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Abstract: The abstract syntax and static semantics of UML, the widely-used general-
purpose graphical modeling language, have been standardized in a four-layer meta-
modeling framework. However UML’s dynamic semantics, such as UML Precise Action
Semantics and the behaviors like activities, interactions and state machines, are only
standardized in a natural language—English. It is commonly argued that such informal
description inevitably involves ambiguities and lacks rigorousness, precluding the early
simulation and reasoning about a UML system design. Here we select Action Semantics
(AS) as the vehicle to formalize UML. AS is a mature semantics description framework
which has advantages of intelligibility, modularity and practicability. In our approach,
we formalize UML indirectly by formalizing its textual correspondent—an extended
Action Language, which plays a key role as the interface between UML and its action
semantics.

Key Words: Action Semantics, formal semantics, action language, Unified Modeling
Language
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1 Introduction

Unified Modeling Language (UML) is a general-purpose graphical modeling lan-
guage that is widely applied in system design and documentation. Previously,
UML lacked sufficient expressivity in describing dynamic aspects of systems,
such as method bodies and exit/entry actions of state machines, and as such
has to resort to a plain natural language or an existing programming language
as a complementary formalism. These two compromising methods have their
drawbacks: 1) using natural languages causes ambiguities in the description and
hampers rigorous model checking and early system simulation; 2) using program-
ming languages usually involves unnecessary implementation-specific details and
requires the related background of the user. To address this problem, UML Pre-
cise Action Semantics (UPAS) [Mellor and Trockey 2001] has been incorporated
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into UML 2.0 [OMG 2006a, OMG 2006b] to provide precise behavioral primi-
tives such that large-scale realistic behaviors can be built systematically based
on them. Consequently, UML has been made expressive more in defining the
dynamic parts of the system, and thus becomes executable.

However, although the syntax and the static semantics of UML have been
formally specified using MetaObject Facility (MOF) [OMG 2006c] in a four-layer
metamodeling framework facilitated by Object Constraint Language (OCL),
UPAS and the behaviors of UML such as state machines, activities and interac-
tions, are only standardized in English. It is well-known that natural languages
inevitably involve vagueness and lack reasonability. So it is desired to provide a
formal semantics for this aspect of UML.

There have been a variety of approaches to formalizing UML within which
we may distinguish three main but closely related themes: formal semantics (e.g.
krtUML [Damm et al. 2003]), meta-modelling (e.g. pUML [Alvarez et al. 2001])
and translational (e.g. CASL [Reggio et al. 2001]). We draw on all three ap-
proaches, integrating them through the formalisation of a UML Action Lan-
guage. We employ Action Semantics (AS) [Mosses 1992] because the formal
semantics of UML demands more readability and extensibility due to its fast
evolution and a wider range of users, and AS has such properties compared
to other frameworks, including operational semantics [Plotkin 2004] and deno-
tational semantics [Schmidt 1986]. Furthermore, instead of defining UML di-
rectly, we design an Action Language (AL) [Mellor and Balcer 2003] and use it
as the intermediary between UML and action semantics of UML. The AL is
characterized by heterogeneity, combining simultaneously the features of Object
Oriented Programming Languages (OOPL), Object Query Languages (OQL)
[Cattell and Barry 2000], Model Description Languages (MDL) and complicated
behaviors like state machines. Thus using AS to formalize such a hybrid language
has considerable significance in exploring the adequacy and applicability of AS.

2 Action Semantics Framework

AS is a mature framework for formalizing semantics of programming languages,
created to make semantics specifications more comprehensible and thus more
widely acceptable. AS, a hybrid framework, incorporates the best features of the
following formal semantics.

Denotational Semantics (DS). In describing action semantics of a program-
ming language, one always begins with specifying its abstract syntax, which
acts as the bridge between its concrete syntax and its corresponding semantics.
Then, semantic functions, each expressed by one or more semantic equations,
are defined to map each phrase in the abstract syntax to a semantic entity. The
semantics of a compound phrase or a non-terminal is composed by those of the

3609Yang M., Michaelson G.J., Pooley R.J.: Formal Action Semantics ...



sub phrases. This quality of semantics is called compositionality [Plotkin 2004].
By this means, the semantics of the target language are denoted by the corre-
sponding semantic entities, mainly actions. This process is extremely similar to
that of describing a denotational semantics. Differently, the semantic entities in
AS are intelligible actions, not the higher-order cryptic mathematic functions
adopted in DS.

Structural Operation Semantics (SOS) [Plotkin 2004]. AS uses SOS to pro-
vide a formal base to actions, where behaviors of an abstract machine are de-
fined. This abstract machine takes actions as instructions and performs them,
and thus achieves computational effects, e.g. updating store, changing binding
environment, sending/receiving messages and creating transient information.

Algebraic Specification. AS adopts an unorthodox framework for algebraic
specification, unified algebraic specification [Mosses 1989, Mosses 1994], to define
sorts that model abstract data types. AS has already defined a wide range of
commonly-used data sorts including the primitive ones such as truth values,
integer and characters, and some generic ones such as map, list and set. So the
user can simply import them into their AS descriptions.

AS has advantages over traditional frameworks, such as the mentioned DS
and SOS, of intelligibility and modularity, primarily because actions are carefully
designed to be suggestive and intuitive English words. Note that the Action
Notation (AN), specifying the lexical symbols of actions, has been evolved from
AN-1 [Mosses 1992] to AN-2 [Lassen et al. 2000]. However, AN-1 is adopted in
this paper. Owing to space limited, the reader is referred to [Mosses 1992] for
the elaboration of actions and their operational semantics.

3 The Extended Action Language

We do not formalize UML directly for the following reasons.

– Since an action semantics is syntax-directed and compositional, we must
specify the abstract syntax tree of UML before composing its action se-
mantics. However, the abstract syntax of UML is NOT tree-structured, at
least not intuitively, in that it is formalized in an object-oriented four-layer
metamodeling architecture, namely using graph-like class diagrams.

– UML, as a modeling language intended for early stages in system develop-
ment and a broad spectrum of different application domains, unavoidably
includes some ambiguous and execution-unrelated constructs. So we need
to remove these semantics-weak constructs and confine our attention to an
executable subset of UML.

Consequently, we need a textual programming language corresponding to a rig-
orous and executable subset of UML as an interface between UML and its action
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semantics. This textual correspondent is required to genuinely embody the ma-
jor dynamic semantics of UML. We consider that an AL is the best candidate
because it definitely incorporates most major dynamic semantics of UML; after
all, ALs are created to provide concrete syntax for the basic behavioral units of
UML—actions. (The reader should not confuse the actions in UPMS with those
in AS).

So far, several ALs have existed for years, such as Action Specification Lan-
guage (ASL) [KCL 2000b], the BridgePoint Action Language [PT 2005], and
the widely-used SDL [ITU 1999] in the telecommunications industry. Although
these ALs, generally speaking, have reflected the actions of UPAS, they each are
not complete programming languages. They are more like scripting languages
intended to being embedded in UML models in that they lack model description
constructs to represent UML diagrams such as class diagrams and state charts.
Therefore, we cannot simply reuse one of them as the intermediary between
UML and its action semantics. This gives rise to an extended action language,
called ALx, which provides not only the syntax of the dynamic aspect of UML
like the existing ALs but also textual representations for UML diagrams. Note
that we are mainly concerned with the dynamic semantics of UML rather than
any syntax, including the syntax of ALx, so we do not detail the syntax of the
selected subset of UML and ALx.

4 Related Action Semantics

AS has been applied to model a diversified range of realistic languages, such as
Java [Watt 1997, Brown and Watt 1999], standard ML [Watt 1988] and Pascal
[Mosses and Watt 1993]. Most relevant to our research is [Watt 1997], in which
David Watt utilized AS to describe the semantics of JOOS, a subset of Java con-
cerning the main concepts, such as classes, fields, inheritance, dynamic method
selection and object constructors.

We have the following thoughts about the semantics of JOOS. On the one
hand, the action semantics of JOOS has demonstrated that AS is capable of
describing the major semantics of an OOPL, however it has not been demon-
strated that AS is expressive or elegant sufficient to describe the semantics of
a higher-level descriptive language like an OQL, or the semantics of complex
behaviors such as state machines. This becomes one of our departure points of
our work of applying AS to ALx.

On the other hand, we can re-use, extend or modify many parts of the action
semantics of JOOS in our action semantics for ALx because the two languages
share a lot in the semantics relevant to basic expressions, imperative commands
and object-oriented constructs. In this way, we can take full advantages of AS
modularity and extensibility to save efforts in our semantics description. This
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is also an opportunity to explore and check these benefits of AS in practice.
As a result, we are allowed to focus on the semantics of those constructs that
are greatly different from those of JOOS, such as class declaration and object
creation/destruction, and absent in ALx, such as object query, state transition
and link traversal.

To sum up, our action semantics of ALx is based on Watt’s action semantics
for JOOS. The reader is recommended to refer to action semantics of JOOS
when reading the semantics of ALx for better understanding.

5 Action Semantics of ALx

5.1 Class and Class Declaration

To model ALx classes, a user-defined and composite sort class is specified as
follows:

class = class of ( class-token, type-bindings, method-bindings,

constructor, state-machine?, class?).

which indicates that a class is constructed from various components as follows:

– a class-token, which corresponds to the simple name of the class.

– a type-bindings, essentially a map from token to type, where the token
corresponds to the name of a field and the type to the declared type of this
field.

– a method-bindings, essentially a map from token to method, where a
method is an abstraction encapsulating an action denoting the semantics
of the method body.

– a constructor, a special method to be invoked during object creation.

– an optional state-machine, representing the state-machine behavior of the
class.

– an optional class is the direct superclass of this class.

The sort class is equipped with operations to access the components of classes,
including method-bindings , class-token , type-bindings , construc-
tor , state-machine , superclass and superclasses . Their uses are
straightforward: for example, the operation method-bindings is for obtain-
ing the method-bindings component of the given class. Among them, the opera-
tion type-bindings is worth highlighting, because it returns the programmer-
defined type-bindings of the given class, plus a special type-binding in which the
token is “ LinkRecord” and the type is set. This implies, every object of every
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class has an implicitly-defined field, the name of which is specially designed to
be unique in the scope of an object. This treatment is used to record the links
associated with the object.

The semantics of a class declaration of JOOS is that a class is constructed
and then bound to a class-token which corresponds to the class name. This forms
an entry of the bindings map—the scoped information. Thus, the class can be
obtained based on its name. However, a class declaration of ALx will additionally
allocate a cell specialized to store a list intended to memorize identities of all
objects of this class. Such lists are referred to as object identity lists. Initially,
in the runtime, when a class is created, the object identity list of this class is
an empty list. Each time an object of this class is created, the identity of the
newly created object is added to the list. Furthermore, the object identity list
of a class is accessible because cell holding its object identity list is bound to a
token obtained by the operation identity-list-token and specific to the class
name. This semantics is described in ASD 5.1.

ASD 5.1 Class Declaration
• elaborate :: Class-Declaration → action [binding storing][using current

bindings current storage].

(1) elaborate [[“class” I1: Identifier “extends” I2: Identifier “{”
F : Field-Declaration* C : Constructor-Declaration? M : Method-Declaration*

S : State-Machine-Declaration “}”]] =
recursively bind I1 to the class of(the type-bindings of F , the method-bindings
of M , the constructor of C , the state-machine of S , the class bound to I2).
and
allocate a cell then
store an empty-list in it and bind the identity-list-token of I1 to it

5.2 Objects

The sort object is defined as follows to model objects.

object = object of (class, variable-bindings, identity)

This means, an object consists of three components: 1) a class, which classifies
this object. 2) a variable-bindings, essentially a map from field names to cells
which hold values of the corresponding fields. 3) an identity, uniquely identify-
ing the object, which is actually a cell allocated when the object is initialized.

Likewise, the sort object also provides operations to access the components
of the specified object, such as class , field-variable-bindings and iden-
tity . Notably, the object can be obtained from its identity by the operation
the-object-with-identity .
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ASD 5.2 Field Initialization
• allocate an object of :: yielder [of a class] → action [storing giving an object] [using

current storage current bindings]

(1) allocate an object of c: yielder [of a class] = instantiate the field-type-bindings of c
and allocate an identity and initialize state of c then
give the object of (the class yielded by c, disjoint-union (the given variable-

bindings#1, the given variable-bindings#3 ), the given identity #2)

• instantiate :: yielder [of type-bindings] → action [storing giving variable-bindings]
[using current storage].

(2) instantiate t : yielder [of type-bindings] =
check (t is the empty-map) and then give the empty-map
or
give t and choose a token [in the mapped-set of t] then
instantiate (the given type-bindings#1 omitting the set of the given token#2)
and
give the given token #2 and allocate a variable initialized to the default-value
of the type yielded by (the given type-bindings #1 at the given token #2 )
then give the disjoint-union of ( the given variable-bindings #1,

the map of the given token#2 to the given variable #3 ).

An object initialization, the major process in creating an object, takes the
following procedure. Its action semantics is illustrated in ASD 5.2.

1. Instantiate the object’s fields.

(a) Obtain the field-type bindings of its class (the class is known).

(b) Allocate a cell for each field.

(c) Store the default value into the allocated cell based on the type of the
field.

2. Allocate a cell to be the identity of the object being initialized.

3. Set the current state of the object to the initial state if its class has a state-
machine behavior using the auxiliary function initialize state of .

4. Construct the object using the components produced by the previous steps.

In the procedure, the steps 1 to 3 can be carried out concurrently. This semantics
is similar to the corresponding semantics of JOOS. Note that the special field “
LinkRecord”, mentioned in Sub-section 5.1, is also initialized, along with other
programmer-defined fields, to an empty set, being prepared to store the associ-
ated links. Furthermore, in ASD 5.2, the auxiliary function initialize state of
is used to allocate a cell to store the current state of the object if this object
has a state-machine behavior. Likewise, this cell is bound to a unique token for
later access.
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5.3 Object Query

The object query mechanism enables retrieving objects of a given class from the
runtime environment, usually based on a condition. The resulting objects are
put into a variable of set type.

ASD 5.3 Object Creation
• execute :: Object-Creation → action [storing diverging escaping binding] [using

current bindings current storage]

(1) execute [[“create-object” I1: Identifier “of” I2: Identifier]] =
allocate an object of the class bound to I2 then
bind I1 to the given object#1 and
recursively add identity (the given object#1) to class (the given object#1)

• recursively add to :: identity, class → action [storing diverging] [using current
bindings current storage]

(2) recursively add I : identity to C : class and its superclasses =
give the identity-list stored in the cell bound to
the identity-list-token of (class-token C ) then
store concatenation ( the given identity-list, the list of I )
to the cell bound to the identity-list token of I

and give (superclass C )
then
check (the given tuple is()) and then complete
or
check (not(the given tuple is()) and then recursively add I to the given class)

To accomplish this object query mechanism, we have deliberately used, as
mentioned in Section 5.1, a special cell for a class to hold its object identity list
so as to keep a record of the identities of all its objects, including the objects of
all its direct and indirect sub classes. Apart from that, the following two post-
conditions respectively of object creation and object deletion should be enforced.

– Whenever an object is created, its identity is put into the identity list of its
class and its super classes. See ASD 5.3. We use an auxiliary function with
the following signature

recursively add to :: identity, class → action

to recursively add identity of the newly created object to object identity lists
of its corresponding class and all superclasses.

– Whenever an object is deleted, its identity is removed from the object iden-
tity list of its class and its super classes. The formal description of object
deletion is omitted here to save space.

Now that the identities of all objects of a class have been recorded, object
selection is a matter of iterating over the objects collection, and picking out the
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objects which satisfy the specified condition. See ASD 5.4 for details. Note that
the object being visited in each iteration is bound to the token “selected” for
immediately later use in evaluating conditions.

ASD 5.4 Object Query
• execute :: Selection → action [storing diverging ][using current bindings current

storage]

(1) execute [[ “select” I1: Identifier “from instances of ” I2: Identifier “where” E : Expres-
sion ]] =

select instances in (the identity-list stored in the cell bound to
the identity-list-token of I2) by the condition E
then
store the given set to the cell bound to I1.

• select instances in by the condition :: identity-list, Expression → action [giving a
set diverging ] [ using current bindings current storage]

(2) select instances in I : identity-list by the condition E : Expression =
check ( I is empty-list ) and then give empty-set
or
check ( not ( I is empty-list )) and then
give the-object-with-identity (head I ) then bind “selected” to the given object
thence
evaluate E and select instances in (tail I ) by the condition E and
give the given object
then
check(the given truth-value#1 is true) and then
give disjoint-union(set of(the given object#3), the given set#2)
or
check(not( the given truth-value#1 is true) and give the given set#2

5.4 Link Traversal

The sort link is defined to model links, which are instances of relations, as
follows:

link = link of(relation, (object, object), identity)

This implies, a link contains its classifying relation, the connected two objects
and its identity. To be simple, the sort relation is defined as follows:

relation = relation of (relation-token, class, class)

where the relation-token is corresponding to the relation name; the two classes
are ones that participate in the relation. We do not consider multiplicities of
associations because multiplicities are more related to static semantics. Parallel
to classes, which are produced in class declarations, relations are generated in
relation declarations. Both class declarations and relation declarations of ALx,
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the model description parts of ALx, can completely represent textually a rigorous
UML class diagram, the primary static aspect of the system.

ASD 5.5 Link Creation
• execute :: Link-Creation → action [storing diverging ] [using current bindings current

storage]

(1) execute [[ “relate” I1: Identifier to I2: Identifier across I3: Identifier ]] =
allocate a cell then
give the link of ( I1, (the object stored in the cell bound to I2,
the object stored in the cell bound to I3), the given cell)
then
add the given link to the object stored in the cell bound to I2 and
add the given link to the object stored in the cell bound to I3.

• add to :: link,object → action [storing diverging ] [using current bindings current
storage ]

(2) add L:link to O : Object = give the field-variable-bindings of O
then give (the given variable-bindings at “ LinkRecord”)
then store disjoint-union of ( the set stored in the given variable,
the set of the identity of L) in the given variable.

The link traversal mechanism of ALx enables navigating from one object to
another across a link and can be considered as a special kind of object query.
Its fulfillment necessitates that each object records all the links connected to it.
For this purpose, we have intentionally incorporated a field (“ LinkRecord”) in
every object, as mentioned in Sub-section 5.1. So, whenever a link is created, it
is definitely added to both fields of the two linked objects. The formal semantics
for link creation is shown in ASD 5.5. When the link is destroyed, it is removed
from the fields. The formal semantics for link deletion is not illustrated here.

See ASD 5.6. The object selection based on link traversal involves the fol-
lowing major steps:

1. Give all links of the given object. This is carried out by the auxiliary function

get the links from :: object → action

which returns values of the aforementioned field “ LinkRecord” of the given
object. Its formal definition is not shown here.

2. For each link, see whether it is an instance of the given relation (using a
defined operation is an instance of ).

– If so, retrieve the object connected with the given object by this link and
put it into a set. This object retrieving is accomplished by the following
operation

the object linked with by :: object, link → object
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ASD 5.6 Link Traversal
• execute :: Selection → action [storing diverging] [using current bindings current

storage]

(1) execute [[“select” I1: Identifier “related by” I2: Identifier “− >” I3: Identifier]] =
give ( the object stored in the variable bound to I2) and
give the relation bound to I3
then (regive and get the links from the given object#1) then
get the linked objects of the given object#1

from the given set#3 related by the given relation#2
then store the given set to the variable bound to I1.

• get the linked objects of from related by :: object, set, relation → action [giving
a set diverging]

(2) get the linked objects of o: object from s: set related by r : relation =
choose a link [in s] then
get the linked of o from the intersection of (s, the set of the given link)
and give the given link
then
check (the given link#2 is an instance of r) and then
give disjoint-union (the set of the object
linked with o by the given link#2, the given set#1)
or
check (not(the given link is an instance of r) and then give the given set#1.

– If not, go to the next link.

Note that this step is implemented in a recursively defined auxiliary function.

3. Bind the resulting set to a variable in the storage.

5.5 State Machine

To represent state machines, various sorts are defined, in particular including
state-machine, state and transition-table. Their definitions are given in ASD
5.7 and self-explainable. We highlight that the sort transition-table is actually
a map that implements transition functions of state transitions, and the entry-
action of a state is an abstraction encapsulating an action that is performed
when the object moves into this state while the exit-action is performed as the
object exits this state.

ASD 5.7 Sorts for modeling state machines
• state-machine = state-machine of (initial-state-token, transition-table, state-bindings)

• state = state of (state-token, entry-action?, exit-action?)

• transition-table = map [(state-token, event-token) to state-token]
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According to UML 2.0, a state machine has an event pool which holds incom-
ing events until they are dispatched; and the event occurrence processing is the
major behavior of a state machine and is based on the run-to-completion assump-
tion, interpreted as run-to-completion processing. The run-to-completion means
that an event occurrence can only be processed if the processing of the previous
event occurrence is fully completed. As for ALx, the semantics of this process
is implemented in the construct “Event-Generation”, which sends an event to
an object with a behavior of state machine and then may trigger a state tran-
sition. ASD 5.8 shows the formal semantics of processing events, where various

ASD 5.8 State Machine
• execute :: Event-Generation → action [storing diverging] [using current

bindings current storage]

(1) execute [[ “generate” I1: Identifier “to” I2: Identifier ]] =
give the object stored in the cell bound to I2 then
get the current state of the given object and regive then
enact the application of the exit-action of the given state#1 to

the given object#2
and then
get the destination state of the given object when the event-token of I2 and
regive then
set the current state of the given object#2 to the given state#1 and then
enact the application of the entry-action of the given state#1 to

the given object#2

self-explanatory operations are defined to make the semantic description concise.
Among them, the operation get the destination state of when is an op-
eration for searching the transition table and returning a destination state when
an event occurs. Informally speaking, when an event happens, the exit-action, a
method abstraction, of the current state is enacted and executed. Subsequently,
the transition table is consulted for the target state, and the current state of
the object is changed to this state. Finally the entry-action of the target state is
executed. Note that it is assumed that any generated event will definitely cause
a change of state in the state machine. This assumption is reasonable in our case
because it could be assured via static analysis of the program.

6 Implementation

To give assurance of the validity of the action semantics description, we have
recently implemented a prototype ALx-to-Java translator, underpinned by our
formal semantic description of the action language, using Model Driven Archi-
tecture (MDA) [Miller and Mukerji 2003], where models are the first-class and
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[UML  AL]
Translator

[AL Java]
TranslatorUML model AL code Java code

UML M2 [UML  AL]
Mapping Model AL M2 [AL  Java]

Mapping Model Java M2

Java VM

Result

use use use use

based on based on

executed on
1. UML M2:  UML Metamodel represented in Ecore model. 
2. AL M2: AL Metamodel represented in Ecore model.  
3. [UML  AL] Mapping Model: rules mapping UML to AL, represented in  ATL. 
4. [AL Java] Mapping Model: rules mapping AL to Java. 
5. [UML  AL] Translator:  an ATL engine programmably configured to be 

based on the corresponding mapping model to perform the translation. 
6. [AL Java] Translator:  the ATL engine programmably configured to be 

based on the corresponding mapping model to perform the translation. 

conform to conform to conform to

Figure 1: The architecture of the UML-to-Java translator.

major artifacts, and systems are achieved by model transformations and evo-
lutions, and code generation. The open-source Eclipse [Eclipse 2008] projects
provide us with a complete list of capable toolkits supporting MDA, particu-
larly including:

1. Eclipse Modeling Facility (EMF) [Budinsky et al.]. The core EMF frame-
work includes a meta model (Ecore) for describing models and runtime sup-
port for the models including serializing/loading models in/from XMI files
[OMG 2002], and a reflective API for manipulating EMF objects generically.
In addition, a graphical authoring tool for Ecore model is also developed by
a satellite project.

2. ATL (ATLAS Transformation Language) [ATLAS 2006], a model transfor-
mation language, which can be used to formalize executable mapping rules in
transforming two different kinds of models. Also available is an ATL engine,
which, having the mapping rules and two different metamodels in Ecore as
the knowledge base, can translate a source model conforming to one meta-
model to a target one conforming to the other metamodel. Notably, the ATL
engine can be easily incorporated into a Java application and all its required
models and metamodels can be programmably configured in the runtime.

The general architecture, including the relevant model and metamodels, is
given in Figure 1. The whole translation process is divided into two sequential
sub translations, the translation from UML to ALx and the translation from
ALx to Java. We compose three metamodels using Ecore, UML metamodel,
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+send()
-interval : int
Controller

+display(in lid : int)

-redOn : bool
-greenOn : bool
-orangeOn : bool

LightsPanel
control

timePassed timePassed 

timePassed 

Controller LightsPaneltimePassed

red_showing

entry { display(0); }

green_showing

entry { display(1); }

orange_showing

entry { display(2); }

class Controller{
    int interval = 3; 
    void send(){
        LightsPanel panel; 
        panel = self -> control; 
        generate timePassed to panel;  } 
}
class LightsPanel{
     bool redOn;  … ; 
     void display (int lid){
      //same to the ALx code embedded in uml model.   }
}
relation control Control -> LightPanel
event timePassed Control -> LightsPanel
state machine {
   state red_showing{ entry{ display(0) ; }  }
    state green_showing { … }
    state orange_showing { … }
    initial_state: red_showing
    transition_table
     { red_showing,  timePassed,  green_showing;
        green_showing, timePassed, orange_showing; 
        orange_showing, timePassed, red_showing;  }
     }}
main(){   // for model simulation. 
    Controller controller; LightsPanel panel;  ...
    create-object controller of Controller; 
    create-object panel of LightsPanel; 
    relate controller to LightsPanel across control; 
    int i = 0;  int interval = controller.interval; 
    while (true) {    i ++; 
        if (i == interval) { controller.send(); i = 0 ; } 
    } }

//All classes corresponding to AL classes implements IALObject
public interface IALObject {
   public void destroyInstance(); //destroy an object.
    public Set getLinks ();  // get all links 
    public void addLink (IALLink link); 
    public IALLink getLink(Rid rid); // getting a link
    public void removeLink(IALLink link); // deleting a link
    public void addObject(); //Called in newInstance() 
    public void removeObject(); //Called in destroyInstance(); 

public void stateTransitted(Eid e)//trigger state transition. 
    … }
public abstract class ALObject implements IALObject{
   pubilc static ALObject newInstance(){ … };  … // ommitted
 }
// classes corresponding to AL relations implements IALRelation
public interface IALRelation{
   public IALLink newLink (IALObject o1,  IALObject o2);    
   public Cid getOneEnd();  // Cid: class ID. Each class has ID.  
   public Cid getAnotherEnd(); 
   public Rid getRelationId(); // Each relation has an Id. 
}
public interface IALLink{
    public IALRelation getRelation(); 
    public ALObject getOtherEnd(ALObject o);  
    …      
}

public interface IController extends IALObject {
     public void setInterval(int inter);
     public int getInterval();  public void send(); } 
public class Controller extends ALObject implements 
IController{
     public int interval; 
     public void send () {

LightsPanel panel; 
               panel = this.getLink(1).getOtherEnd(this)
               // Above, 1 is the generated Rid of “control” ,  
              panel.stateTransitted (2); 
              // Above, 2 is the generated Eid of “timePassed”          
     }
}
// Classes for the relation “control”, LinghtsPanel, etc are 
omimted because of space limited. 
// The main class for model simulation. 
public class Main {
    public static void main(String[] argus){
        Controller controller; LightsPanel panel;  
        controller = Controller.newinstance();  
         …  // omitted.
        control.newLink(controller, panel); 
         … // omitted. 
    }
}

a) UML model of traffic light system (input model) b)  ALx code generated 

//ALx code
if ( lid = 0 ) {
   redOn = true; 
   greenOn = false; 
   orangeOn = false; 
}
if ( lid = 1 ) {
   redOn = false; 
   greenOn = true; 
   orangeOn = false; 
}
if ( lid =2 )  { ... }

1) class collaboration diagram 2) embedded ALx code for 
display(in lid : int) of LightsPanel 

3) state chart for LightsPanel

1) class diagram

c) Major run-time API d) Java code generated

Figure 2: An example of a traffic light system.
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ALx metamodel and Java metamodel, and two mapping models for the two
sub translations. When the translator is launched, all metamodels and mapping
models are loaded into the runtime environment, together with an input UML
model. Note that it is also likely that some of these models have already resided in
memory and do not need to be loaded for instance if the translator is integrated
by a UML case tool and launched from its environment. Then, the embedded
ATL engine is configured by code to do the first translation resulting in an in-
memory ALx model, followed by the second translation, which is also performed
by the same ATL engine, but configured differently. Finally, the Java model is
obtained and code is generated. In fact, it is more sensible and efficient that we
translate UML to Java directly without by-producing the ALx model.

When we compose the ALx to Java mapping model, the first principle is
that it should be strictly loyal to our action semantics of ALx. Interestingly, we
find the action semantics description strongly suggests the implementation of
the language, especially for such high-level constructs as object creating, object
query, link traversal and state machines. In other words, the action semantics is
consistent with the metaphor of the language implementers, which is desired for
a formal semantics. This fact corroborates the statement about AS that it has
superior understandability.

The initial evaluation of this translator suggests that it is accurate and robust
on small examples. One example of a simple traffic light is shown in Figure 2.
We are currently investigating scalability to realistic UML models.

7 Conclusion

In conclusion, we find that AS is expressively adequate to formalize a heteroge-
neous language like ALx combining the features of OOPs, OQLs and MDLs. We
observe that the resulting action semantics for UML is readable, and suggestive
for language implementation through applying it to implementing a prototype
translator in MDA approach. Meanwhile, we find that MDA is a very effort-
saving and rigorous approach to implementing languages because the semantic
rules can be easily and adherently represented by an executable transformation
language.

We have not explored describing the concurrency of UML, e.g., asynchronous
calls to behaviors, co-existence of multiple active objects [Selic 2004] each of
which has its own thread, and asynchronous signal response, using communica-
tive actions. This is because:

1. Each agent of AN-1, the abstraction of real computational processors, has
its own local store, and no common store is provided to be shared by agents
readily. It is feasible, but not trivial, to simulate a common store using
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an auxiliary agent that reacts to messages about allocating, changing, and
inspecting its local store.

2. If we use AN-1 to cover the concurrency of UML ignoring the difficulties
in modeling the common store, we consider that the most feasible solution
is that each object, whether active or passive [Selic 2004], is allocated with
one agent, and interactions between objects are modeled by message ex-
change between agents. This solution implies that the interactions between
agents may be asynchronous, or synchronous. However, using AN-1 to model
synchronous communication is not straightforward and needs to resort to
auxiliary agents, due to AN-1 adopting the single asynchronous notion of
communications.

As such, AN-1 is not suitable, or at least not elegant, to describe some notions
such as light-weight processes and threads, which probably share stores and
necessitate synchronous communications. In fact, this limitation of AN-1 was
realized by Mosses at the beginning [Mosses 1992].

The newly developed AN-2 will make life easier in coping with concurrency
since AN-2 allows agents to share and have global access to the storage. So, our
major future work is to cover the concurrency of UML using AN-2. The translator
mentioned in Section 6 will be correspondingly updated. We can envisage an
expressive executable subset of UML that is formally defined in both syntax
and semantics, and a translator or interpreter that can execute its models and
is provably correct because it is based on the formal semantics and rigorously-
defined model transformations.
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