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(Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

daltro@inf.ufrgs.br)

Abstract: The latest versions of AspectJ, the most popular aspect-oriented extension
for Java, must cope with the complex changes that occurred in the Java type system,
specially with those that introduced type parameters for classes and methods. In this
work we study the influence of raw types, i.e. parameterless instantiations of class
types, over the semantics of an AspectJ-like language. As a result, we define an oper-
ational semantics and a type system for a calculus, named Raw Aspect Featherweight
Generic Java (Raw-AFGJ), that represents a minimal aspect-oriented extension of Raw
Featherweight Generic Java. Through our calculus it is possible to achieve a better un-
derstanding of several subtleties of aspect weaving with the restrictions imposed by
raw types support in the type system.
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1 Introduction

The AspectJ language[Kiczales et al., 2001] is a superset of Java that allows the
definition of aspect oriented abstractions, i.e. pointcuts, advices and aspects.
Some parts of AspectJ, such as pointcut matching, rely strongly on types, mak-
ing them very sensitive to modifications in the type system. As the Java language
evolved, it eventually came to include – in its version 1.5 – parametric polymor-
phism for classes, interfaces and methods. In Java, parametric polymorphism is
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mainly used to provide better compile-time type checking for container classes.
Naturally, such improvements raised concerns about compatibility with legacy
code in both source and bytecode levels.

The source language compatibility issue was solved by expanding the type
system to support parameterless instantiations of parametrized types, the so
called raw types [Bracha et al., 1998]. With raw types, legacy classes could be
transformed into polymorphic versions without affecting their monomorphic
clients. For instance, in Generic Java the class ArrayList requires a type ar-
gument that defines its content type. Thus, objects of this class are created by
calls such as new ArrayList<Integer>(), new ArrayList<String>(), and so
on. In the presence of raw types, although, it is also possible to create objects
with a parameterless call such as new ArrayList(). In this case, the type of the
contents is obtained by means of type erasure.

Since the Java Virtual Machine has not changed substantially due to the
addition of generics to the Java language, the compatibility issue in the bytecode
level was solved using type erasure. This means that, after type checking, the Java
compiler erases type parameter information in order to generate a backward-
compatible bytecode.

Following Java 1.5, AspectJ has also added support for parametric poly-
morphism. Parameterized types may freely be used within aspects (including
pointcut expressions) and support is also provided for generic abstract advices.
However, although the role of raw types and type erasure in polymorphic Java
is clear, the same can not be said about their role in polymorphic AspectJ.

As an example, consider the following code:

class Buffer<E extends Number> {

void add_1(E e){..}
void add_2(List e){..}
void add_3(List<E> e){..}
void add_4(List<Integer> e){..}

public static void main(String[] args) {
Buffer<Integer> b1 = new Buffer<Integer>();
b1.add_1(42);
b1.add_2(new ArrayList<Number>());
b1.add_3(new ArrayList<Integer>());
b1.add_4(new ArrayList());

}

}

public aspect BufferAspect {

before():execution(void *(Integer)){..}

before():execution(void *(List)){..}

before():execution(void *(List<Integer>)){..}

before():execution(void *(List<Number>)){..}

}

The class Buffer represents a container whose content type depends on the
given value for type parameter E. This class has methods that insert different
kinds of data into the buffer. It also contains a main method that instantiates
a Buffer object (passing Integer as type parameter) and adds some content
to it. The aspect BufferAspect defines four advices that insert code before the
execution of any method with exactly one parameter whose return type is void.
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The advices differ only on the advised method parameter type: Integer, List,
List<Integer> or List<Number>, respectively.

At first glance, it would be natural to think that all the advices are triggered
when the main method executes. However, in the current AspectJ implemen-
tation, only the second and the third advices are weaved to the code. The first
advice does not have a match because, due to type erasure, the type variable E

in method add_1 is replaced by its bound (Number) at compile-time. The type
variable E is totaly erased from the type signature of add_3, in the bytecode.
Because of that, the third advice fails to match against it. The second advice
is triggered by the execution of add_2, add_3 and add_4. This occurs because
execution pointcuts match against the method signature of the bytecode, in
this case any possible instantiation of List. Finally, the execution of add_4 is
advised by the third advice, since the pointcut expression defines an exact match
on a type whose parameters are fully defined at compile-time.

Besides the weaving semantics, the type system of AspectJ is also affected
by type erasure. For instance, consider the following advice declaration:

before(): execution(void Buffer<String>.foo()){
System.out.println("Executing foo in Buffer<String>\n");

}

This advice aims to print a message before all executions of foo, but only
when it is called from an object of type Buffer<String>. Although this seems
to be a valid declaration, it is considered ill-typed by the AspectJ type system.
This happens because there is no way to check the precise type parameter for
Buffer at compile-time, and to distinguish between a Buffer<String> object
and a Buffer<Integer> object. Therefore, the AspectJ type system only accepts
raw types as valid object types in pointcut expressions.

Such subtleties involving both the weaving and the type system of AspectJ
make the reasoning over aspect-oriented code somewhat misleading and difficult.
Both raw types and type erasure cause an absence of type information during
the execution of the program. The AspectJ language deals with this by disal-
lowing situations where it would cause problems (e.g. unintended changes in the
program execution) or simply warning the programmer during compilation. In
this work, we aim to characterize the influence of raw types and type erasure in
AspectJ. We define an operational semantics and a type system for a calculus,
named Raw Aspect Featherweight Generic Java (Raw-AFGJ), where such influ-
ence becomes more clear. As far as we know, this is the first work that formally
investigates this issue in an aspect-oriented context.

Raw-AFGJ is a combination of Raw Featherweight Generic Java
[Igarashi et al., 2001b], with the aspect weaving semantics proposed in Aspect
Featherweight Generic Java [Jagadeesan et al., 2006]. The main contributions of
this paper are: (1) the Raw-AFGJ calculus, given by type system and operational
semantics; (2) proof of the type soundness of Raw-AFGJ.
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The remainder of the paper is organized as follows: in Section 2, we present
our calculus, Raw-AFGJ, by means of a structural operational semantics and a
type system. In Section 3, we explore the properties of the calculus, mainly type
soundness. In Section 4, we present an overview of the state-of-art regarding
calculi for representing Java and the AspectJ weaving semantics. Finally, in
section 5 we present our conclusions.

2 Raw Aspect Featherweight Generic Java

This sections describes the Raw-AFGJ calculus by means of its abstract syn-
tax, type system and reduction rules. The Raw-AFGJ calculus is a combination
of two extensions of Featherweight Generic Java (FGJ) [Igarashi et al., 2001a],
namely RawFGJ [Igarashi et al., 2001b] that provides a formal description of
raw types in FGJ, and AFGJ [Jagadeesan et al., 2006], that extends FGJ with
parametrized advice definitions. Since we focus on the interaction of raw types
and advices, we tried to keep most of the design decisions of the original calculi.
Some modifications, although, were introduced in order to bring the semantics
of Raw-AFGJ closer to the one of AspectJ.

2.1 Syntax

The syntax for Raw-AFGJ programs is depicted in Figure 1. A program is a
sequence of declarations followed by an expression to be executed. This expres-
sion represents the program entry point, just like the main method in Java. The
declarations consist of a list of classes and advice declarations. In the follow-
ing, we use e as an abbreviation for e1, e2, ..., en, for n ≥ 0. The operation
#(e) retrieves the length n of the sequence e. Similar conventions are used for
sequences of type parameter declarations, field declaration, judgements, etc. It
is important to note that a single occurrence of some metavariable M differs from
the indexed sequence of metavariables M.

The declaration class C<X�N> � N { fd k md } defines a class C with a list
X�N of type parameters, a parent type N, a list fd of field definitions, a constructor
definition k, and a list md of method definitions. The symbol � substitutes the
extends keyword for the sake of brevity. A type parameter definition X�N states
that the type variable X will be constrained to a subtype of the non-variable
type N. The Object class is implicitly defined, i.e. it can not occur as the name
of a declared class. Every declared class must specify a superclass, even when
the superclass is Object. A field declaration T f simply associates type T to a
field name f. Moreover, field definitions can not be overwritten by subclasses,
i.e. inheritance is conservative for fields (but not for methods). The constructor
definition C (T g, T f) { super(g) this.f=f } is the only mandatory part
of the class body. The constructor parameters T g are used to initialize object
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Metavariables:

C,D,E : classes
f,g : fields
m : methods
d,e : expressions
v,u,w : values
R,S,T,U,V: types

N,P,Q : non-var types
a,b : advices
φ,ψ,ρ: pointcuts
X,Y,Z : type variables
x,y,z : variables

Class Definition:

cd ::= class C<X�N>� N {fd k md} class
fd ::= T f field
k ::= C(T g,T f){super(g) this.f=f} constr.
md ::= <X�N> T m (T x) { e } method

Advice Definition:

ad ::= advice a T (T x) : φ { e }

Pointcuts:

φ ::= exe T C.m(T)
| exe T C.*(T)
| exe T C.m(T,*)
| exe T C.*(T,*)
| φ && ψ
| φ || ψ
| false
| true

Program:

prog ::= cd ad e

Types:

T ::= X type variable
| C<T> cooked type
| C raw type
| � bottom type

Non-variable types:

N ::= C<T> cooked type
| C raw type

Expressions:

e ::= x variables, this
| new N(e) object instantiation
| e.f fied access
| e.m<T>(e) method call
| e.m(e) raw method call
| e.m[a]<T>(e) advised method call
| e.m[a](e) advised raw method call
| proceed(e) proceed call

Values:

v ::= new N(v) value

Figure 1: Raw-AFGJ : Abstract Syntax

fields defined in the superclass by means of super(g), while the parameters
T f are used to initialize the locally defined fields through this.f=f. A method
declaration <X�N> T m (T x) { e } defines type parameters X�T, a return type
T, a method name m, method parameters x and a method body e.

An expression can be a variable reference x, a constructor invocation
new N(e), a field access e.f, a parametrized method call e.m<T>(e), a raw
method call e.m(e), or advised versions of the two kinds of method invoca-
tion (e.m[a]<T>(e) and e.m[a](e), respectively). The advised methods are
equipped with a list [a] of names of advices which remain to be run before the
body execution, representing the weaving. Note that the advised method calls
are not part of the source language, occurring only as intermediate steps of the
method evaluation.

The declaration advice a T (T x) : φ {e} defines and advice of name a.
The signature T (T x) represents the advice type, i.e. the type of the piece of
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code that will execute in place of some method calls. The pointcut expression φ
represents what methods should be intercepted by the advice. The behavior of
advices in Raw-AFGJ is similar to the around advice in AspectJ, executing the
advice body e if the pointcut φ is matched. Inside the advice body it is possible
to call the special method proceed, which is an alias for the method currently
being advised.

In Raw-AFGJ we model essentially method execution join points. We use the
syntax exe T C.m(T) in the same sense as the execution pointcut of AspectJ,
matching a method within class C, with name m, with parameters whose types
are T, that returns a value of type T. In some places, like in method name or in
type parameters, we can have the wildcard replacement *, meaning any match.
We can also have as pointcuts atomic boolean values (true and false) and
combinations of pointcuts using the or and and operators.

2.2 Type System

The language of types of Raw-AFGJ, depicted in Figure 1, is basically the same
as in Raw FGJ. Types in general are represented by the meta-variable T, and
we use N to range over non-variable types. Every class definition has a (possibly
empty) list of type variables. So, every reference to a class can be either cooked
(when the type parameters are defined) or raw (without type parameters). A
parametrized type of a class C, denoted as C<T>, is different from the correspon-
dent raw type, denoted by C alone, even if the list of type parameters is empty
(C<>). The bottom type � is used as a placeholder for unknown type parameters.
This is needed to provide valid types for both raw methods and constructors of
raw classes. Type variables, denoted by X, Y and Z, can occur in type expressions
as well.

A type variable environment, denote by Δ , is a (possibly empty) sequence
of associations X <: N, representing that the type variable X is bounded by the
non-variable type N. The association of variables to types is given by a type
environment, denoted by Γ . A type environment can also have an special form
of association, T proceed(T), which is needed by the type system. It is used to
save the type of the weaved methods when typing the advice body.

2.2.1 Well-Formed Types and Environments

The judgement Δ � T ok denotes that the type T is well-formed with relation to
the type variable environment Δ . It means that all type variables that occur in T

must respect the bounds defined by the type variable environment Δ . Moreover,
well-formed class types must also be valid with respect to the type parameter
restrictions provided by the class definitions. The rules for well-formed type
judgements are shown below.
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Δ � Object ok (WF-Object)

Δ � � ok (WF-Bot)

X ∈ dom(Δ)
Δ � X ok

(WF-Var)

class C<X�N> � N { ... }

Δ � T ok Δ � T<: [T/X]N
Δ � C<T> ok

(WF-Class)

class C<X�N> � N { ... }

Δ � C ok
(WF-Raw)

The syntax [T/X]N means the application of a sequence of type variable
substitutions Ti/Xi in N.

A type variable environment Δ is said to be well-formed, written Δ � ok if all
of its bounds are well-formed types under itself, i.e. if for all X<:N in Δ , we have
that Δ � N ok.

A type environment Γ is said to be well-formed with respect to a type variable
environment Δ , written Δ ;Γ � ok, if for all T x ∈ Γ , we have Δ � T ok. Also, for
the special form T proceed(T), we have Δ � T,T ok.

2.2.2 Subtype relation

The judgement Δ � T <: V says that type T is a subtype of V under type envi-
ronment Δ . The subtype relation <: is induced by the class hierarchy. Since a
class type parameter can occur both in the return type and in the parameter
types of methods, the subtype relation must be invariant for type parameters. In
other words, T <: S �⇒ C<T> <: C<S>. Considering a class definition like class

C<X�Object> � N { ... } the raw type C is the supertype of all its possible
parametrizations, like C<Boolean>, C<String> or C<�>. The type � is consid-
ered to be the minimum element of the subtype hierarchy. It is important to
note that parametrizations with bottom type are not subtypes of other instan-
tiated types, i.e. C<�> �<: C<String>. The rules that define the subtype relation
are shown as follows.

Δ � T <: T (S-Reflex)

Δ � S <: T Δ � T<: U
Δ � S <: U

(S-Trans)

Δ � X<: Δ(X) (S-Var)

class C<X�N> � D<S> { ... }

Δ � C<T> <: [T/X]D<S>
(S-Super)

class C<X�N> � D { ... }
class D<Y�P> � N { ... }

#(Y) = #(�)
Δ � C<T><: D<�>

(S-RawSuper)

Δ � � <: T (S-Bot)

C�D

Δ � C <: D
(S-Raw)

Δ � C<T> <: C (S-CookedRaw)

The relation �, used by rule S-Raw, is the reflexive and transitive closure of
the extends relation � between classes. The rule S-CookedRaw says that the
cooked type C<Int> is subtype of the raw type C. However, in order to provide
compatibility with old code that instantiates classes without type parameters,
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we may also wish that raw types were used in place of cooked types. This oper-
ation should also provide some kind of warning that such operation is not safe.
The relation that includes safe subtyping but also allows such coercion is called
the unsafe subtyping relation, and is denoted as <:?. The rules for unsafe type
judgements are provided as follows.

Δ � S <: T
Δ � S <:? T

(SU-Safe)
Δ � C <: D warning

Δ � C <:? D<T>
(SU-Unsafe)

2.2.3 Class Declaration typing

Class declarations are valid if the type variable bounds, superclass type and field
types are all well-typed. Moreover, the constructor arguments that are passed
by the super call must coincide with the constructor arguments for the super-
type class. Finally, all declared methods must also be valid inside the class. The
following rule checks such constraints for class definitions. The auxiliar func-
tion cargtype retrieves the argument types for the class constructor, triggering
a warning if the types are changed due to type erasure (for more details, see
[Igarashi et al., 2001b]).

X<:N � N,T,N ok cargtype(N) = U g md ok in C<X�N>
k = C (U g,T f) { super(g) this.f=f }

class C<X�N> � N { T f k md } ok
(T-Class)

Method overloading is not allowed, i.e. in a given class C the same method
name m can not have two definitions with different type parameters. This choise
eases method lookup, since it does not have to match parameter types. In FJ,
methods can be overridden in subclasses only if they have the same type as their
ascendent. In Raw-AFGJ (which is based on FGJ), covariance of the return type
in overriding is also allowed. The following rules are used to determine if a given
method m, with type <Y�P>T→T, is a valid overring of method in superclass N. If
the method is not defined in N, it is trivially valid. Otherwise, the rules verify if
the types are compatible.

mtype(m,N) = <Z�Q>U→ U implies P = [Y/Z]Q and T= [Y/Z]U and Δ � T<: [Y/Z]U
override(m,<Y�P>T→ T,N)

(Override)

mtyperaw(m,C) = U→ U implies U = T and Δ � T <: U

override(m,T→ T,C)
(OverrideR)

Method definition typing must check if the type variable bounds, parame-
ter and return types are well-defined. The method body type must be consistent
with the declared return type, considering the type environment augmented with
types for parameters and the special variable this. Moreover, the method defi-
nition must also be a valid override.

Δ = X<:N,Y<:P class C<X�N> � N { fd k md }
Δ � T,T,P ok Δ ;T x,V this � e : S Δ � S <: T

override(m,<Y�P>T→ T,N)
<Y�P>T m(T x){ e } ok in C<X�N>

(T-Method)
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2.2.4 Advice Declaration typing

Advice definitions must take into account if the types of the parameters, return
type and target class are all valid in the empty type variable environment (since
they do not have type variables). The type of the aspect body must be valid
under the type environment extended with the types for target (an alias for
the class of the advised method) and proceed (an alias for the advised method
itself). The pointcut logic relation |= (described in Section 2.2.5) is used to
provide the good formation of the pointcut definition. In AFGJ, type variables
where allowed in advices. We removed parametrization in advices since AspectJ
only provides weaving for concrete advices.

φ |= exe T C.*(T,*) ∅ � T,T,C ok
∅;T x,C target,T proceed(T) � e : T’ ∅ � T’<: T

advice a T (T x) : φ { e } ok
(T-Adv)

The advised method calls contain a list of advice names that intercept the
method execution. The weaving of advices in methods are represented by the
relation advisedby (defined below) in which C.m advisedby a means that the
advice a intercepts method m in class C.

advice a T (T x) : φ { e } exe T C.m (T) |= φ
mtypeadv(m,C) = T0 → T0 matcheq(T0,T) matcheq(T0,T)

C.m advisedby a
(Advised-By)

The advisedby is used by both type system and reduction semantics and it
is based on |= relation for matching pointcuts against method calls. Since this
relation forces all types to match exactly, we modified the matching process in
order to include the treatment for raw types.

1. If there are type variables in any type definition on the target method signa-
ture we must perform the erasure of these types before matching any pointcut
against it. We represent this conditional signature erasure of type T under
type variable environment Δ as ||T||Δ . This function is used by the method
type fetching function mtypeadv. Both functions are defined as follows:

class C<X�N> � N { fd k md } m �∈ md

mtypeadv(m,C) = mtypeadv(m,head(N))

class C<X�N> � N { fd k md }
<Y�P> R m (U x) { e } ∈ md Δ = X<:N,Y<:P

mtypeadv(m,C) = ||U||Δ → ||R||Δ

||T||Δ =
{
T if ∅ � T ok
|T|Δ otherwise

2. If the pointcut return or if the pointcut parameters are defined as raw
types we must match it against erasured method signatures. For example,
if the pointcut is exe List C.*(), we must pick up all methods defined in
class C whose the erasure of return type is List (e.g. List, List<Int<>>,
List<X> and others). However, if the poitcut is using a fully defined type,
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exe List<Int<>> C.*() for example, we must perform an exact match (i.e.
only methods with List<Int<>> as its return type must be picked up). To
ensure this functionality we have created another auxiliary function, named
matcheq.

matcheq(T0,T )
{

head(T0) = T if T is a raw type
T0 = T otherwise

2.2.5 Pointcut logic

The matching of execution points and advices is determined by a monotonic
logic, initially proposed in [Jagadeesan et al., 2006]. The rules that define the
relation |= are as follows.

ρ |= true

φ |= ρ
φ && ψ |= ρ

false |= ρ

ρ |= φ
ρ |= φ || ψ

ψ |= ρ
φ && ψ |= ρ

ρ |= ψ
ρ |= φ || ψ

ρ |= φ ρ |= ψ
ρ |= φ && ψ

ψ |= ρ φ |= ρ
φ || ψ |= ρ

exe T C.m(T,S) |= exe T C.m(T,*) exe T C.m(T,S,*) |= exe T C.*(T,*)
exe T C.m(T,S,*) |= exe T C.m(T,*) exe T C.*(T,S) |= exe T C.*(T,*)
exe T C.m(T) |= exe T C.*(T) exe T C.*(T,S,*) |= exe T C.*(T,*)
exe T C.m(T,S) |= exe T C.*(T,*)

The relation |= defines how the program join points are matched by pointcuts,
dealing with both the instantiation of wildcards in pointcut expressions and the
combination of matchings. This logic allows to match methods with any number
of parameters by means of the wildcard ∗. Roughly speaking, the pointcut φ is
less general (or more unified) than the pointcut ψ if φ |= ψ . The pointcut logic
is used in the type system, when verifing the good formation of pointcuts in
advices (rule T-Advice), and in the reduction semantics, when providing the
matches for the generation of advice lists (rules R-Weave and R-WeaveR).

2.2.6 Expression typing

For both type system and operational semantics, the sequence cd of class defini-
tions of the program is treated as a global constant (and therefore omitted from
deduction rules). Whenever a class definition class C<X�T>�N ... appears as
a precondition of a rule, it is implied that C is defined in cd. The class list cd

must obbey some sanity conditions in order to be well-formed:

– The special class Object must not occur in the class table, i.e. Object �∈ cd.
The rules that deal with field and method lookup have special forms to deal
with this class, since Object has no fields and no methods.

– The class hierarchy must be acyclic.
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– No class can redefine fields already defined in some superclass.

– There is at most one definition for each class C ∈ cd.

– The type � does not occur anywhere in class or method definitions.

– For all cdi ∈ cd, cdi ok.

The sequence of advice declarations ad works in a similar fashion as the class
definition list. It is also considered an implicit constant in deduction rules, and
it must also respect the sanity conditions that advice names are unique, � does
not occur in advice declarations and for all adi ∈ ad, adi ok. The judgement
ad;cd � ok states that both the class declarations and advice declarations are
well-formed. One relevant difference between the advice list and the class list
is that the occurrence position in ad is relevant. The order in which advices
are declared implies the order in which they are weaved to methods, defining a
priority between advices.

Type judgements of the form Δ ;Γ � e : T provide typing for expressions. The
rules for expression typing are shown in Figure 2. The subtleties worth noticing
in expression typing are mainly related to raw and advised method calls. When a
method invocation lacks type parameters, the rules exchange the unknown types
for �. The rule for typing advised method call check if all advice names in the
list a are related to it by means of the advisedby relation.

2.3 Operational Semantics

The execution of Raw-AFGJ programs is given by means of standard structural
operational semantics. The reduction judgement Δ ;Γ � e1 → e2 tells that pro-
gram cd ad e1 reduces to cd ad e2 under environments Δ and Γ . We consider
cd and ad to be constants, thus reducing the notational burden.

The evaluation of e.f by rule R-Field is actually a selection over the argu-
ments of the constructor. The function f ields provides the index of f.

The main influence of advice weaving occurs in the method evaluation. In
Raw-AFGJ, a non-advised method is not directly executed. Before performing
the method substitution, a list of incident advices is generated according to the
advisedby relation and the advice definition list ad. The advices are triggered in
the same order in which they are declared. Thus, a simple (non-advised) method
call is rewritten into an advised call with the advices that will intercept the
method, as shown by the rules R-Weave and R-WeaveR.

Concerning the evaluation of advised method calls, the main idea is to sub-
stitute the expression with the body of the first advice of the list, passing the
method call itself (without the head of the advice list) as the value of the proceed
statement. This is done by the rules R-Advice and R-AdviceR.
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Δ ;Γ � ok Δ � C<U> ok Δ � S<:?T
cargtype(C<U>) = T f Δ ;Γ � e : S

Δ ;Γ � new C<U>(e) : C<U>
(T-New)

Δ ;Γ � ok Δ � C<�> ok Δ � S<:?T
cargtype(C) = T f Δ ;Γ � e : S

Δ ;Γ � new C(e) : C<�>
(T-NewR)

Δ ;Γ � ok Γ (x) = T

Δ ;Γ � x : T
(T-Var)

Δ ;Γ � e : T f ields(boundΔ (T)) = T f

Δ ;Γ � e.fi : Ti
(T-Field)

Δ ;Γ � e : T Δ � V ok
mtype(m,boundΔ (T)) = <Y�P> U→ R

Δ � V <: [V/Y]P Δ ;Γ � d : S Δ � S <:? [V/Y]U
Δ ;Γ � e.m<V>(d) : [V/Y]R

(T-Invk)

Δ ;Γ � e : T Δ � S <:? U
mtyperaw(m, |T|Δ ) = U→ R Δ ;Γ � d : S

Δ ;Γ � e.m(d) : R
(T-InvkR)

Δ ;Γ � e : T Δ � V ok
mtype(m,boundΔ (T)) = <Y�P> U→ R

Δ � V <: [V/Y]P Δ ;Γ � d : S Δ � S <:? [V/Y]U
∀ai ∈ a, T.m advisedby ai

Δ ;Γ � e.m<V>[a](d) : [V/Y]R
(T-InvkA)

Δ ;Γ � e : T Δ � S <:? U
mtyperaw(m, |T|Δ ) = U→ R Δ ;Γ � d : S

∀ai ∈ a, T.m advisedby ai

Δ ;Γ � e.m[a](d) : R
(T-InvkRA)

Δ ;Γ � e : � warning

Δ ;Γ � e.fi : �
(T-Bot-Field)

Δ ;Γ � e : � Δ � V ok Δ ;Γ � e : S warning

Δ ;Γ � e.m<V>(e) : �
(T-Bot-Invk)

Δ ;Γ � e : � Δ ;Γ � e : S warning

Δ ;Γ � e.m(e) : �
(T-Bot-InvkR)

Δ ;Γ � e : � Δ � V ok Δ ;Γ � e : S warning

Δ ;Γ � e.m[a]<V>(e) : �
(T-Bot-InvkA)

Δ ;Γ � e : � Δ ;Γ � e : S warning

Δ ;Γ � e.m[a](e) : �
(T-Bot-InvkRA)

Δ ;Γ � ok Γ (proceed) = R(U)
Δ ;Γ � e : S Δ � S <: U

Δ ;Γ � proceed(e) : R
(T-Proceed)

Figure 2: Expression typing

The substitution of proceed terms in expressions is different from substitu-
tion of other variables. This occurs because of the need to save the parameters of
the method being advised that are not unified by the pointcut due to wildcard
action. These extra parameters are concatenated with the actual parameters of
proceed by means of the special substitution cases presented below. For the
other cases, the substitution does nothing special.

[v.m[a](d)/proceed] proceed(e)= v.m[a](e,d)

[v.m<T>[a](d)/proceed] proceed(e)= v.m<T>[a](e,d)

When the advice list is empty, the rules R-Invk and R-InvkR provide nor-
mal method evaluation, substituting parameters for values and the this variable
for the object where the method is being executed.
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Type Erasure

boundΔ (X) = Δ(X)
boundΔ (N) = N

head(C<T>) = C
head(C) = C

|T|Δ = head(boundΔ (T))

Field types fetching

f ields(Object) = ∅

class C<X�N> � N {fd k md} f ields([T/X]N) = fn

f ields(C<T>) = fn, [T/X]fd

class C<X�N> � N {fd k md} f ields(N) = fn

f ields(C) = |fn,fd|X<:N

Constructor argument types fetching

cargtype(Object) = ∅

class C<X�N>�N{fd k md} cargtype([T/X]N) = fn

cargtype(C<T>) = fn, [T/X]fd

class C<X�N>�N{fd k md} cargtype(N) = fn
warning if |fn,fd|Δ �= fn,fd

cargtype(C) = |fn,fd|X<:N

Cooked method type fetching

class C<X�N> � N { fd k md }
<Y�P> R m (U x) { e } ∈ md

mtype(m,C<T>) = [T/X]<Y�P>U→R

class C<X�N> � N { fd k md } m �∈ md

mtype(m,C<T>) = mtype(m, [T/X]N)

Raw method type fetching

class C<X�N> � N { fd k md }
<Y�P> R m (U x) { e } ∈ md

Δ = X<:N,Y<:P warning if |U|Δ �= U

mtyperaw(m,C) = |U|Δ → |R|Δ

class C<X�N> � D<T> { fd k md } m �∈ md
mtype(m,D<T>) = <Y�P> U→ R

Δ = X<:N,Y<:P warning if |U|Δ �= U

mtyperaw(m,C) = |U|Δ → |R|Δ

class C<X�N> � D { fd k md } m �∈ md

mtyperaw(m,C) = mtyperaw(m,D)

Figure 3: Auxiliar definitions for type system rules

3 Properties of Raw-AFGJ

Since Raw-AFGJ was built on top of existing extensions for FGJ, here we point
out some of its distinctive characteristics when compared to both Raw-FGJ and
AFGJ.

matching: the pointcut matching is based on the logic introduced by Ja-
gadeesan et al.[Jagadeesan et al., 2006]. This is a very simple monotonic
logic that provides exact matching for pointcuts. We maintained this char-
acteristic in Raw-AFGJ modifying only the way it is called in the advisedby
relation (defined in Section 2.2.4) to represent the effect of matching against
raw types.

conditional type erasure: The AspectJ weaver checks if a defined method
signature does not contains type variables and then tries an exact match
over this signature. If the method contains type variables, type erasure is
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Evaluation context

ζ ::= [•]
| ζ.f
| ζ.m<T>(e)
| v.m<T>(v,ζ,e)
| ζ.m(e)
| v.m(v,ζ,e)
| ζ.m<T>[a](e)
| v.m<T>[a](v,ζ,e)
| ζ.m[a](e)
| v.m[a](v,ζ,e)
| proceed(v,ζ,e)

Reduction rules

Δ ;Γ � e1 −→ e2

Δ ;Γ � ζ[e1]−→ ζ[e2]
(R-EvalCtx)

f ields(N) = T f fi ∈ f

new N(v).fi −→ vi
(R-Field)

[a] = [a | a ∈ ad ∧ head(N).m advisedby a]
new N(v).m<V>(u)−→ new N(v).m<V>[a](u)

(R-Weave)

[a] = [a | a ∈ ad ∧ head(N).m advisedby a]
new N(v).m(u)−→ new N(v).m[a](u)

(R-WeaveR)

advice a T (T x) : φ{ e }

v.m<V>[a,a](u,w)
−→

[ u/x, v/target, v.m<V>[a](w)/proceed ]e
(R-Advice)

advice a T (T x) : φ{ e }

v.m[a,a](u,w)
−→

[ u/x, v/target, v.m[a](w)/proceed ]e
(R-AdviceR)

mbody(m<V>,N) = (x,e)
new N(e).m<V>[](d)−→ [ d/x, new N(e)/this ]e

(R-Invk)

mbodyraw(m,N) = (x,e)
new N(e).m[](d)−→ [ d/x, new N(e)/this ]e

(R-InvkR)

Cooked method body fetching

class C<X�N> � N { fd k md }
<Y�P> R m (U x) { e } ∈ md

mbody(m<V>,C<T>) = (x, [T/X,V/Y]e)

class C<X�N> � N { fd k md } m �∈ md

mbody(m<V>,C<T>) = mbody(m<V>, [T/X]N)

Raw method body fetching

class C<X�N> � N { fd k md }
<Y�P> R m (U x) { e } ∈ md

mbodyraw(m,C<T>) = (x, [T/X,*/Y]e)

class C<X�N> � D<T> { fd k md } m �∈ md

mbodyraw(m,C<T>) = mbodyraw(m, [T/X]N)

class C<X�N> � D<T> { fd k md } #(X) = #(*)
mbodyraw(m,C) = mbodyraw(m,C<*>)

Figure 4: Operational semantics

applied and the matching is done against its result1. In Raw-AFGJ, this
behavior is modelled by the || ||Δ , matcheq and mtypeadv operations, defined
in Section 2.2.4.

concrete advices: AspectJ allows the definition of type parameters for ab-
stract aspects. On the other hand, it does not allow the weaving of those
aspects; only concrete aspects with all of their type parameters fully defined

1 Note that the Java compiler saves generic information about declared attributes and
method signatures as comments into the bytecode. Those comments are used by
AspectJ to identify the declared generic type information needed during the weaving
time.
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are weaved. Since this feature does not interfere our goals (i.e. raw types and
type erasure in aspect-oriented languages), we decided to remove paramete-
rization from Raw-AFGJ advices in order to simplify the semantics (Section
2.1).

direct representation of raw types in pointcuts: In our calculus, both
raw and cooked types can be freely used in pointcut expressions, with one
notable exception: only raw types can be used as target classes in pointcuts.
This limitation was originally introduced in AspectJ (due to the type era-
sure design) and it is directly represented in Raw-AFGJ through its abstract
syntax.

Like in other related calculi, the type system of Raw-AFGJ is sound with
respect to its semantics if warnings do not occur. Since we use structural opera-
tional semantics, type soundness comes from progress and preservation:

Theorem 1 (Progress): if ∅;∅ � cd ad e : T and ad;cd � ok and ¬warning,
then e is a value or ∅;∅ � cd ad e−→ cd ad e’.

Theorem 2 (Preservation): if ∅;∅ � e −→ e’ and ∅;∅ � cd ad e : T and
ad;cd � ok and ¬warning, then ∅;∅ � cd ad e’ : S and ∅ � S <: T.

Both proofs follow the standard syntactic soundness technique and are pre-
sented at the Appendix.

4 Related work

Featherweight Java (FJ), proposed by Igarashi, was developed to be a tool for
studying extensions and variations of Java. This possibility was illustrated by
two extensions: (1) Featherweight Generic Java (FGJ) [Igarashi et al., 2001a]
which supports parametric polymorphism; and (2) Raw Featherweight Generic
Java (Raw-FGJ) [Igarashi et al., 2001b] that extends FGJ with raw types.

Recently, some aspect-oriented calculi were proposed to study the influ-
ence of aspects over object-oriented languages [Clifton and Leavens, 2006,
Jagadeesan et al., 2006], and also to study aspects in isolation
[Bruns et al., 2004, Hui and Riely, 2007], i.e. independently of program-
ming paradigm. In [Jagadeesan et al., 2006] a lightweight calculus is proposed in
order to accommodate the subtleties of the interaction of classes, polymorphism
and aspects. The resulting calculus, called Aspect Featherweight Generic Java
(AFGJ), is an aspect-oriented extension of a cast-free version of FGJ. The
pointcut language defined by the authors is very simple. It captures method
execution and includes logic operators (except the not operator). They also
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explore two kinds of parametric polymorphism: the type erasure semantics of
GJ, and the type carrying semantics of languages such as C#.

Even though AFGJ explores some subtleties of type erasure semantics, it does
not mention raw types. Also, some restrictions were imposed over the pointcut
structure disallowing non variable parameters for types in target objects. In our
calculus, type erasure and raw types are treated both in the type system and in
the semantics for both pointcut and Java definitions.

In [Fraine et al., 2008], an analysis of the type systems of current aspect
oriented languages and how they can cause type errors is presented. They identify
the implicit proceed signature as the main responsible for those undetected errors
and they propose the StrongAspectJ language as a type safe extension of AspectJ
with explicit proceed signature, in addition to regular advices. They included type
ranges in pointcut signatures and type variables for generic advices. Like AFGJ,
the StrongAspectJ type system does not consider raw types.

5 Conclusion

In this work we introduced Raw-AFGJ, an aspect-oriented calculus that repro-
duces the behavior of AspectJ with relation to raw types and type erasure. In
particular, with Raw-AFGJ we can describe how AspectJ-like languages are in-
fluenced by generic Java design and how aspect weaving works with raw types
and with the lack of type information at runtime.

We started by giving concrete examples illustrating how type erasure and raw
types interact in subtle ways with aspect weaving semantics. We then proceeded
by giving an operational semantics and a type system for Raw-AFGJ. This formal
treatment was crucial for giving us a better understanding of the intricacies of
AspectJ-like languages in the presence of raw types and type erasure. Besides
proving the classical type soundness property for our calculus we also summarize
its distinctive features when compared to other proposals for generic aspect
oriented calculi.

As future work, we want to explore type rules for wildcards and inter-type
declarations. We also are planning to use Raw-AFGJ to assure the correctness
of some software refactorings related to generic types in AspectJ.
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Appendix – Proofs

Theorem 1 (Progress) if ∅;∅ � cd ad e : T and ad;cd � ok and ¬ warning then
e is a value or ∃e’.∅;∅ � cd ad e−→ cd ad e’.

Proof: By induction on the structure of type derivations for expressions.

Cases whose type is �, typed by T-Bot-Field, T-Bot-Invk, T-Bot-InvkR,T-
Bot-InvkA, T-Bot-InvkRA.

– these rules can never occur, since they depend on warning, which can not occur
by the premise of the progress.

Case e≡ new C<T>(e), where e is typed by T-New.

– Are all parameters e values?
• Yes. Then e is a value.
• No. Then, at least one of e is not a value. Take ei to be the leftmost non-

value expression of e. Taking ζ to be v.m<T>[a](v,ζ,e), then e ≡ ζ [ei].
Using the inductive hypothesis, there is a e′i such that Δ ;Γ � ei −→ e′i.
Therefore, progress is assured by R-EvalCtx.
Since this argument appears quite often, we will simply point it in later
cases by “Progress by R-EvalCtx using the inductive hypothesis”.

Case e≡ new C(e) , e is typed by T-NewR.

– Are all parameters e values?
• Yes. Then e is a value.
• No. Progress by R-EvalCtx using the inductive hypothesis.

Case e≡ x , e is typed by T-Var.
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– The first premise of progress states that Γ = ∅ and all typing rules for expres-
sions keep Γ unchanged. Therefore, this case will never occur in the derivation,
since Γ (x) = T is needed by T-Var.

Case e≡ d.f , e is typed by T-Field.

– Is d a value?
• Yes. Then, by the premises of T-Field, f ∈ f ields(d). Therefore, d.f can

be reduced by R-Field.
• No. Progress by R-EvalCtx using the inductive hypothesis.

Case e≡ d.m<V>(d) , e is typed by T-Invk.

– Is d a value?
• Yes. Are all elements of d values?

∗ Yes. Then, the expression is reduced by R-Weave (it is always pos-
sible to build a list of all advices that intercept the given method
invocation).

∗ No. Progress by R-EvalCtx using the inductive hypothesis.
• No. Progress by R-EvalCtx using the inductive hypothesis.

Case e≡ e.m(d) , e is typed by T-InvkR.

– Is d a value?
• Yes. Are all elements of d values?

∗ Yes. Then, the expression is reduced by R-WeaveR (it is always pos-
sible to build a list of all advices that intercept the given method
invocation).

∗ No. Progress by R-EvalCtx using the inductive hypothesis.
• No. Progress by R-EvalCtx using the inductive hypothesis.

Case e≡ d.m<V>[a](d) , e is typed by T-InvkA.

– Is d a value?
• Are all elements of d values?

∗ Yes. Is the list a empty?
· Yes. Since d is a value, it is of non-variable type N by T-New

or T-NewR. By T-InvkA, mtype(m,N) is defined. By Lemma 3,
dom(mtype) = dom(mbody), therefore mbody(m,N) is also defined. This
assures progress by rule R-Invk.

· No. By T-InvkA, all advice names in a intercept the method call by
means of the advisedby relation. The advisedby relation only holds
for declared advice names. Therefore, the expression is reduced by
means of R-Advice.

∗ No. Progress by R-EvalCtx using the inductive hypothesis.
• No. Progress by R-EvalCtx using the inductive hypothesis.

Case e≡ d.m[a](d) , e is typed by T-InvkRA.

– Is d a value?
• Are all elements of d values?

∗ Yes. Is the list a empty?
· Yes. Since d is a value, it is of non-variable type N by T-New or
T-NewR. By T-InvkRA, mtyperaw(m,|N|Δ ) is defined. By Lemma
4, dom(mtyperaw) = dom(mbodyraw), therefore mbodyraw(m,|N|Δ ) is
also defined. This assures progress by rule R-InvkR.

· No. By T-InvkRA, all advice names in a intercept the method call
by means of the advisedby relation. The advisedby relation only holds
for declared advice names. Therefore, the expression is reduced by
means of R-AdviceR.

∗ No. Progress by R-EvalCtx using the inductive hypothesis.
• No. Progress by R-EvalCtx using the inductive hypothesis.

Case e≡ proceed(e) , e is typed by T-Proceed.
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– The first premise of progress states that Γ = ∅ and all typing rules for expres-
sions keep Γ unchanged. Therefore, this case will never occur in the derivation,
since Γ (proceed) = R(U) is needed by T-Proceed.

Theorem 2 (Preservation) if ∅;∅ � e −→ e’ and ∅;∅ � e : T and ad;cd � ok
and ¬ warning, then ∅;∅ � e’ : S and ∅ � S <: T.

Proof: by induction on the structure of the reduction relation.

Case e−→ e’ by R-EvalCtx, e≡ ζ[d], e′ ≡ ζ[d’].
By the premise of R-EvalCtx, ∅;∅ � d−→ d’. All typing rules rely on the typing
of its subexpressions to provide the type of a given expression. Therefore, if ζ[d]
is well-typed, then the fact that d is well-typed is one of its premises. Hence, ζ[d’]
can be typed using the same type rule as ζ[d].

Case e−→ e’ by R-Field, e≡ new N(v).fi, e
′ ≡ vi.

In this case, e is a value typed by T-New or T-NewR. In both type rules, the
types for the elements of the value list v are insecure subtypes of the result of
cargtype(N). The function cargtype has the same behavior as the f ields function
but for signaling a warning if some type of the field list is modified by the raw class
type fetching. By the premises of preservation we assure ¬warning, which causes
f ields(N) = cargtype(N). Therefore, we have that Δ ;Γ � vi : Si and Δ � Si <:? Ti. Since
¬warning, then also Δ � Si <: Ti.

Case e−→ e’ by R-Weave, e≡ new N(v).m<V>(u), e′ ≡ new N(v).m<V>[a](u).
In this case, e is typed by T-Invk. All elements of the list a of advice names are
related to the given method call by means of advisedby. The premises of T-Invk
and R-Weave allows the result e’ to be typed by means of T-InvkA with the same
type as e (the only difference between T-Invk and T-InvkA is the requirement of
matching for the incident advices).

Case e−→ e’ by R-WeaveR.
Similar to the previous case, considering T-InvkR, R-WeaveR and T-InvkRA.

Case e−→ e’ by R-Advice, e ≡ v.m<V>[a,a](u,w) , e’ ≡
[ u/x, v/target, v.m<V>[a](w)/proceed ]d.
The term e is typed by T-InvkA. By the premises of T-INvkA, the parameters u
are of a subtype of the corresponding result of mtype. By the premises of T-InvkA
the advice with name a is defined in ad. By ad;cd � ok, all defined advices are well-
formed by T-Adv. By the premises of T-Adv, ∅;T x,C target,T proceed(T) �
d : T’ and ∅ � T’ <: T, where T is the return type of the advised method
and T are the types of its parameters (due the exact match of the pointcut
logic). Therefore, using Lemma 1 (preservation of substitution), we have ∅;∅ �
[ u/x, v/target, v.m<V>[a](w)/proceed ]d : T’ and ∅ � T’<: T.

Case e−→ e’ by R-AdviceR.
Similar to the previous case, considering T-InvkRA.

Case e−→ e’ by R-Invk, e≡ new N(w).m<V>[](u) , e’≡ [ u/x, new N(w)/this ]d.
The term e is typed by T-InvkA. The type of e is [V/Y]R, where mtype(m,N) =
<Y�P>U→R. We have two possibilities for N:

– Case N≡ C<U>.
By the definition of mtype, R≡ [U/X]R’, where X is the type parameter list for
C. Therefore, the type of e is [V/Y]([U/X]R’).
By the premises of R-Invk, mbody(m<V>,C<U>) = (x,d). By construc-
tion mtype(m,C<U>) and mbody(m<V>,C<U>) will obtain its results from
the same method definition md. By the good formation of the envi-
ronments, T-Method holds for all declared methods including md.
By the premises of T-Method, then ∅,X�N,Y�P;∅,N this,U u � d : S
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and ∅,X�N,Y�P � S <: R’. By Lemma 2 (preservation of type vari-

able substitution), then ∅;∅,[U/X,V/Y]N this,[U/X,V/Y]U u �
[U/X,V/Y]d : [U/X,V/Y]S holds, and also ∅ � [U/X,V/Y]S <:
[U/X,V/Y]R’. By Lemma 1 (preservation of substitution), then ∅;∅ �
[ [U/X,V/Y]u/x, new [U/X,V/Y]N(w)/this ] [U/X,V/Y]d : [U/X,V/Y]S.

– Case N≡ C
Construction of the proof is similar to the above case, but using mtyperaw and
mbodyraw.

Case e−→ e’ by R-InvkR. e≡ v.m[](u,w) , e’≡ [ d/x, new N(e)/this ]d.
Similar to the previous case, considering T-InvkRA as the type rule for e. For the
| |Δ operation, Lemma 2 (preservation of type variable substitution) is used.

Lemma 1 (preservation of substitution)

Substitution of variables
The substitution of variable x for value v in expression e, denoted as [v/x]e, is defined
as follows:

[v/x]x = v
[v/x]y = y if x �= y
[v/x]new N(e) = new N([v/x]e)
[v/x](e.f) = ([v/x]e).f
[v/x](e.m<T>(e)) = ([v/x]e).m<T>([v/x]e)
[v/x](e.m(e)) = ([v/x]e).m([v/x]e)
[v/x](e.m[a]<T>(e)) = ([v/x]e).m[a]<T>([v/x]e)
[v/x](e.m[a](e)) = ([v/x]e).m[a]([v/x]e)
[v/x]proceed(e) = proceed([x/v]e)
[v/x]e = [v/x]e1,[v/x]e2, . . . ,[v/x]en

The type preservation for substitution of variables is stated as:

if Δ ;Γ ,U x � e : T and Δ ;Γ � v : U′ and Δ � U’<: U and Δ ;Γ � ok, then Δ ;Γ � [v/x]e :
T’ and Δ � T’ <: T.

Proof: by induction on the structure of the substitution.

Case e≡ x .
The expression x is typed by T-Var, having type Γ (x) = U. By the premisses of
preservation of substitution, Δ ;Γ � v : U′ and Δ � U’ <: U.

Other cases . The other cases simply propagate the substitution to its subexpres-
sions. The preservation of types is assured by the inductive hypothesis over the
substitution on subexpressions.

Substitution of proceed (cooked)

The substitution of the expression proceed(u) for a cooked method call v.m[a]<T>(w)
in expression e, denoted as [v.m[a]<T>(w)/proceed]e, is defined as follows.
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[v.m[a]<T>(w)/proceed]x = x
[v.m[a]<T>(w)/proceed]new N(e) = new N([v.m[a]<T>(w)/proceed]e)
[v.m[a]<T>(w)/proceed](e.f) = ([v.m[a]<T>(w)/proceed]e).f
[v.m[a]<T>(w)/proceed](e.m<T>(e)) = ([v.m[a]<T>(w)/proceed]e).

m<T>([v.m[a]<T>(w)/proceed]e)
[v.m[a]<T>(w)/proceed](e.m(e)) = ([v.m[a]<T>(w)/proceed]e).

m([v.m[a]<T>(w)/proceed]e)
[v.m[a]<T>(w)/proceed](e.m[a]<T>(e)) = ([v.m[a]<T>(w)/proceed]e).

m[a]<T>([v.m[a]<T>(w)/proceed]e)
[v.m[a]<T>(w)/proceed](e.m[a](e)) = ([v.m[a]<T>(w)/proceed]e).

m[a]([v.m[a]<T>(w)/proceed]e)
[v.m[a]<T>(w)/proceed]proceed(e) = v.m[a]<T>

([v.m[a]<T>(w)/proceed]e,w)
[v.m[a]<T>(w)/proceed]e = [v.m[a]<T>(w)/proceed]e1,

[v.m[a]<T>(w)/proceed]e2,
. . . ,
[v.m[a]<T>(w)/proceed]en

The type preservation for substitution of proceed (cooked) is stated as:

if Δ ;Γ ,U proceed(V) � e : T and Δ ;Γ � v.m[a](v,w) : U′ and Δ ;Γ ,U proceed(V) �
v : V’ and Δ � V’ <: V and Δ � U’ <: U and Δ ;Γ � ok, then Δ ;Γ �
[v.m[a](w)/proceed]e : T’ and Δ � T’ <: T.

Proof: by induction on the structure of the substitution.

Case e≡ proceed(d) .
The expression proceed(d) is typed by T-Proceed. By the premises of T-
Proceed, Γ (proceed) = U(V), Δ ;Γ ,U proceed(V) � d : V′ and Δ � V′ <: V. By the
inductive hypothesis, Δ ;Γ � d : V′′ and Δ � V′′ <: V′′. By transitivity of the subtype
relation, Δ � V′′ <: V. This suffices to match the types of the first arguments of
v.m[a](v,w), which can be typed by T-InvkA.

Other cases . The other cases simply propagate the substitution to its subexpres-
sions. The preservation of types is assured by the inductive hypothesis over the
substitution on subexpressions.

Substitution of proceed (raw)

The substitution of the expression proceed(u) for a raw method call v.m[a](w) in e,
denoted as [v.m[a](w)/proceed]e, is stated in the same way as the cooked method
counterpart.

Lemma 2 (preservation of type variable substitution)

The substitution of type variable X for type V in type T, denoted as [V/X]T, is defined
as follows:

[V/X]X = V
[V/X]Y = Y if X �= Y
[V/X]C = C
[V/X]C<T> = C<[V/X]T>
[V/X]� = �
[V/X]T = [V/X]T1,[V/X]T2, . . . ,[V/X]Tn
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The substitution of type variable X for type V in expression e, denoted as [V/X]e,
is defined as follows:

[V/X]x = x
[V/X]new N(e) = new [V/X]N([V/X]e)
[V/X](e.f) = ([V/X]e).f
[V/X](e.m<T>(e)) = ([V/X]e).m<[V/X]T>([V/X]e)
[V/X](e.m(e)) = ([V/X]e).m([V/X]e)
[V/X](e.m[a]<T>(e)) = ([V/X]e).m[a]<[V/X]T>([V/X]e)
[V/X](e.m[a](e)) = ([V/X]e).m[a]([V/X]e)
[V/X]proceed(e) = proceed([V/X]e)
[V/X]e = [V/X]e1,[V/X]e2, . . . ,[v/x]en

The substitution of type variable X for type V in type environment Γ , denoted as
[V/X]Γ , is defined as follows:

[V/X]∅ = ∅

[V/X](Γ ,T x) = ([V/X]Γ ),[V/X]T x
[V/X](Γ ,U proceed(T)) = ([V/X]Γ ),[V/X]U proceed([V/X]T)

The substitution of type variable X for type V in type variable environment Γ ,
denoted as [V/X]Δ , is defined as follows:

[V/X]∅ = ∅

[V/X](Δ,X�N) = ([V/X]Δ),X�[V/X]N

The preservation of types in type judgements after type variable substitution is
stated as:

if Δ ,Γ � ok and Δ ,X�N;Γ � e : T and [V/X]Δ � V<: N then [V/X]Δ ,[V/X]Γ � [V/X]e :
[V/X]T’ and [V/X]Δ � [V/X]T’ <: [V/X]T

Proof: by induction on the structure of the substitution over type judgements and the
subtype relation.

Lemma 3 (mtype and mbody have the same domain)

if ad,cd � ok then mtype(m,C<T>) de f ined ⇔ mbody(m<V>,C<T>) de f ined

Proof:

– C ∈ cd?

• No. Then both functions are undefined.
• Yes. Let class C<X�N> �P { ad k md} be the definition of C in cd. m ∈ md?

∗ Yes. Then both functions are defined.
∗ No. Then the result of the functions mtype and mbody for the method m

in C is the same as the result of the method m in P (after type variable
substitution).

Since ad,cd � ok, the class hierarchy is acyclic and has a top element. Therefore,
the chain of recursive calls of both functions always finishes. If m is defined in some
superclass of C, then both functions are defined. Otherwise, they are both undefined.

Lemma 4 (mtyperaw and mbodyraw have the same domain)

Similar statement and proof as Lemma 3.
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