begins simulating the attack environment of B by generating
a random key pair (sk, vk) ← Sig-Gen(1k) and setting (PKA, APK) = (vk, ek).
After choosing j randomly in the interval of {1, 2, · · · , q}, the distinguisher sim-
ulates OPSig’s response to the i-th query mi of B as follows.

– If i = j, D chooses a random message ṁ0, sets ṁ1 = mi, and computes
(ṡ0, ṡ1)=(Signsk(ṁ0), Signsk(ṁ1)). D sends the two “messages” (ṡ0, ṡ1) to
the CCA challenger. Let ċb be the challenge ciphertext returned by the CCA

challenger, which equals to either Encek(ṡ0) or Encek(ṡ1). Finally, D re-
turns σ′

i = (ci, πi), where ci = ċb and πi is a simulated proof showing
(ci, mi, ek, vk) ∈ L, and stores (mi, σ

′
i) for a later use.

– If i �= j, D returns σ′
i = (ci, πi), where si = Signsk(mi), ci = Encek(si), and

πi is a proof showing (ci, mi, ek, vk) ∈ L.

To simulate ORes’s response to B’s resolution query (mi, σ
′
i, PKi) where σ′

i =
(ci, πi), the distinguisher D checks the validity of πi.

– If πi is valid and PKi �= vk, D obtains the plaintext si of ci from its own
decryption oracle ODec. The distinguisher D returns σi = si, which is a
signature of mi w.r.t. PKi by the soundness of NIZK.
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– If πi is valid and PKi = vk, D checks whether mi = mj or not. If mi = mj ,
D aborts the simulation and outputs a random bit to the CCA challenger.
Otherwise, D obtains the plaintext si of ci from its own decryption oracle
ODec and returns σi = si to B.

– If πi is invalid, D returns a random value to B.

If the challenge ciphertext ċb is the encryption of ṡ0 (i.e., b = 0), cj has no
information on the signature of mj and B’s chance of forging a valid signature of
mj (w.r.t. vk) is negligible. If the challenge ciphertext ċb is the encryption of ṡ1

(i.e., b = 1), cj is an encryption of a valid signature of mj and the distribution
of B’s view in the simulated environment is identical with that in the real attack
environment. Even after seeing a simulated proof πj in case of b = 0, B cannot
generate ORes queries containing an accepting proof of a false statement by the
simulation-sound property of the proof system (P, V ). Let (m, σ) be the final
output of B. If m �= mj , D outputs a random bit to the CCA challenger. If
m = mj and σ is a valid signatureiii of m with respect to vk, D outputs 1 and
otherwise, D outputs a random bit to the CCA challenger. If B in the real attack
environment succeeds with a non-negligible probability ε, the distinguisher D’s
advantage is also non-negligible and given as follows.

CCA-AdvD =
∣∣∣∣{q − 1

q
× 1

2
+

1
q

(
ε

2
× 1 +

(
1− ε

2

)
× 1

2

)}
− 1

2

∣∣∣∣ ≈ 2 + ε

4q

Security against the Arbitrator. We convert an arbitrator C that at-
tacks the optimistic fair exchange scheme into a forger F for the underlying signa-
ture S = (Sig-Gen, Sign, Vrfy). The forger F , on input vk, runs Enc-Gen(1k) and
obtains (dkC , ekC). Then, F gives (ASK, PKA, APK) = (dkC , vk, ekC) to C. Now,
F responds to the i-th OPSig query mi of C by returning (ci = EncekC (si), πi)
where si is a signature of mi from its own signing oracle OSign and πi is a proof
showing (ci, mi, ekC , vk) ∈ L. When C outputs the forgery (m, σ) where σ = s

is a signature of m (w.r.t. vk), F outputs (m, s). The simulation is perfect and
F succeeds in producing a new forgery if and only if C succeeds.

We observe that the full signature σUi = s is a signature value of the
underlying ordinary signature scheme S, which means that the fair exchange
scheme is stand-alone (i.e., the full signature is the same as it were produced by
an ordinary signature scheme only [Zhu and Bao 2006]). It is also known that
CCA-secure encryption E , UF-CMA-secure signature S, and simulation-sound
NIZK proof system (P, V ) can be built from trapdoor permutations [Sahai 1999,
iii As the signature scheme S dose not need to be secure in the sense of “strong unforge-

ability,” which means that an adversary should be unable to forge a new signature
even on a previously-signed message, σ can be different from ṡ1.
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Naor and Yung 1989, Rompel 1990]. Hence, we obtain the following existence
theorem of setup-free and stand-alone fair exchange schemes.

Theorem 10. If there are trapdoor one-way permutations, we can build the op-
timistic fair exchange schemes that are multi-user secure, setup-free, and stand-
alone.

5.2 Optimistic Fair Exchange from Sequential Two-Party
Multisignature

A multisignature scheme allows any subgroup of users to jointly sign a document
such that a verifier is convinced that each user of the subgroup participated in
signing. To construct an optimistic fair exchange, we can use a simple type of
multisignature, which is called a sequential two-party multisignature.

A sequential two-party multisignature MS consists of five efficient algo-
rithms: MS = (Sig-Gen, Sign, Vrfy, MSign, MVrfy). Key generation algorithm
Sig-Gen, signing algorithm Sign, and verification algorithm Vrfy are similar to the
conventional algorithms of an ordinary signature scheme. MSign takes as input
(m, si, vki, skj) and returns a multisignature sij , where m ∈M is a message, skj

is a signing key, si is a valid signature w.r.t. a verification key vki, and sij is a
multisignature w.r.t. verification keys vki and vkj . MVrfy takes (m, sij , vki, vkj)
as input and returns 1 (accept) or 0 (reject). Correctness property requires that
Vrfyvki

(m, Signski
(m)) = 1 and MVrfy(m, MSign(m, si, vki, skj), vki, vkj) = 1,

for any m ∈ M. A multisignature scheme is symmetric if sij and sji are com-
putationally indistinguishable. Symmetric multisignature schemes have natural
symmetric properties such as MVrfy(m, sij , vki, vkj) = MVrfy(m, sij , vkj , vki).

For security consideration, we allow the adversary A, who tries to forge a
multisignature w.r.t. a given verification key, to have access to the signing oracle
OSign and the multi-signing oracle OMSign. A’s query to OSign is (m, vki) and OSign

returns Signski
(m). A’s query to OMSign is (m, si, vki, vkj) and OMSign returns sij

if Vrfyvki
(m, si) = 1. While the adversary A is allowed to create arbitrary keys

for corrupted users, we require A to prove knowledge of secret keys during the
public key registration. For simplicity, we follow the model of [Boldyreva 2003]
which asks A to output the public key and secret key of a corrupted user in the
key registration stage. Let Query(A, OSign) and Query(A, OMSign) be the set of
valid queries of A to OSign and OMSign, respectively. We define A’s advantage of
attackingMS as follows.

AdvMS
A (k) = Pr[MVrfy(m, s, vki, vkj) = 1 ∨MVrfy(m, s, vkj , vki) = 1 |

(ski, vki)← Sig-Gen(1k), (m, s, vkj)← AOSign,OMSign(vki)]

where (m, vki) �∈ Query(A, OSign) and (m, ·, vkj , vki) �∈ Query(A, OMSign).
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Definition 11. Let MS = (Sig-Gen, Sign, Vrfy, MSign, MVrfy) be a sequential
two-party signature scheme. An adversary A is said to (t, qs, qms, ε)-breakMS,
if A runs in time at most t, makes at most qs signing queries to OSign and qms

multi-signing queries to OMSign, and succeeds in forgery with probability at least
ε.MS is said to be (t, qs, qms, ε)-secure, if no adversary can (t, qs, qms, ε)-break
it. Asymptotically,MS is UF-CMA-secure if AdvMS

A (k) is negligible for any PPT
adversary A.

Remark. If a sequential two-party signature scheme MS = (Sig-Gen, Sign, Vrfy,
MSign, MVrfy) is UF-CMA-secure, the induced signature scheme S = (Sig-Gen,
Sign, Vrfy) is also UF-CMA-secure.

By relaxing the definition of optimistic fair exchange to allow interactive
registration during setup (i.e., setup-driven), we can have much simpler (almost
trivial) schemes based on the sequential two-party multisignature. Each user Ui

generates four keys SKUi , PKUi , ASKUi , APKUi and sends PKUi , ASKUi , APKUi

to the arbitrator, who checks if the keys were properly generated. The arbitrator
will then store ASKUi and certify APKUi . A verifier will accept partial signatures
from Ui only if they are valid w.r.t. APKUi .

Scheme. Let MS = (Sig-Gen, Sign, Vrfy, MSign, MVrfy) be a sequential two-
party multisignature scheme.

– SetupTTP and SetupUser. Each user Ui chooses (sk0
Ui

, vk0
Ui

) and (sk1
Ui

, vk1
Ui

)
by running Sig-Gen(1k) twice, and sends (vk0

Ui
, sk1

Ui
, vk1

Ui
) to the arbitrator.

After checking validity of the keys, the arbitrator stores sk1
Ui

and certifies
vk1

Ui
. If we use a simplified notation such as ski0 = sk0

Ui
, vki1 = vk1

Ui
, the

output is (SKUi , PKUi , ASKUi , APKUi) = ((ski0 , ski1), (vki0 , vki1 ), ski1 , vki0 ).

– Sig. When a user Ui wants to sign a message m, the signer computes si0 =
Signski0

(m) and a multisignature si0i1 = MSign(m, si0 , vki0 , ski1). The sig-
nature value of m is σUi = si0i1 .

– Ver. To verify the signature σUi = si0i1 of m, a verifier checks the relation
MVrfy(m, si0i1 , vki0 , vki1 )

?= 1.

– PSig. When a user Ui wants to generate a partial signature of a message m,
the signer computes a signature si0 = Signski0

(m). The partial signature of
m is σ′

Ui
= si0 .

– PVer. To verify the partial signature σ′
Ui

= si0 of m w.r.t. PKUi , a verifier
checks Vrfyvki0

(m, si0 )
?= 1. If so, 1 is returned and otherwise, 0 is returned.

– Res. For the user Ui’s partial signature σ′
Ui

= si0 of m, the arbitrator first
checks Vrfyvki0

(m, si0)
?= 1 and then generates a multisignature si0i1 =

MSign(m, si0 , vki0 , ski1). The arbitrator outputs σUi = s.
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Remark. While the generic construction based on the sequential two-party mul-
tisignature is almost trivial, specific instantiations could be very efficient by
directly using the combined signing key skUi = sk0

Ui
� sk1

Ui
to generate mul-

tisignatures and the combined verification key pkUi = pk0
Ui
◦ pk1

Ui
to verify

multisignatures.

Theorem 12. The setup-driven optimistic fair exchange scheme based on a se-
quential two-party multisignature is secure in the multi-user setting if the under-
lying multisignature is UF-CMA-secure.

Proof: Security against Signers. If a partial signature σ′
Ui

= si0 passes

PVer, we have Vrfyvki0
(m, si0) = 1 and si0 is a valid signature. By the correct-

ness property of multisignature, the arbitrator who knows ski1 can computer
a multisignature si0i1 = MSign(m, si0 , vki0 , ski1) which satisfies the relation
MVrfy(m, si0i1 , vki0 , vki1 ) = 1.

Security against Verifiers. We convert a verifier B attacking the opti-
mistic fair exchange scheme into a forger F againstMS. The forger F , given vki,
generates (skj , vkj) ← Sig-Gen(1k) and gives (PKA, APKA) = (vkA0 , vkA1) =
(vkj , vki) to B. We know that the induced signature scheme S is UF-CMA-
secure and hence assume that B always makes a partial signature query m to
forge a full signature of m.

When B makes a partial signature query m to OPSig, F returns σ′
A =

Signskj
(m).

When B makes a resolution query (m, σ′
l, PKl) to ORes where σ′

l = sl0 , F first
checks Vrfyvkl0

(m, sl0)
?= 1 and then PKi

?= PKA.

– If PKl = PKA (i.e., PKl=vkA0=vkj and sl0=sA0), F makes a multisignature
query (m, sl0 , vkj , vki) to its own oracle OMSign. The answer from OMSign is
sji w.r.t. vkj and vki. F returns σl = sl0l1=sA0A1=sji to B.

– If PKl �= PKA, F knows the corresponding secret keys (skl0 , skl1) during
the public key registration. F generates sl0l1 = MSign(m, sl0 , vkl0 , skl1) and
returns σl = sl0l1 to B.

The simulation is perfect and the constraint (m, ·, PKA) �∈ Query(B, ORes) in
the fair exchange implies (m, ·, vkj , vki) �∈ Query(F, OMSign) in the multisigna-
ture. Therefore, B’s successful forgery (m, σA) where σA= sA0A1= sji implies a
forged multisignature (m, sji, vkj , vki) forMS.

Security against the Arbitrator. We convert an arbitrator C attacking
the optimistic fair exchange scheme into a forger F against MS. The forger
F , given vki, generates (skj , vkj) ← Sig-Gen(1k) and gives (vki0 , ski1 , vki1) =
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(vki, skj , vkj) to C. Now, F simulates OPSig simply by relaying queries and an-
swers between C and its own signing oracle OSign. The simulation is perfect and
C’s successful forgery (m, σi), where σi= si0i1= sij , implies a forged multisigna-
ture (m, sij , vkj) forMS, which satisfies MVrfy(m, sij , vki, vkj) = 1.

6 Conclusion

One of main goals of modern cryptography is to define security models for cryp-
tographic schemes. In this paper, we addressed the issue of “single-user model
vs. multi-user model” in the optimistic fair exchange and proposed the first com-
plete multi-user security model. We hope that our model can facilitate the design
of “secure” fair exchange schemes. We also invite readers to study and find a
gap between single-user security and multi-user security in other cryptographic
schemes.
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