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Abstract: Oblivious transfer is an important cryptographic protocol in various secu-
rity applications. For example, in on-line transactions, a k-out-of-n oblivious transfer
scheme allows a buyer to privately choose k out of n digital goods from a merchant
without learning information about other n−k goods. In this paper, we propose several
efficient two-round k-out-of-n oblivious transfer schemes, in which the receiver R sends
O(k) messages to the sender S, and S sends O(n) messages back to R. The schemes
provide unconditional security for either sender or receiver. The computational security
for the other side is based on the Decisional Diffie-Hellman (DDH) or Chosen-Target
Computational Diffie-Hellman (CT-CDH) problems. Our schemes have the nice prop-
erty of universal parameters, that is, each pair of R and S need not hold any secret
before performing the protocol. The system parameters can be used by all senders and
receivers without any trapdoor specification. In some cases, our OTk

n schemes are the
most efficient ones in terms of the communication cost, either in rounds or the num-
ber of messages. Moreover, one of our schemes is extended to an adaptive oblivious
transfer scheme. In that scheme, S sends O(n) messages to R in one round in the
commitment phase. For each query of R, only O(1) messages are exchanged and O(1)
operations are performed. The preliminary version of this paper was published at PKC
’05 [Chu and Tzeng 2005].
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1 Introduction

Assume that an on-line store sells digital goods, such as music, articles, etc.
The buyer wants to get some of them without revealing his/her choices. That
is, the buyer can only get the paid goods, and the merchant doesn’t know
which ones are chosen. Oblivious transfer (OT) is a cryptographic protocol de-
signed for such requirement. The other applications of OT in computer security
are secret exchange [Rabin 1981], contract singing [Even et al. 1985], etc. More-
over, OT is also an important primitive used in many other cryptographic pro-
tocols [Goldreich and Vainish 1987, Kilian 1988]. For example, Yao [Yao 1986]
proposed the notion of secure circuit computation by using oblivious transfer.

An oblivious transfer protocol involves two parties, the sender S and the
receiver R. S has some messages and R wants to obtain some of them via inter-
action with S. The security requirement is that S wants R to obtain the message
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of his choice only and R does not want S to know what he chooses. The notion
of oblivious transfer was first introduced by Rabin [Rabin 1981]. Then it was
developed in the following four types:

– Rabin’s OT: S sends a message to R, and R gets the message with probability
1
2 . On the other hand, S does not know whether R gets the message or not.

– 1-out-of-2 OT (OT1
2): S has two messages m1 and m2, and would like R to

obtain exactly one of them. In addition, S remains oblivious to R’s choice.

– 1-out-of-n OT (OT1
n): An extension of OT1

2 for the case that S has n mes-
sages.

– k-out-of-n OT (OTk
n): The scheme similar to OT1

n except that R obtains k

out of n messages from S.

We are concerned about the most general case - OTk
n in this work. A straight-

forward solution for OTk
n is to run OT1

n k times independently. However, this
needs k times the cost of OT1

n. The security of OT is also an interesting con-
sideration. Since it is impossible to provide unconditional security for both the
sender and the receiver, we consider the case that only one of them has perfect
(unconditional) security, and the security of the other side is computational. We
can choose appropriate schemes in the different applications.

Oblivious transfer with adaptive queries (Adpt-OT) allows R to query mes-
sages one by one adaptively [Naor and Pinkas 1999b, Ogata and Kurosawa 2004].
For this setting, S first commits messages to R in the commitment phase. In the
transfer phase, R makes queries of messages one by one. It seems that the adap-
tive case implies the non-adaptive case. But, the non-adaptive one converted
from an adaptive one usually needs one more round to send the public parame-
ters from S to R. Since our scheme needs no trapdoors, there is no entailed cost
due to conversion. Adaptive OT is natural and has many applications, such as
oblivious search, oblivious database queries, private information retrieval, etc.

In this paper we propose several efficient two-round OTk
n schemes, in which

R sends O(k) messages to S, and S sends O(n) messages back to R. The schemes
provide perfect security for either sender or receiver. The computational security
for the other side is based on the Decisional Diffie-Hellman (DDH) or Chosen-
Target Computational Diffie-Hellman (CT-CDH) problems. When k = 1, our
scheme is as efficient as the one in [Tzeng 2004]. Our schemes have the nice
property of universal parameters, that is, each pair of R and S need not hold
any secret before performing the protocol. The system parameters can be used
by all senders and receivers without any trapdoor specification. In some cases,
our OTk

n schemes are the most efficient ones in terms of the communication cost,
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either in rounds or the number of messages1.
Moreover, one of our schemes is extended to an adaptive OT scheme. In that

scheme, S sends O(n) messages to R in one round in the commitment phase.
For each query of R, only O(1) messages are exchanged and O(1) operations are
performed.

1.1 Previous work and comparison

Rabin [Rabin 1981] introduced the notion of OT and presented an implementa-
tion to obliviously transfer one-bit message, based on quadratic roots modulo
a composite. Even, Goldreich and Lempel [Even et al. 1985] proposed an ex-
tension of bit-OT1

2, in which the sender’s two messages m1 and m2 are only
one-bit. Brassard, Crépeau and Robert [Brassard et al. 1986a] proposed OT1

n

soon after in the name “all-or-nothing disclosure of secrets” (ANDOS). After
that, OT1

n has become an important research topic in cryptographic protocol de-
sign. Some OT1

n schemes are built by invoking basis OT1
2 [Brassard et al. 1986b,

Brassard et al. 1996, Naor and Pinkas 1999a], some are constructed directly from
cryptographic techniques [Salomaa and Santean 1990, Niemi and Renvall 1994,
Stern 1998, Naor and Pinkas 2001, Tzeng 2004, Boneh et al. 2005], and the oth-
ers derived from computational private information retrieval (CPIR) have poly-
logarithmic communication cost [Lipmaa 2005]. However, the scheme achieves
only computational receiver’s privacy and unconditional sender’s security. Be-
sides, there are various oblivious transfer schemes developed in different models
and applications, such as OT in the bounded storage model [Cachin et al. 1998,
Ding 2001], distributed OT [Naor and Pinkas 2000, Blundo et al. 2002], Quan-
tum OT [Bennett et al. 1991, Chen and Zhu 2003], and so on. Lipmaa [Lipmaa]
provided a good collection of these works.

For OTk
n, Bellare and Micali [Bellare and Micali 1989] proposed an OTn−1

n

scheme. Naor and Pinkas [Naor and Pinkas 1999a] proposed a non-trivial OTk
n

scheme. The scheme invokes a basis OT1
2 scheme O(wk log n) times, where w >

log δ/ log(k4/
√

n) and δ is the probability that R can obtain more than k mes-
sages. The scheme works only for k ≤ n1/4. Moreover, they took notice of adap-
tive queries and provided some Adaptive OTk

n schemes [Naor and Pinkas 1999b].
In one scheme (the two-dimensional one), each query needs invoke the basis
OT1√

n
scheme twice, in which each invocation of OT1√

n
needs O(

√
n) initializa-

tion work. In another scheme, each adaptive query of messages need invoke the
basis OT2

1 protocol log n times. Mu, Zhang, and Varadharajan [Mu et al. 2002]
presented some efficient OTk

n schemes. These schemes are designed from cryp-
tographic functions directly. The most efficient one is a non-interactive one. To
1 For the scheme with perfect sender’s security, one may perform the schemes of Lip-

maa [Lipmaa 2005] k times independently to get better efficiency in some cases of k
and n.
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be compared fairly, the setup phase of establishing shared key pairs of a public-
key cryptosystem should be included. Thus, the scheme is two-round and R and
S send each other O(n) messages. However, the choices of R cannot be made
adaptive since R’s choices are sent to S first and the message commitments
are dependent on the choices. Wu, Zhang, and Wang [Wu et al. 2003] also pro-
vided a three-round OTk

n based on the two-lock cryptosystem. Recently, Ogata
and Kurosawa [Ogata and Kurosawa 2004] proposed an efficient adaptive OT
scheme based on the RSA cryptosystem. Each S needs a trapdoor (the RSA
modulus) specific to him. The scheme is as efficient as our Adpt-OTn scheme.
But, if the adaptive OT scheme is converted to a non-adaptive one, it needs 3
rounds (In the first round, S sends the modulus N to R).

Ishai, Kilian, Nissim and Petrank [Ishai et al. 2003] proposed some efficient
protocols for extending a small number of OT’s to a large number of OT’s. Chen
and Zhu [Chen and Zhu 2003] provided an OTk

n in the quantum computation
model. We won’t compare these schemes with ours since they are in different
categories.

1.2 Our Results

We propose three k-out-of-n OT schemes and one adaptive OT scheme, named
OTk

n-I, OTk
n-II, OTk

n-III, and Adpt-OTn. OTk
n-I and OTk

n-II have perfect secu-
rity for the receiver, where OTk

n-I assumes a semi-honest receiver in the standard
model and OTk

n-II is secure against any malicious receiver in the random oracle
model. OTk

n-III provides perfect security for the sender in the standard model.
Finally, we extend OTk

n-II to Adpt-OTn directly.
In [Tab. 1] we summarize the comparison of ours, Mu, Zheng, and Varad-

harajan’s [Mu et al. 2002], Wu, Zhang, and Wang’s [Wu et al. 2003], and Naor
and Pinkas’s [Naor and Pinkas 1999a] OTk

n schemes. In [Tab. 2] we summarize
the comparison of ours, Naor and Pinkas’s [Naor and Pinkas 1999b], and Ogata
and Kurosawa’s [Ogata and Kurosawa 2004] Adpt-OTk

n schemes. Note that the
works of [Naor and Pinkas 1999a] and [Naor and Pinkas 1999b] invoke other OT
schemes, therefore we use asymptotical orders for them in the comparison.

2 Preliminaries

Involved parties. An OT scheme has two involved parties: the sender and receiver.
Both are polynomial-time-bounded probabilistic Turing machines (PPTM). A
party is semi-honest (or passive, honest-but-curious) if it does not deviate from
the steps defined in the protocol, but tries to compute extra information from
received messages. A party is malicious (or active) if it can deviate from the
specified steps in any way in order to get extra information.
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OTk
n-I OTk

n-II OTk
n-III MZV WZW NP

rounds 2 2 2 2 3 O(wk log n)
messages† (R → S) k k 2k + 2 2n k O(wk log n)
messages† (S → R) 2n n + k 2n 2n n + k O(n + wk log n)
universal parameters Yes Yes Yes Yes Yes No (need setup)
made to adaptiveness No Yes No No Yes Yes

† The number of group elements.

Table 1: Comparison of OTk
n schemes in communication cost.

Adpt-OTk
n OTk

n, 2-dimensional one,
(this paper) Ogata, et al. Naor, et al.

commitment rounds 1 1 1
phase messages† n n O(n)

transfer rounds 2 2 3*
phase messages† 2 2 O(

√
n)**

† The number of group elements.
* Two invocations of OT1√

n
in parallel.

** Use the most round-efficient OT1√
n

scheme as the basis.

Table 2: Comparison of Adpt-OTk
n schemes in communication cost.

A malicious sender may cheat in order or content of his possessed messages.
To prevent the cheat, we can require the sender to commit the messages in a
bulletin board. When the sender sends the encrypted messages to the receiver
during execution of an OT scheme, he need tag a zero-knowledge proof of show-
ing equality of committed messages and encrypted messages. However, in most
applications, the sender just follows the protocol faithfully. Therefore, we con-
sider the semi-honest sender only and the semi-honest/malicious receiver.

Indistinguishability. Two probability ensembles {Xi} and {Yi}, indexed by
i, are (computationally) indistinguishable if for any PPTM D, polynomial p(n)
and sufficiently large i, it holds that

|Pr[D(Xi) = 1] − Pr[D(Yi) = 1]| ≤ 1/p(i).

Correctness of a protocol. An OT scheme is correct if the receiver obtains
the messages of his choices when the sender with the messages and the receiver
with the choices follow the steps of the scheme.

Security model. Assume that S holds n messages m1, m2, . . . , mn and R’s k
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choices are σ1, σ2, . . . , σk. Note that only semi-honest sender is considered. We
say that two sets C and C′ are different if there is x in C, but not in C′, or
vice versa. For the scheme OTk

n-I and OTk
n-III, we have the following security

requirements:

1. Receiver’s privacy - indistinguishability: for any two different sets of choices
C = {σ1, σ2, . . . , σk} and C′ = {σ′

1, σ
′
2, . . . , σ

′
k}, the transcripts, correspond-

ing to C and C′, received by the sender are indistinguishable. If the received
messages of S for C and C′ are identically distributed, the choices of R are
unconditionally secure.

2. Sender’s security - indistinguishability: for any choice set C = {σ1, σ2, . . . , σk},
the unchosen messages should be indistinguishable from the random ones.
If the ciphertexts of unchosen messages are uniformly distributed for R, the
security of S is unconditional.

Scheme OTk
n-II and scheme Adpt-OTn should meet the following security

requirements:

1. Receiver’s privacy - indistinguishability: the same as the case of the semi-
honest receiver.

2. Sender’s security - compared with the Ideal model: in the Ideal model, the
sender sends all messages and the receiver sends his choices to the trusted
third party (TTP). TTP then sends the chosen messages to the receiver.
This is the securest way to implement the OT scheme. The receiver R cannot
obtain extra information from the sender S in the Ideal model. We say that
the sender’s security is achieved if for any receiver R in the real OT scheme,
there is another PPTM R′ (called simulator) in the Ideal model such that
the outputs of R and R′ are indistinguishable.

Computational model. Let Gq be a subgroup of Z∗
p with prime order q, and p =

2q+1 is also prime. Let g be a generator of Gq. We usually denote gx mod p as gx,
where x ∈ Zq. Let x ∈R X denote that x is chosen uniformly and independently
from the set X .

Security assumptions. For the schemes OTk
n-I and OTk

n-III, we assume hard-
ness of the Decisional Diffie-Hellman (DDH) problem. For OTk

n-II and Adpt-
OTn, we assume hardness of the Chosen-Target Computational Diffie-Hellman
(CT-CDH) problem.

Assumption 1 (Decisional Diffie-Hellman (DDH)) Let p = 2q + 1 where
p, q are two primes, and Gq be the subgroup of Z∗

p with order q. The following
two distribution ensembles are computationally indistinguishable:

– Y1 = {(g, ga, gb, gab)}Gq , where g is a generator of Gq, and a, b ∈R Zq.
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– System parameters: (g, h, Gq);
– S has messages: m1, m2, . . . , mn;
– R’s choices: σ1, σ2, . . . , σk;

1. R chooses two polynomials f(x) = a0 + a1x + · · · + ak−1x
k−1 + xk and f ′(x) =

b0 + b1x + · · ·+ bk−1x
k−1 + xk where a0, a1, . . . , ak−1 ∈R Zq and b0 + b1x + · · ·+

bk−1x
k−1 + xk ≡ (x − σ1)(x − σ2) · · · (x − σk) mod q.

2. R −→ S : A0 = ga0hb0 , A1 = ga1hb1 , . . . , Ak−1 = gak−1hbk−1 .

3. S computes ci = (gki , miB
ki
i ) where ki ∈R Zq and Bi = gf(i)hf ′(i) =

A0A
i
1 · · ·Aik−1

k−1 (gh)ik

mod p, for i = 1, 2, . . . , n.
4. S −→ R: c1, c2, . . . , cn.

5. Let ci = (Ui, Vi). R computes mσi = Vσi/U
f(σi)
σi mod p for each σi.

Figure 1: OTk
n-I: k-out-of-n OT against semi-honest receiver

– Y2 = {(g, ga, gb, gc)}Gq , where g is a generator of Gq, and a, b, c ∈R Zq.

The variations used in our proofs are easily shown to be equivalent to the DDH
assumption.

The CT-CDH assumption, introduced by Boldyreva [Boldyreva 2003], is anal-
ogous to the chosen-target RSA inversion assumption defined by Bellare, et
al. [Bellare et al. 2001]

Assumption 2 (Chosen-Target Computational Diffie-Hellman
(CT-CDH)) Let Gq be a group of prime order q, g be a generator of Gq,
x ∈R Z

∗
q . Let H1 : {0, 1}∗ → Gq be a cryptographic hash function. The ad-

versary A is given input (q, g, gx, H1) and two oracles: target oracle TG(·) that
returns a random element wi ∈ Gq at the i-th query and helper oracle HG(·)
that returns (·)x. Let qT and qH be the number of queries A made to the tar-
get oracle and helper oracle respectively. The probability that A outputs k pairs
((v1, j1), (v2, j2), . . . , (vk, jk)), where vi = (wji )

x for i ∈ {1, 2, . . . , k}, qH < k ≤
qT , is negligible.

3 k-out-of-n OT schemes with perfect security of receiver

We present OTk
n schemes with perfect security for the receiver in this section.

3.1 k-out-of-n OT against semi-honest receiver

The sender S has n secret messages m1, m2, . . . , mn. Without loss of generality,
we assume that the message space is Gq, that is, all messages are in Gq. The
receiver R wants to get mσ1 , mσ2 , . . . , mσk

without revealing any information
about σ1, σ2, . . . , σk. The protocol OTk

n-I is depicted in [Fig. 1].
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For system parameters, let g, h be two generators of Gq where logg h is un-
known to all, and Gq be the group with some description. These parameters
can be used repeatedly by all possible senders and receivers as long as the value
logg h is not revealed. Therefore, (g, h, Gq) are universal parameters.

The receiver R first constructs a k-degree polynomial f ′(x) such that f ′(i) =
0 if and only if i ∈ {σ1, . . . , σk}. Then R chooses another random k-degree
polynomial f(x) to mask the chosen polynomial f ′(x). The masked choices
A0, A1, . . . , Ak−1 are sent to the sender S.

When S receives these queries, he first computes Bi = gf(i)hf ′(i) by com-
puting A0A

i
1 · · ·Aik−1

k−1 (gh)ik

mod p. Because of the random polynomial f(x), S

does not know which f ′(i) is equal to zero, for i = 1, 2, . . . , n. Then S treats Bi

as the public key and encrypts each message mi by the ElGamal cryptosystem.
The encrypted messages c1, c2, . . . , cn are sent to R.

For each ci, i ∈ {σ1, σ2, . . . , σk}, since Bi = gf(i)hf ′(i) = gf(i)h0 = gf(i), R

can get these messages by the decryption of ElGamal cryptosystem with secret
key f(i). If i /∈ {σ1, σ2, . . . , σk}, since R can not compute (gf(i)hf ′(i))ki with the
knowledge of gki and f(i), f ′(i) only, the message mi is unknown to R.

Correctness. Let ci = (Ui, Vi), we can check that the chosen messages mσi ,
i = 1, 2, . . . , k, are computed as

Vσi/Uf(σi)
σi

= mσi · (gf(σi)hf ′(σi))kσi /gkσi
f(σi)

= mσi · (gf(σi) · 1)kσi /gkσi
f(σi)

= mσi .

Security analysis. We now prove the security of OTk
n-I.

Theorem 1. For scheme OTk
n-I, R’s choices are unconditionally secure.

Proof. For every tuple (b′0, b′1, . . . , b′k−1) representing the choices σ′
1, σ

′
2, . . . , σ

′
k,

there is a tuple (a′
0, a

′
1, . . . , a

′
k−1) that satisfies Ai = ga′

ihb′i for i = 0, 1, . . . , k−1.
Thus, the receiver R’s choices are unconditionally secure.

�

Theorem 2. Scheme OTk
n-I meets the sender’s security requirement. If the DDH

assumption holds and R is semi-honest, R gets no information about messages
mi, i /∈ {σ1, σ2, . . . , σk}.

Proof. We show that for all i /∈ {σ1, σ2, . . . , σk}, ci’s look random if the DDH
assumption holds. Assume that there is a polynomial-time distinguisher D =
(D1,D2) where D1 takes k choices as inputs and outputs f∗(x), f ′∗(x) (Since D
is semi-honest, D1 follows the protocol and chooses the correct values), and D2

distinguishes the following two distributions:
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– C = (g∗, h∗, f∗(x), f ′∗(x), ((g∗)k∗
i1 , (B∗

i1)
k∗

i1 ), . . . , ((g∗)k∗
in−k , (B∗

in−k
)k∗

in−k )),
where g∗, h∗ ∈ Gq\{1}, k∗

i ∈R Zq, B
∗
i = (g∗)f∗(i)(h∗)f ′∗(i)

– X = (g∗, h∗, f∗(x), f ′∗(x), ((g∗)k∗
i1 , X1), . . . , ((g∗)

k∗
in−k , Xn−k)),

where g∗, h∗ ∈ Gq\{1}, k∗
i ∈R Zq, Xi ∈R Gq.

Then we can construct another PPTM D′, which takes D as a sub-routine, to
distinguish the following two distributions:

– Ỹ1 = {(g, h, ga, ha)}Gq , where g, h are generators of Gq, and a ∈R Zq.

– Ỹ2 = {(g, h, ga, gb)}Gq , where g, h are generators of Gq, and a, b ∈R Zq.

The difference between (Ỹ1, Ỹ2) and (Y1, Y2) is that h can’t be 1 in Ỹ1 and Ỹ2.
Machine D′

Input: (g, u, v, w) (either from Ỹ1 or Ỹ2)

1. Let g∗ = g, h∗ = u be the system parameters of OTk
n-I.

2. Randomly select σ1, . . . , σk ∈ {1, . . . , n}, and let I = {i1, . . . , in−k}
= {1, . . . , n}\{σ1, . . . , σk}.

3. Perform D1(σ1, . . . , σk) = (f∗(x), f ′∗(x)).

4. Randomly select l ∈ I.

5. Output D2(g∗, h∗, f∗(x), f ′∗(x), (U∗
i , V ∗

i )) for all i ∈ I, where

(U∗
i , V ∗

i ) =

⎧⎨
⎩

((g∗)k∗
i , (B∗

i )k∗
i ) if i ∈ {i1, . . . , il−1}

(v, vf∗(i)wf ′∗(i)) if i = il
((g∗)k∗

i , Xi) if i ∈ {il+1, . . . , in−k}
,

and k∗
i ∈R Zq, B

∗
i = (g∗)f∗(i)(h∗)f ′∗(i), Xi ∈R Gq.

Assume that D distinguishes C and X with non-negligible advantage ε. Let
α = (g, u, v, w) and �Cl = (g∗, h∗, f∗(x), f ′∗(x), (U∗

i , V ∗
i )), i = 1, 2, . . . , n − k

where

(U∗
i , V ∗

i ) =
{

((g∗)k∗
i , (B∗

i )k∗
i ) if i ∈ {1, . . . , l}

((g∗)k∗
i , Xi) if i ∈ {l + 1, . . . , n − k} ,

and k∗
i ∈R Zq, B

∗
i = (g∗)f∗(i)(h∗)f ′∗(i), Xi ∈R Gq. Note that �Cn−k = C and

�C0 = X . If α is chosen from Ỹ1, then

Pr
α∈Ỹ1

[D′(α) = 1] = Pr[D′(Ỹ1) = 1] =
1

n − k

n−k∑
l=1

Pr[D(�Cl) = 1].
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– System parameters: (g,H1, H2, Gq);
– S has messages: m1, m2, . . . , mn;
– R’s choices: σ1, σ2, . . . , σk;

1. R computes hσj = H1(σj) and Aj = (hσj )
aj , where aj ∈R Z

∗
q and j = 1, 2, . . . , k.

2. R −→ S: A1, A2, . . . , Ak.
3. S chooses a random x ∈ Z

∗
q and computes Dj = (Aj)

x, hi = H1(i), and ci =
mi ⊕ H2(h

x
i ), where i = 1, 2, . . . , n and j = 1, 2, . . . , k.

4. S −→ R: D1, D2, . . . , Dk, c1, c2, . . . , cn

5. R computes Kj = (Dj)
a−1

j and gets mσj = cσj ⊕ H2(Kj) for j = 1, 2, . . . , k.

Figure 2: OTk
n-II: k-out-of-n OT against malicious receiver

If α is chosen from Ỹ2, then

Pr
α∈Ỹ2

[D′(α) = 1] = Pr[D′(Ỹ2) = 1] =
1

n − k

n−k−1∑
l=0

Pr[D(�Cl) = 1].

Therefore, we have

Pr[D′(Ỹ1) = 1] − Pr[D′(Ỹ2) = 1]
= 1

n−k (
∑n−k

l=1 Pr[D(�Cl) = 1] − ∑n−k−1
l∗=0 Pr[D(�Cl) = 1])

= 1
n−k (Pr[D(�Cn−k) = 1] − Pr[D(�C0) = 1])

= 1
n−k (Pr[D(C) = 1] − Pr[D(X) = 1])

≥ ε
n−k .

Moreover, since dist(Ỹ1, Y1) = 1/q and dist(Ỹ2, Y2) = 1/q, we can solve the DDH
problem with at least non-negligible advantage ε

n−k − 2
q , which is a contradiction.

�

Complexity. The scheme uses two rounds (steps 2 and 4), the first round
sends k messages and the second round sends 2n messages. For computation, R

computes 3k and S computes (k + 3)n modular exponentiations.

3.2 k-out-of-n OT against malicious receiver

A malicious player may not follow the protocol dutifully. For example, a mali-
cious R might send random Ai’s in step 2. So, we present another scheme OTk

n-II
that is provable secure against the malicious R in the random oracle model. The
scheme is depicted in [Fig. 2].

The generator g and group Gq of system parameters are defined as that in
OTk

n-I. Let H1 : {0, 1}∗ → Gq, H2 : Gq → {0, 1}l be two collision-resistant hash
functions. Let messages be of l-bit length. Assume that CT-CDH is hard under
Gq.
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Correctness. We can check that the chosen messages mσj , j = 1, 2, . . . , k, are
computed as

cσj ⊕ H2(Kj) = mσj ⊕ H2(hx
σj

) ⊕ H2(hx
σj

)

= mσj .

Security analysis. We assume the random oracle model in this security anal-
ysis.

Theorem 3. In OTk
n-II, R’s choices are unconditionally secure.

Proof. Since Gq is the group of prime order q, all elements except 1 in Gq are
generators. So for any Aj = h

aj

j and any hl, l �= j, there is an al that satisfies
Aj = hal

l . That is, Aj can be a masked value of any index. Thus, the receiver’s
choices are unconditionally secure.

�

Theorem 4. Even if R is malicious, the scheme OTk
n-II meets the requirement

for the sender’s security in the random oracle model.

Proof. Since we treat H2 as a random oracle, the malicious R has to know
Ki = hx

i in order to query the hash oracle to get H2(hx
i ). For each possible

malicious R, we construct a simulator R∗ in the ideal model such that the outputs
of R and R∗ are indistinguishable.

R∗ works as follows:

1. R∗ simulates R to obtain A∗
1, A

∗
2, . . . , A

∗
k. When R queries H1 on index i, we

return a random h∗
i (consistent with the previous queries.)

2. R∗ simulates S (externally without knowing mi’s) on inputs A∗
1, A∗

2, . . . , A∗
k

to obtain x∗, D∗
1 , D

∗
2 , . . . , D∗

k.

3. R∗ randomly chooses c∗1, c
∗
2, . . . , c

∗
n.

4. R∗ simulates R on input (D∗
1 , D

∗
2 , . . . , D∗

k, c∗1, c
∗
2, . . . , c

∗
n) and monitors the

queries closely. If R queries H2 on some vj = (h∗
j )

x∗
, R∗ sends j to the TTP

T to obtain mj and returns c∗j ⊕mj as the hash value H2((h∗
j )

x∗
), otherwise,

returns a random value (consistent with previous queries).

5. Output (A∗
1, A

∗
2, . . . , A

∗
k, D∗

1 , D
∗
2 , . . . , D

∗
k, c∗1, c

∗
2 . . . , c∗n).

If R obtains k + 1 decryption keys, R∗ does not know which k indices are
really chosen by R. The simulation would fail. Therefore we show that R can
obtain at most k decryption keys by assuming the hardness of chosen-target CDH
problem: In the above simulation, if R queries H1, we return a random value
output by the target oracle. When R∗ simulates S on input A∗

1, A
∗
2, . . . , A

∗
k, we
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– System parameters: (g,Gq);
– S has messages: m1, m2, . . . , mn;
– R’s choices: σ1, σ2, . . . , σk;

1. R chooses a generator h of Gq, a random b ∈ Zq, and two polynomials f(x) =
a0 + a1x + · · · + ak−1x

k−1 + xk and f ′(x) = a′
0 + a′

1x + · · · + a′
k−1x

k−1 + xk

where a0, a1, . . . , ak−1 ∈R Zq and a′
0 + a′

1x + · · · + a′
k−1x

k−1 + xk ≡ (x −
σ1)(x−σ2) · · · (x−σk) mod q. Let (A0, A1, . . . , Ak−1) = (ga0 , ga1 , . . . , gak−1), B =

gb, (C0, C1, . . . , Ck−1) = (ga0bha′
0 , ga1bha′

1 , . . . , gak−1bha′
k−1).

2. R −→ S : (h, A0, A1, . . . , Ak−1, B, C0, C1, . . . , Ck−1).
3. S chooses n random pairs (r1, s1), (r2, s2), · · · , (rn, sn) in Zq, and computes ci =

(gf(i)rigsi , (gf(i)bhf ′(i))ri(gb)si ⊕mi) = (Xri
i gsi , Zri

i Bsi ⊕mi) for i = 1, 2, . . . , n,

where Xi = A0A
i
1 · · ·Aik−1

k−1 gik

, Zi = C0C
i
1 · · ·Cik−1

k−1 (gh)ik

.
4. S −→ R: c1, c2, . . . , cn.
5. Let ci = (Ui, Vi). R computes mσi = Ub

σi
⊕ Vσi for each σi.

Figure 3: OTk
n-III: k-out-of-n OT with perfect sender’s security

forward these queries to the helper oracle, and return the corresponding outputs.
Finally, if R queries H2 on legal vji for all 1 ≤ i ≤ k + 1, we can output k + 1
pairs (vji , ji), which contradicts to the CT-CDH assumption. Thus, R obtains
at most k decryption keys.

Let σ1, σ2, . . . , σk be the k choices of R. For the queried legal vσj ’s, cσj

is consistent with the returned hash values, for j = 1, 2, . . . , k. Since no other
(h∗

l )
x∗

, l �= σ1, σ2, . . . , σk, can be queried to the H2 hash oracle, cl has the right
distribution (due to the random oracle model). Thus, the output distribution is
indistinguishable from that of R.

�

Complexity. OTk
n-II has two rounds. The first round sends k messages and

the second round sends n + k messages. For computation, R computes 2k, and
S computes n + k modular exponentiations.

4 k-out-of-n OT scheme with perfect security of sender

On the other hand, we propose another k-out-of-n OT with unconditional se-
curity for the sender and computational privacy for the receiver. The scheme is
extended from the 1-out-of-n OT under the same security condition provided by
Naor and Pinkas [Naor and Pinkas 2001]. We present the protocol in [Fig. 3].

The main idea of this scheme is the same as OTk
n-I. R first chooses two

polynomials f(x), f ′(x) and a random value b where f ′(x) represents the choices,
and f(x) and b are used to mask f ′(x). By the DDH assumption, Ci = gaibha′

i

can’t be distinguished from the random value when given gai and gb, for i =
0, 1, . . . , k − 1. Therefore the choices of R are computationally secure.
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Then S encrypts the messages by the similar technique of randomized reduc-
tion of DDH from [Naor and Reingold 1997, Stadler 1996]. The receiver R uses
the value b to decrypt the chosen messages, and gets no information about other
messages.

Correctness. Let ci = (Ui, Vi), we can check that the chosen messages mσi ,
i = 1, 2, . . . , k, are computed as

U b
σi

⊕ Vσi = (gf(σi)rσi gsσi )b ⊕ (gf(σi)bhf ′(σi))rσi (gb)sσi ⊕ mσi

= gf(σi)brσi
+bsσi ⊕ (gf(σi)b · 1)rσi gbsσi ⊕ mσi

= gf(σi)brσi
+bsσi ⊕ gf(σi)brσi

+bsσi ⊕ mσi

= mσi .

Security analysis. We now prove the security of OTk
n-III.

Theorem 5. For scheme OTk
n-III, R’s choices are secure under the DDH as-

sumption.

Proof. Since R’s choices (σ1, σ2, . . . , σk) are concealed in (C0, C1, . . . , Ck−1), we
prove the receiver’s privacy by showing that (C0, C1, . . . , Ck−1) look random if
the DDH assumption holds. Assume that there exists a distinguisher D distin-
guishes the following two distributions:

– E = (g, ga0 , ga1 , . . . , gak−1 , gb, ga0b, ga1b, . . . , gak−1b), where g is a generator
of Gq, a0, a1, . . . , ak−1, b ∈R Zq;

– X = (g, ga0 , ga1 , . . . , gak−1 , gb, R0, R1, . . . , Rk−1), where g is a generator of
Gq, a0, a1, . . . , ak−1, b ∈R Zq, R0, R1, . . . , Rk−1 ∈R Gq.

We can construct another PPTM D′, which takes D as a sub-routine, to solve
the DDH problem:
Machine D′

Input: (g, u, v, w) (either from Y1 or Y2)

1. Let g∗ = g be the system parameters of OTk
n-III.

2. Randomly select l ∈ {0, 1, . . . , k − 1}.
3. Output D(g∗, A∗

0, A
∗
1, . . . , A

∗
k−1, v, C∗

0 , C∗
1 , . . . , C∗

k−1) where

(A∗
i , C

∗
i ) =

⎧⎨
⎩

((g∗)a∗
i , va∗

i ), a∗
i ∈R Zq if i ∈ {0, . . . , l − 1}

(u, w) if i = l

((g∗)a∗
i , Ri), a∗

i ∈R Zq, Ri ∈R Gq if i ∈ {l + 1, . . . , k − 1}
.
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Assume that D distinguishes E and X with non-negligible advantage ε. Let α =
(g, u, v, w) and �El = (g∗, A∗

1, A
∗
2, . . . , A

∗
k, gb∗ , C∗

1 , C∗
2 , . . . , C∗

k) where b∗ ∈R Zq

and

(A∗
i , C

∗
i ) =

{
((g∗)a∗

i , va∗
i ), a∗

i ∈R Zq if i ∈ {1, . . . , l}
((g∗)a∗

i , Ri), a∗
i ∈R Zq, Ri ∈R Gq if i ∈ {l + 1, . . . , k} .

Note that �Ek = E and �E0 = X . If α is chosen from Y1, then

Pr
α∈Y1

[D′(α) = 1] = Pr[D′(Y1) = 1] =
1
k

k∑
l=1

Pr[D( �El) = 1].

If α is chosen from Y2, then

Pr
α∈Y2

[D′(α) = 1] = Pr[D′(Y2) = 1] =
1
k

k−1∑
l=0

Pr[D( �El) = 1].

Therefore, we have

Pr[D′(Y1) = 1] − Pr[D′(Y2) = 1] =
1
k
(

k∑
l=1

Pr[D( �El) = 1] −
k−1∑
l=0

Pr[D( �El) = 1])

=
1
k
(Pr[D( �Ek) = 1] − Pr[D( �E0) = 1])

=
1
k
(Pr[D(E) = 1] − Pr[D(X) = 1])

≥ ε

k
.

So we can solve the DDH problem with at least non-negligible advantage ε
k ,

which is a contradiction.
�

Theorem 6. The sender’s security of Scheme OTk
n-III is unconditionally-secure.

That is, for i /∈ {σ1, σ2, . . . , σk}, no receiver R can get information about mes-
sages mi.

Proof. Since Zi = C0C
i
1 · · ·Cik−1

k−1 (gh)ik

= gf∗(i)b∗hf ′∗(i), the degree of f ′∗(x) is
k. That is, there are at most k f ′∗(i)’s equal to 0. Then for any other f ′∗(i) �= 0,
we prove that Zri

i Bsi is uniformly distributed in Gq.
Let I = {i ∈ {1, 2, . . . , n}|f ′∗(i) �= 0}. For any i ∈ I, we let ãi = f∗(i)ri + si,

and ei = logg hf ′∗(i). Then

Zri

i Bsi = (gf∗(i)bhf ′∗(i))rigbsi

= g(f∗(i)ri+si)b(hf ′∗(i))ri

= gãib+eiri .
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– System parameters: (g,H1, H2, Gq);
– S has messages: m1, m2, . . . , mn;
– R’s choices: σ1, σ2, . . . , σk;

Commitment Phase

1. S computes ci = mi ⊕ H2(h
x
i ) for i = 1, 2, . . . , n, where hi = H1(i), and x ∈R Z

∗
q .

2. S −→ R : c1, c2, . . . , cn.

Transfer Phase
For each σj , j = 1, 2, . . . , k, R and S execute the following steps:

1. R chooses a random aj ∈ Z
∗
q and computes hσj = H1(σj), Aj = (hσj )

aj .
2. R −→ S : Aj .
3. S −→ R : Dj = (Aj)

x.

4. R computes Kj = (Dj)
a−1

j and gets mσj = cσj ⊕ H2(Kj).

Figure 4: Adpt-OTk
n: Adaptive OTk

n

Therefore, Zri

i Bsi is uniformly distributed in Gq because ei �= 0 and ri is uni-
formly distributed in Zq.

�

Complexity. OTk
n-III has two rounds. The first round sends 2k + 2 messages

and the second round sends n messages. For computation, R computes 4k + 1,
and S computes (2k + 6)n modular exponentiations.

5 OT with adaptive queries

The queries of R in OTk
n-II can be adaptive. In OTk

n-II, the commitments ci’s
of the messages mi’s of S to R are independent of the key masking. Therefore,
our scheme OTk

n-II is adaptive in nature and the number k of queries need not
be prefixed. Our Adpt-OTn scheme is depicted in [Fig. 4].

The protocol consists of two phases: the commitment phase and the transfer
phase. The sender S first commits the messages in the commitment phase. In
the transfer phase, for each query, R sends the query Aj to S and obtains the
corresponding key to decrypt the commitment cj .

Correctness of the scheme follows that of OTk
n-II.

Security analysis. The security proofs are almost the same as those for OTk
n-

II.

Theorem 7. In Adpt-OTk
n, R’s choice are unconditionally secure.

Proof. Since Gq is the group of prime order q, all elements except 1 in Gq are
generators. So for any Aj = h

aj

j and any hl, l �= j, there is an al that satisfies
Aj = hal

l . That is, Aj can be a masked value of any index. Thus, the receiver’s
choices are unconditionally secure.

�
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Theorem 8. In the Adpt-OTk
n, let m1, m2, . . . , mn be messages committed in

the commitment phase. For any receiver R, the number of messages which R

can get is less than or equal to the number of R’s queries in the transfer phase
in the random oracle model.

Proof. For any possible R, we construct a simulator R∗ in the ideal model such
that the outputs of R and R∗ are indistinguishable:

1. In the commitment phase, R∗ randomly chooses c∗1, c∗2, . . . , c∗n ∈ Gq and
x∗ ∈ Z∗

q .

2. In the transfer phase, R∗ simulates R on input (c∗1, c
∗
2, . . . , c

∗
n), and gets

message queries. For each query Aj , R∗ returns (Aj)x to R. If R queries H1

on index i, R∗ returns a random h∗
i ∈ Gq. If R queries H2 on some Ki where

– Ki = (h∗
i )

x for some i, R∗ sends i to the TTP T to obtain mi and returns
c∗i ⊕ mi.

– Ki �= (h∗
i )

x for all h∗
i have been queried to H1, R∗ returns a random

value, and put (Ki)x−1
to the revocation list of H1.

Note that R∗ uses a table for maintaining consistency of queries for each
oracle. Moreover, R∗ will not choose the values in the revocation list of H1

as the answer of H1 queries.

3. Output (c∗1, c
∗
2 . . . , c∗n, A∗

1, A
∗
2, . . . , A

∗
k, D∗

1 , D
∗
2 , . . . , D∗

k). (We assume R makes
k queries in the transfer phase: A∗

1, A
∗
2, . . . , A

∗
k.)

Since R makes k queries in the transfer phase, we show that R gets k messages
at most. Therefore we show that R obtains at most k decryption keys. In the
above simulation, if R queries H1, we return a random value output by the target
oracle. When R queries A∗

i ’s adaptively, we forward these queries to the helper
oracle, and return the corresponding outputs. Finally, if R queries H2 on legal
(h∗

i )
x for all 1 ≤ i ≤ k+1, we can output k+1 pairs ((h∗

i )
x, i), which contradicts

to the CT-CDH assumption. Thus, R obtains at most k decryption keys.
Let σ1, σ2, . . . , σk be the k choices of R. For the legal query (h∗

σj
)x, cσj

is consistent with the returned hash values, for j = 1, 2, . . . , k. Since no other
(h∗

l )
x∗

, l �= σ1, σ2, . . . , σk, can be queried to the H2 hash oracle, cl has the right
distribution (due to the random oracle model). Thus, the output distribution is
indistinguishable from R’s output.

�

Complexity. In the commitment phase, S needs n modular exponentiations
for computing the commitments ci’s. In the transfer phase, R needs 2 modular
exponentiations for computing the query and the chosen message. S needs one
modular exponentiation for answering each R’s query. The commitment phase
is one-round and the transfer phase is two-round for each adaptive query.
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6 Conclusion

We have presented three very efficient OTk
n schemes with perfect security of

either receiver or sender. The first two OTk
n schemes with perfect security of

receiver are secure against semi-honest receivers in the standard model and ma-
licious receivers in the random oracle model. Our schemes possess other inter-
esting features, such as, it can be non-interactive and needs no prior setup or
trapdoor. We also proposed an efficient Adpt-OTn for adaptive queries where
the number of queries is unbounded. The essential technique is to reverse the
order of key commitment and message commitment. In most previous schemes
(including OTk

n-I), the key commitments (for encrypting the chosen messages)
are sent to S first. The message commitments are dependent on the key com-
mitments. Nevertheless, in our scheme OTk

n-II the message commitments are
independent of the key commitment. Thus, the message commitments can be
sent to R first.
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